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Background & Motivation
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Liquid Argon Time Projection Chambers (LArTPC)

● Detection of charged particles
○ Ionization Electrons
○ Scintillation Light

● Constructs 3D particle path using 
spatial (channel) information and 
timing information

● Components:
○ Liquid Argon
○ Electric Field
○ Induction Planes
○ Collection Plane
○ PMTs
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LArTPC Event Displays

● Signals are read as ADC waveforms on the wires
● A 2D event display can be constructed to visualize the particle’s path:

○ Channel vs Time vs ADC count
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ICEBERG Event Display



Deep Underground Neutrino Experiment (DUNE)

● LArTPC deep underground to decrease background
● Major Objectives:

○ Neutrino Mass hierarchy
○ CP Violation in neutrinos
○ Observation of proton decay
○ Supernova neutrino detection
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ICEBERG

● DUNE is very large and very expensive
● Prototypes must be used to test the hardware/software
● ICEBERG

○ “ Integrated Cryostat and Electronics Built for Experimental Research Goals”

● Contains ~4.5 tons of liquid argon
○ Dune will have a total of 70 kilotons

● Not underground!

7



Michel Decay

● Cosmic rays
○ Atomic nuclei traversing space at relativistic speeds

● Upon entering Earth’s atmosphere, they decay into 
pions (mesons)

● Pions decay quickly into muons (heavy leptons)
● Muons most common mode of decay (Michel 

Decay) is:
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Michel Decay (continued)

● Muons are unstable and decay within 
microseconds at rest

○ This is slower from our reference frame because they 
move at relativistic speeds

● DUNE will be strongly shielded from cosmic ray 
muons, but ICEBERG isn’t

○ Michel decay is well understood and can be used for 
electronics calibration and testing software
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Event Triggering

● I am creating an algorithm for detecting Michel decay against background
● DUNE will generate several terabytes of data every second

○ Most of this cannot be stored
○ Must be reduced by an order of 10,000 to meet hardware limitations

An algorithm that decides what data to store must be developed:

● Must be fast
○ DUNE will collect data in real time

● Must be accurate
○ DUNE aims to observe very rare events; we can’t afford to miss them
○ ~99.5% of noise signals must be discarded

● Must not be highly computationally complex
○ Hardware resources are constrained
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Artificial Intelligence

● Machine Learning has proven to be an effective method for event triggering
● Two-Dimensional Convolutional Neural Networks (2D CNNs) perform excellently 

in image classification
○ LArTPC event displays are simply images
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2D CNN

● Input layer
○ Tensor with dimensions: Length ✕ Width ✕ Color Channel

● Zero Padding Layer
○ Changes dimensions of tensor by adding entries with 0 value
○ May be necessary for operations in later layers

● Pooling Layer
○ Groups together nearby entries to reduce parameter count and computational load

● Convolutional Layer
○ Performs mathematical convolution between input tensor and a convolution matrix predetermined from training

● Fully Connected Layer
○ Every neuron applies a preset activation function to the input tensor
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Noise Simulation for Neural Network Training

● A neural network must be trained on a very large, labelled dataset
○ This can effectively be produced via simulation

● Stopping muons can be simulated, but a data-driven noise model for ICEBERG 
does not yet exist

○ A method for generating noise must be generated using real noise data (because we can’t simulate 
from first principles) to ensure accuracy to real events

Randomized Waveform
Data-Driven Waveform
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Real Waveform



Data-Driven Noise Model
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Fast Fourier Transform

● A Fast Fourier Transform (FFT) can be used to calculate the frequencies and 
associated amplitudes of a given waveform

○ This information is critical for generating a simulated waveform

● Each channel experiences noise slightly different
○ Different lengths and positions within the detector
○ We must therefore analyze the frequencies associated with each channel independent of the others

● Noise varies over time
○ Files containing data collected between 3/13/21 and 4/4/21 were analyzed to avoid overfitting to a 

single time
○ FFT’s for each day were compared to look for trends relating to time
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FFT spectrum for one channel, averaged over every analyzed event:

FFT of Channel 1000
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FFT spectra for all channels, averaged over every analyzed event:
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Twenty-Two Days of ICEBERG Data: 18



FFT Spectra

● No trends were noticeable as time passes, but variance is still present
● The same channels tend to consistently be the noisiest
● Some days have different Data Acquisition (DAQ) configurations, causing them to 

have different dead channels
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Simulating Noise

● The average FFT is divided into three regions: low frequency, middle frequency, and 
high frequency

● A function is fitted to each region using polynomial interpolation
○ This function behaves as a probability density function

● One frequency is randomly selected from 
each region based on the probability 
density function

● An inverse FFT is performed to generate a 
waveform with these three frequencies
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Probability Density Functions 21



Single Simulated Wave 22
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Simulated Event Display (Collection Plane)
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Convolutional Neural Network
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Architecture

● Two Dimensional Convolutional Neural Network 
(2D CNN)

● Based on a network previously developed to detect 
low energy neutrino events in DUNE

○ Low parameter count, and high accuracy
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Training and Performance

● Training set contains simulated stopping 
muons and through-going muons

○ These simulations are only recently accessible, and 
further formatting is necessary to prepare them for 
training

● Network was tested on publicly accessible 
neural network datasets

○ Performance was poor because architecture was not 
optimized for this data
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Summary & Conclusions
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Summary & Conclusion

● A data-driven noise model has been developed for ICEBERG
○ A similar method will likely be used for DUNE

● A 2D CNN is promising for Michel Decay triggering, but it has not yet been trained 
and tested on the simulated data
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Next Steps

● Improve accuracy of noise simulation
○ Truncate edge effects
○ Use larger dataset

● Improve speed of noise simulation
○ A simulated event display currently takes ~30 minutes to generate

● Train/optimize the Neural Network
○ Modify architecture to find ideal balance between complexity and performance
○ Compare if using all three detection planes improves performance

● Use CNN for detection of other interactions
○ Ar-39
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