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Standard Model .99
e

Quarks

The Standard Model (SM) is a theory of
subatomic particles that has been successfully
used to predict new physics for decades, most

recently with the discovery of the Higgs boson in ,
2012 nggs boson

SM shows that there are three types of
fundamental particles Fermions, gauge bosons,
and Higgs Bosons. Leptons

* Fermions — Particles that form matter

ks — Form had . L
Quarks = Form hadrons While SM has been largely successful, it fails to account

for gravity. There is no particle in SM that mediates
gravity. Additionally, it doesn’t account for the
ol . abundance of mass we can’t observe. This

uons(g) — Mediates the strong force
7 and W* bosons - Mediates the weak force unobservable mass, called dark matter, has been
shown to be more abundant than SM matter.
Can dark matter interact with SM particles?

Leptons — Neutrinos, electrons, muons, and taus

* Guage Bosons — force carrying particles
* Photons (y) - Mediate the Electromagnetic (EM) force

* Higgs Boson — Gives particle mass
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Large Hadron Collider

* The Large Hadron Collider
(LHC) is the largest and most
powerful particle collider in
the world

 Currently on it’s 3" run, the
LHC can produce collisions
with an energy of 13.6 TeV

* Sends particles to one of its
for detectors to record
collisions
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A Toroidal LHC ApparatuS (ATLAS)

* General purpose detector -
within the LHC o

e Contains 4 detectors ..

* Inner detector — Detects
origin, momentum, tracks,
and particle type

* Liguid Argon Calorimeter —

Detects energy of electrons zm e
and photons B\
* Tile Hadronic Calorimeter — \ Tile calorimefers
Detects energy of hadrons | "mgrgrgg;g end-cop and
| Pixel detector
* M uon S p eCt rom ete r-n\.nnnn.. >~ Toroid magnets LAr eleciromagnetic calorimeters
Dete CtS M uons Muon chambers Solenoid magnet | Transition radiation tracker

Semiconductor fracker



ATLAS Data Collection

* Low-level data contains track-level information taken directly from
the detector

* High-level data is low-level data that has been reconstructed to get
physical data about the jets (ex: mass, momentum, etc.)

e ATLAS is able to reconstruct high-level data using the low-level data
collected from the detector

e ATLAS collaboration simulates Monte Carlo data, which we use for the
analysis

* Many collisions contain missing energy (MET)
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Semi-Visible Jets

Jets

e Stream of hadrons produced from
qguarks or gluons

Semi-Visible Jets (SVIJs) i
* Theorized result of Z’ boson decay 7

* 7' bosons possibly created in
proton-proton collisions

* Contain both SM particles and _
dark matter particles dsm

e Since dark matter can’t be
detected, SVJs must contain
energy that is invisible to the
detector




SVJ Properties

rinv

* Fraction of energy that is carried by A
dark matter particles

QI
<

* High r,,, means less SM hadrons
and higher MET

Z’ mass

 Mass of the intermediate boson

* High Z' mass means more energy, s
but also higher MET if r._, is high oy |

Invisible fraction



Why Study SVJs?

SVJs can give us insight into the nature of dark matter and how SM
matter interacts with dark matter

Many events recorded in ATLAS have recorded MET, but this is often
due to mismeasured SM jets

Since we’ve never detected an SVJ, how do we know how to find one?



Boosted Decision Tree

o Decision Node _—)Root Node
Decision trees |

* A powerful machine learning model - ----- $ ————— \ ,l,

* Splits data into signal and background | ***™ Dpecision Node
based on cuts on different variables
and chooses the cut that most

Decision Node

|
v v

O o - o o o -

|
|
accurately splits the data B/ v
Boosting : Leaf Node Leaf Node Leaf Node Decision Node
* Improved way of finding good cuts ST T T T ; | .

* Looks at multiple weak classifiers
(decision trees that perform slightly IR LS
better than random) and iterates over
them to attempt to make a strong
classifier
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BDT vs PEN

In 2022, Compact Muon Solenoid (CMS) attempted a search for SVIs using a BDT, but
found none

Are BDTs the best machine learning model for finding SVJs?

Particle Flow Network (PFN) is a neural network that uses low-level track data from
the leading and subleading jets to find correlations and separate signal from
background

BDT uses high-level data from multiple jets and is tested with multiple sets of
variables to see if the PFN using low-level data can make correlations between signal
and background that the BDT using high-level data can’t

BDT is trained and tested over files that contain SVJs of multiple differentr, , and Z’
mass values
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njets
* Number of jets
detected

Variables

number of jets distribution for Testing Sample (Unweighted)
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Variable Tables

jetl The leading jet / the jet with the highest pt
jet2 The subleading jet / the jet with the second highest pt
Djets Number of jets detected
jetl/2,, Transverse momentum of jetsl and jet2
pt_balance;s (jetly: - jet2p:) /jet 1y
jetl/2, Pseudorapidity of jetl and jet2
Anis The difference between jet1, and jet2,
MET Missing energy in the transverse direction
mT The total reconstructed mass
r'T MET/mT
Amin The minimum transverse angle from either jet to the direction of MET
APmax The maximum transverse angle from either jet to the direction of MET
marg _ming The difference between A¢,,.. and Ay,
AR The solid angle between the two leading jets
deltay;o the difference in rapidity between jetl and jet2
Aplanarity How well the jets are distributed in the transverse plane
Sphericity A measure of the spherical symmetry of the distribution of jets
Sphericityr Sphericity in the transverse plane
Jet1/2  width Jet width calculated using calorimeter data

Jet1/2 TrackWidthPt1000PV | The width between the two furthest tracks with pt over 1000 MeV within
the jet from the primary vertex

Jetl/2 SumPtTrkPt500PV The pt sum of each track of at least 500 MeV within the jet from
the primary vertex
Jetl/2 NumTrkPt1000PV The amount of tracks of at least 1000 MeV within the jet from

the primary vertex




PEN ROC

SVJ] PFN ROC

104 — AUC=10.91

Receiving operating characteristic
(ROC) curves show the false positive 08 -
Vs true positive rate for a machine
learning (ML) model. The Area Under
the Curve (AUC) shows the
percentage chance that the ML
model successfully identifies signal 02
from background. The PFN AUC score
of 0.91 serves as a benchmark to
measure the BDT by.
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BDT Without Track Variables

Variable Importance for trial 0 of 1-fold{used v6p2 9) ROC Curve for BDT 1-fold
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Variable importance charts rank variables by how well they discriminate
signal from background.
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BDT With All Variables
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BDT performs great when tested over signal files with SVJs of many r,, and Z" mass
But, since r,, and Z’ mass are unknown for SVJs, MET could be biased against SVJs




BDT Without MET

Variable Importance for trial 0 of 1-fold(used v7pd 1) ROC Curve for BDT 1-fold

pt_balance_12
jet2_TrackWidthPtl000PY
jet2_SumPtTrkPtSOOPY
jetl_SumPtTrkPtSOOPY
jetl_Width
jetl_TrackWidthPt1000PY 7.0
dR_12 315.0
jet2_Width 293.0
dphi_min 766.0
jet2_eta 27150
jetl_eta 2700
dphi_max 2630
jetl_NumTrkPt1000PY 245.0
jet2_NumTrkPt1000PY 2030

3950 1.01

BT.0 0.8 4

o
o
L

Features

True positive rate
o
S

0.2 1

maxphi_minphi 184.0
deta_12 165.0

——— AUC = 0.9009 for Oth trial

10000 test sig, 10000 test bkag, train sig 50000, train bkg 50000
delta¥_12 1056 mm ['sIGskim'] 0.0 1 ['siGskim']

4] 50 100 150 200 250 300 350 400 0.0 0.2 0.4 0.6 0.8 10
F scare

Removed MET and rT e

Also removed variables involving more than 2 jets (n,, aplanarity, sphericity,
sphericity.) since PFN can only analyze 2 jets




BDT With the Least Amount of Variables

Variable Importance for trial 0 of 1-fold(used v7p4_2) ROC Curve for BDT 1-fold
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Results

BDT performs better than the PFN when given more high-level variables
but performs worse than the PFN when missing multiple discriminatory
high-level variables

MET was the strongest variable out of all

Since we don’t know what r.. or Z" mass is, using MET could cause our BDT
to reject SVIs if they have a MET that is similar to background

Since the BDT only produces an AUC of 0.88 when compared to the PFN’s
0.91 in a one-to-one test, the PFN has been shown to be superior to the

BDT.

Since the PFN has access to low-level data, the PFN can reconstruct
variables that don’t make physical sense yet make good discriminators.
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Signal and Control Region Study

Since the PFN is superior to the BDT, we move forwards with the PFN

How do we further test the efficiency of the PFN?

Find a variable which splits the data into a control region with little
signal and a signal region that contains most signal, while not
discriminating between background between the two groups

Need a variable highly discriminatory at detecting signal but not
discriminatory at detecting background

After the PFN creates a signal region using experimental data, we
unblind the experimental signal region and see how it compares to the

test signal region
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An,, cut

Control region: An,, > 1

vB8pl PFNv3pl QCDskim3.hdf5

. . -3
Signal region An,, <1 107 1 signal region bkg
] 1 Control region bkg
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Jet2,,4n cUt 0.05

Signal region: jet2, .4, > 0.05
Control region: jet2, .., < 0.05
PFN cut > 0.97
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Jet2,, .4 cUt 0.1
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Results

The Jet2 ., cuts provides better separation than the An,, cut

Both Jet2,,,,, cuts separate about the same despite using different
values

More studies on signal/control regions need to be made

Leading R=0.4 Jet Width distribution for Training Sample (Unweighted)

[ sign

al(NE=500
[ Background (NE=50000)

00)

Width




Conclusion/Future

The PFN performs better than the BDT since it’s able to find
correlations in the track-level data that the BDT can’t

Jet2,, 4 is currently the best signal region split found, but more
research needs to be done

We hope to unblind the signal region in fall

Next spring, we hope to publicly report results of the experiment
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Correlation Matrices

Signal Feature Correlation Matrix (v7.4) Background Feature Correlation Matrix (v7.4)
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Correlation Matrices show the relation between each variable to each
other. A score of 1 means perfect positive correlation, -1 means perfect
negative correlation, and 0 means no correlation
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number of jets distribution for Testing Sample (Unweighted) Leading Jet Eta distribution for Testing Sample (Unweighted)
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pr balance leading-subleading distribution for Testing Sample (Unweighted) AR (leading, subleading jet) distribution for Testing Sample (Unweighted)
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MET/mT distribution for Testing Sample (Unweighted) Aplanarity distribution for Testing Sample (Unweighted)
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Sphericity distribution for Testing Sample (Unweighted)

Transverse Sphericity distribution for Testing Sample (Unweighted)
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Missing E7 distribution for Testing Sample (Unweighted)
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Leading R=0.4 Jet Width distribution for Testing Sample (Unweighted) Subleading R=0.4 Jet Width distribution for Testing Sample (Unweighted)
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Leading R=0.4 Jet NumTrkPt1000PV distribution for Testing Sample (Unweighted)

Subleading R=0.4 Jet NumTrkPt1000PV distribution for Testing Sample (Unweighted)
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Leading R=0.4 Jet TrackWidthPt1000PV distribution for Testing Sample (Unweighted)

Subleading R=0.4 Jet TrackWidthPt1000PV distribution for Testing Sample (Unweighted)
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Leading R=0.4 Jet SumPtTrkPt500PV distribution for Testing Sample (Unweighted)

Subleading R=0.4 Jet SumPtTrkPt500PV distribution for Testing Sample (Unweighted)
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