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Liquid Argon Time Projection Chambers (LArTPC)
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LArTPC Event Displays

e Signals are read as ADC waveforms on the wires
e A 2D event display can be constructed to visualize the particle’s path:

o  Channel vs Time vs ADC count

ICEBERG Event Display

|||||

1200
lllll

|||||

1200

% ” o - - ™ #)

Channel COLUMBIA
UNIVERSITY



Deep Underground Neutrino Experiment (DUNE)

e [ArTPC deep underground to decrease background
e Major Objectives:

o Neutrino Mass hierarchy

o  CP Violation in neutrinos

o  Observation of proton decay
o  Supernova neutrino detection

Sanford Underground
Research Facility

Fermilab



ICEBERG

e DUNE is very large and very expensive
e Prototypes must be used to test the hardware/software
e ICEBERG

o  “Integrated Cryostat and Electronics Built for Experimental Research Goals”

e (Contains ~4.5 tons of liquid argon

o  Dune will have a total of 70 kilotons

e Not underground!

oo

COLUMBIA
UNIVERSITY




Michel Decay
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o  Atomic nuclei traversing space at relativistic speeds . air molecules
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Michel Decay (continued)

e Muons are unstable and decay within
microseconds at rest

o  This is slower from our reference frame because they

move at relativistic speeds

e DUNE will be strongly shielded from cosmic ray
muons, but ICEBERG isn’t

o  Michel decay is well understood and can be used for
electronics calibration and testing software




Event Triggering

e [ am creating an algorithm for detecting Michel decay against background
e DUNE will generate several terabytes of data every second

o  Most of this cannot be stored
o  Must be reduced by an order of 10,000 to meet hardware limitations

An algorithm that decides what data to store must be developed:

® Must be fast
o  DUNE will collect data in real time

e Must be accurate

o  DUNE aims to observe very rare events; we can’t afford to miss them
o ~99.5% of noise signals must be discarded

e Must not be highly computationally complex

o  Hardware resources are constrained
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Artificial Intelligence

e Machine Learning has proven to be an effective method for event triggering
e Two-Dimensional Convolutional Neural Networks (2D CNNs) perform excellently

in image classification
o LArTPC event displays are simply images
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2D CNN

e Input layer
o  Tensor with dimensions: Length X Width X Color Channel
e Zero Padding Layer

o  Changes dimensions of tensor by adding entries with 0 value
o  May be necessary for operations in later layers

e Pooling Layer
o  Groups together nearby entries to reduce parameter count and computational load

e Convolutional Layer

o  Performs mathematical convolution between input tensor and a convolution matrix predetermined from training

e Fully Connected Layer

o  Every neuron applies a preset activation function to the input tensor

input conv1 pool1 conv2 pool2 hiddend output
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Noise Simulation for Neural Network Training

ADC Count

e A neural network must be trained on a very large, labelled dataset

o  This can effectively be produced via simulation

e Stopping muons can be simulated, but a data-driven noise model for ICEBERG

does not yet exist

o A method for generating noise must be generated using real noise data (because we can’t simulate

from first principles) to ensure accuracy to real events

Randomized Waveform
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Data-Driven Noise Model
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Fast Fourier Transform

e A Fast Fourier Transform (FFT) can be used to calculate the frequencies and
associated amplitudes of a given waveform

o  This information is critical for generating a simulated waveform

e FEach channel experiences noise slightly different
o  Different lengths and positions within the detector
o  We must therefore analyze the frequencies associated with each channel independent of the others

e Noise varies over time
o  Files containing data collected between 3/13/21 and 4/4/21 were analyzed to avoid overfitting to a
single time
o  FFT’s for each day were compared to look for trends relating to time
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FFT spectrum for one channel, averaged over every analyzed event:

FFT of Channel 1000
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FFT spectra for all channels, averaged over every analyzed event: 17
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Twenty-Two Days of ICEBERG Data: 18

Mean FFT for 3-13
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FFT Spectra
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No trends were noticeable as time passes, but variance is still present
The same channels tend to consistently be the noisiest
Some days have different Data Acquisition (DAQ) configurations, causing them to

have different dead channels
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Simulating Noise

e The average FFT is divided into three regions: low frequency, middle frequency, and
high frequency
e A function i1s fitted to each region using polynomial interpolation

o  This function behaves as a probability density function

FFT of Channel 1000
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Probability Density Functions

Probability Density Function of Frequencies
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Single Simulated Wave

Channel 1000 Simulated Waveform

e simwav
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Simulated Event Display (Collection Plane) 23
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Convolutional Neural Network
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Architecture

Layer (type) Output Shape Param #
resizing 28 (Resizing) (None, 64, 480, 3) )
e Two Dimensional Convolutional Neural Network ooy o7 (qerorage flone, €, e €
(2D CNN) Z:g;poolingzd_QZ (MaxPoolin (None, 32, 64, 3) e
e Based on a network previously developed to detect gy e Qe S A
5 . conv2d_7@ (Conv2D) (None, 32, 64, 2) 56
low energy neutrino events in DUNE padbe e L 0
o  Low parameter count, and high accuracy max gooling2d 93 (foclin (o, 36, 15, 2 0
g
zero_padding2d_75 (ZeroPadd (None, 18, 18, 2) 2
ing2D)
conv2d_71 (Conv2D) (None, 16, 16, 2) 38
re_lu_61 (RelU) (None, 16, 16, 2) )
max_pooling2d_94 (MaxPoolin (None, 4, 4, 2) )
g20)
reshape_13 (Reshape) (None, 1, 1, 32) e
dense_46 (Dense) (None, 1, 1, 12) 306
re_lu_62 (RelU) (None, 1, 1, 12) @
dense_47 (Dense) (None, 1, 1, 3) 39

Total params: 529
Trainable params: 528
Non-trainable params: @



Training and Performance

o« . . . Training and Validation Accuracy Training and Validation Loss
e Training set contains simulated stopping —
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Summary & Conclusions
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Summary & Conclusion

e A data-driven noise model has been developed for ICEBERG
o A similar method will likely be used for DUNE

e A 2D CNN is promising for Michel Decay triggering, but it has not yet been trained
and tested on the simulated data
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Next Steps

e [mprove accuracy of noise simulation
o  Truncate edge effects
o  Use larger dataset
e [mprove speed of noise simulation
o A simulated event display currently takes ~30 minutes to generate
e Train/optimize the Neural Network
o  Modify architecture to find ideal balance between complexity and performance
o  Compare if using all three detection planes improves performance
e Use CNN for detection of other interactions
o Ar-39
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