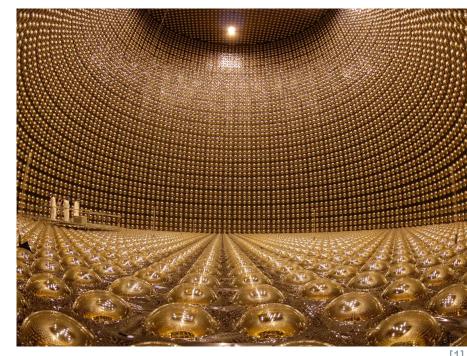
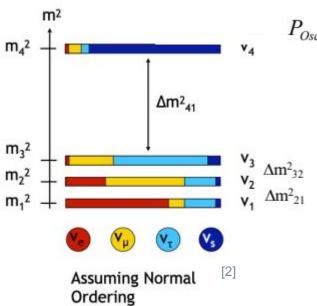
$v_{\mu} \rightarrow v_{\tau}$ Appearance in μ BooNE

Sarah Vickers¹ - Nevis Labs REU Program 2023


¹University of North Carolina at Chapel Hill

What is a neutrino?

- The "little neutral one"
- Extremely abundant, rarely interacting particle
 - Did you know that there's about 100
 billion going through your thumbnail every second?
- Three flavors within the Standard Model v_e , v_μ , v_τ


Hot topic in physics - lots of current & upcoming big neutrino experiments!

L

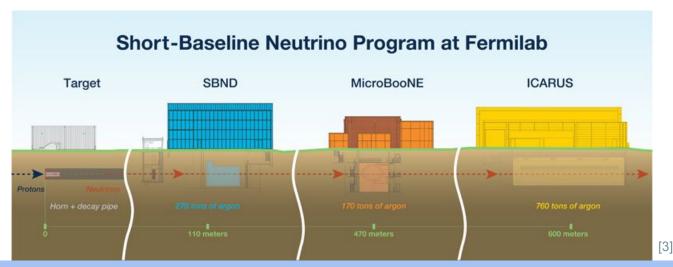
Neutrino Oscillations + Sterile Neutrinos

We know about the three neutrino flavors in the SM... but what if there was a fourth? Several neutrino experiments have seen anomalies which suggest the existence of another type of neutrino, the **sterile neutrino**.

 $P_{Osc} = \sin^2 2\theta \sin^2 \left(1.27 \Delta m^2 L / E \right)$

How do we look for sterile neutrinos?

- v_{μ} disappearance $(v_{\mu} \rightarrow v_{s})$
- v_e disappearance $(v_e \rightarrow v_s)$
- $v_{\mathbf{e}}$ appearance $(v_{\mu} \rightarrow v_{\mathbf{e}})$
- v_{τ} appearance $(v_{\mu} \rightarrow v_{\tau})$


Desperately seeking sterile

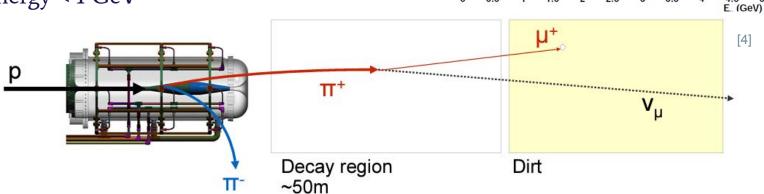
The three known types of neutrino might be "balanced out" by a bashful fourth type

ELECTRON NEUTRINO	MUON NEUTRINO	TAU NEUTRINO	STERILE NEUTRINO
V _e	V_{μ}	V_{τ}	V _s
MASS	< 1 electr	onvolt	>1 electronvolt
FORCES THEY RESPOND TO	Weak ford Gravity	e	Gravity
DIRECTION OF SPIN	All three "	left handed"	"Right handed"

MicroBooNE & the SBN Program

- 170 ton liquid argon time projection chamber (LArTPC)
- 1 of 3 detectors in the Short Baseline Neutrino (SBN) program at Fermilab
- SBN Goal: Investigate the possibility of light sterile neutrinos through $v_{\mu} \rightarrow v_{e}$ oscillations

Booster Neutrino Beam (BNB)


The Boo in μ BooNE

8 GeV protons on Beryllium target

5 Hz w/ $5 \cdot 10^{12}$ protons per pulse

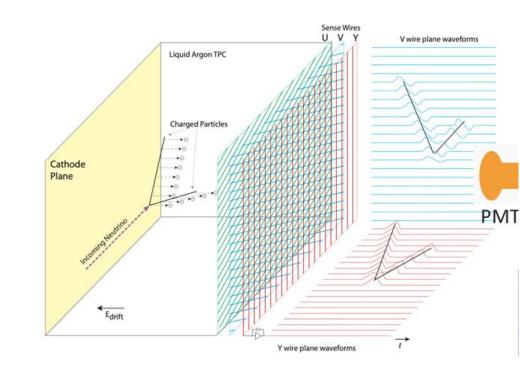
$$>99\% v_{\mu} \& <1\% v_{e}$$

Mean energy < 1 GeV

Φ(E_v) (v/POT/GeV/cm²)

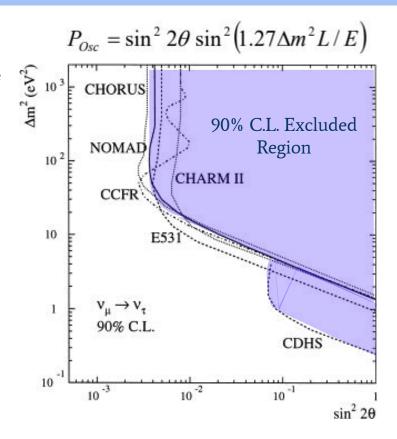
10-12

BNB Neutrino Flux


Liquid Argon Time Projection Chambers (LArTPCs)

Liquid argon serves as the nuclei target for neutrino-nucleon interactions.

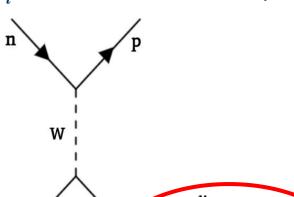
Why Argon? Because it is


- Dense
- Cheap
- Inert

Stay tuned for Josiah's presentation to learn more...

$v_{\mu} \rightarrow v_{\tau}$ Oscillation Sensitivity

- MicroBooNE initially looked for evidence of $v_{\mu} \rightarrow v_{e}$ oscillation
 - No evidence thus far, albeit with low sensitivity
- Previous experiments have done searches for $v_{\mu} \rightarrow v_{\tau}$
 - o NOMAD⁵
 - CHORUS⁶
- Preliminary kinematics search in DUNE⁷
- First opportunity to do so with μ BooNE data !!
- Can be expanded to the greater SBN program.

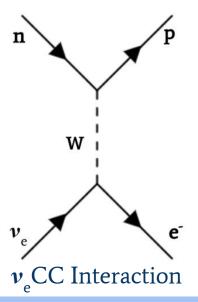

Neutrino Charged Current Interactions

Neutrino interacts with a neutron, knocking out a proton and producing it's charged lepton cousin.

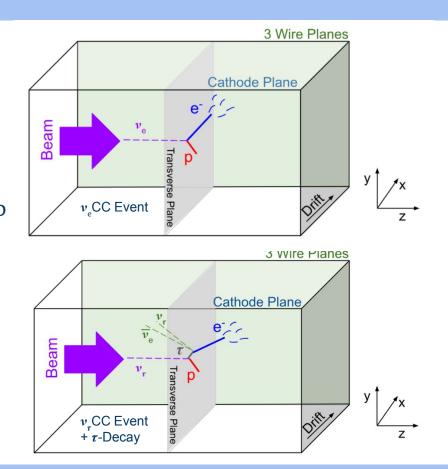
Energy threshold for tau production is 3.5 GeV.

Allows us to identify the flavor of the incident neutrino.

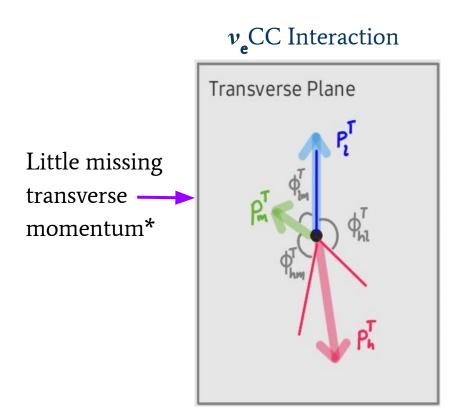
 v_{τ} CC Interaction + τ -Decay

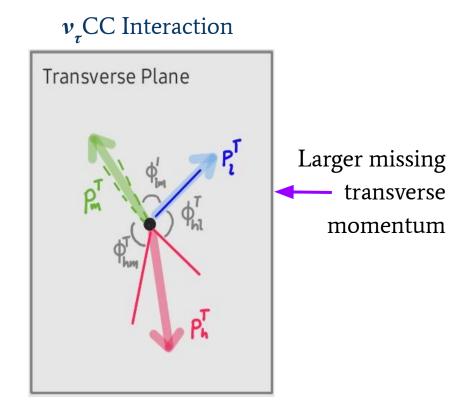


Decay Mode	Resonance	Branching Ratio (%)
Leptonic Decays		35.2
$\tau^- \to e^- \bar{\nu_e} \nu_{\tau}$		17.8
$\tau^- \to \mu^- \bar{\nu_\mu} \nu_\tau$		17.4
Hadronic Decays		64.8
$ au^- o h^- u_ au$		11.5
$ au^- o h^- \pi^0 u_ au$	$\rho(770)$	25.9
$\tau^- \to h^- \pi^0 \pi^0 \nu_{\tau}$	$a_1(1260)$	9.5
$ au^- ightarrow h^- h^+ h^- u_ au$	$a_1(1260)$	9.8
$\tau^- \to h^- h^+ h^- \pi^0 \nu_\tau$		4.8
Other		3.3
		[8]


Hadronic decays difficult to reconstruct... and muon decay has too much background → focus on electron decay mode.

v_{τ} CC Signal vs. $v_{ m e}$ CC Background


Background comes from v_e CC interactions which also create a final state proton and electron.

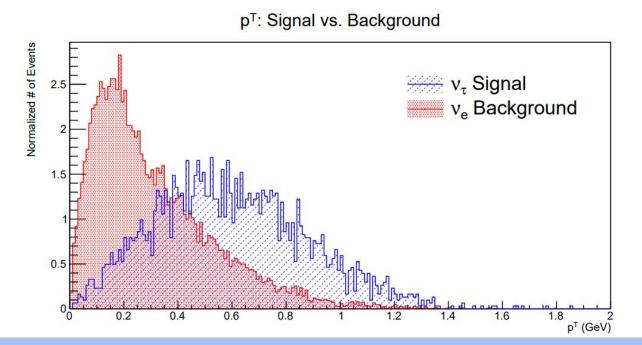


Extra outgoing neutrino and antineutrino from tau decay affect the momentum of the outgoing particles.

v_{τ} CC vs. v_{e} CC Kinematics

^{*} From Fermi momentum of the neutron.

Kinematic Variables

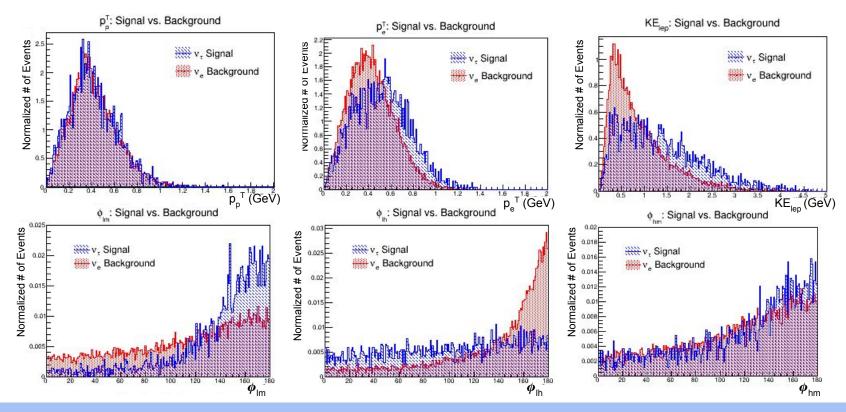

Seven main kinematic variables:

- p_p^T : transverse momentum of exiting proton(s)
- p_e^T : transverse momentum of exiting electron
- p^T: total transverse momentum of final state electron and proton(s)
 - \circ p_m^T : negative of p^T
- ϕ_{lm} : angle between electron momentum and missing transverse momentum
- ϕ_{lh} : angle between electron momentum and total proton momentum
- ϕ_{hm} : angle between total proton momentum and missing transverse momentum
- KE_{lep}: kinetic energy of exiting electron

Monte Carlo Truth-Level Analysis

GENIE (Generates Events for Neutrino Interaction Experiments)

~20,000 events each for signal (100% Osc.) and background (intrinsic beam)

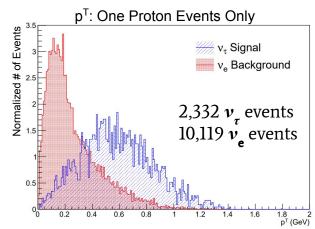

Optimize selection based on truth-level information.

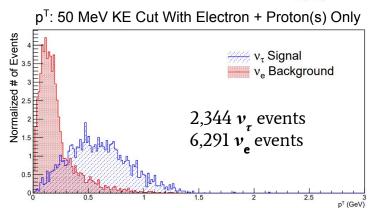
If we could reconstruct everything perfectly, what do the kinematics look like?

Study how distributions and correlations between variables differ between signal and background.

Kinematic Variable Distributions

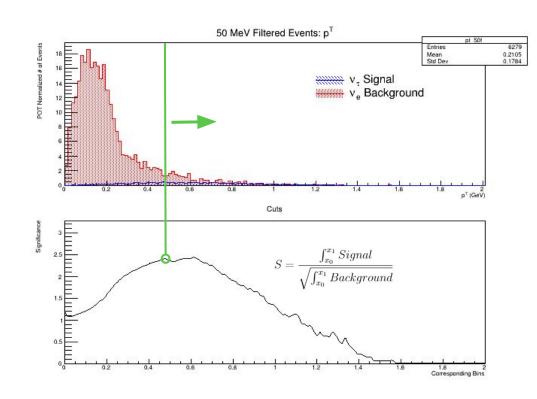
Distributions for the other six kinematic variables, all can tell us valuable information.


How do we optimize event selection?

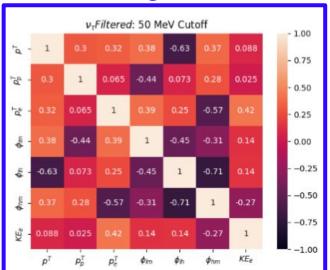

Place cuts on event characteristics - trying to improve the ratio of signal to background events.

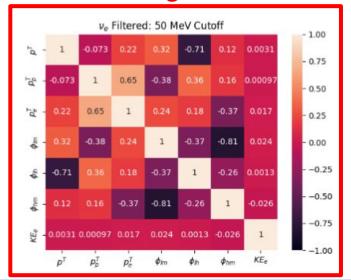
Could be based on:

- Kinetic energy of the protons
- Number of final state protons
- Are there other final state charged particles (pions, kaons, etc)


Many, many different selection themes!

How to optimize selection for a single variable?


- Optimize based on statistical significance
- Event # is normalized to true
 MicroBooNE POT (protons on target)
- Based on plot, would cut all events
 with p^T below ~0.45 GeV


Variable Correlations

- Correlation matrices of all 7 defined kinematic variables.
- See which variables correlate differently for signal and background indicates where to look when making 2D selections.

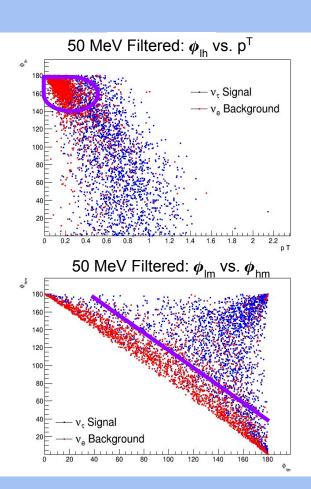
Signal

Background

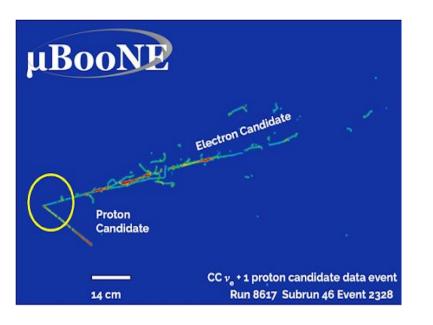
2D Selections

The more clustered the red is the better!

Cut out as much red as you can while keeping as much blue as you can.


Top:

95% of background rejected, but also over 50% of signal rejected.


18
$$v_{\tau}$$
 events \rightarrow 8 v_{τ} events 299 $v_{\mathbf{e}}$ events \rightarrow 15 $v_{\mathbf{e}}$ events

Bottom:

Around 80% background rejected, but 78% of signal remaining.

Reconstruction Analysis

- After truth-level analysis see how the same selections hold up using reconstruction information.
 - Recreate plots and make adjustments to selections.
- Much better representation of real MicroBooNE data.
- Need efficient selections for identifying proton-like and electron-like events.
- Preliminary reconstruction information distributions can be found in my report.

Conclusion & Next Steps

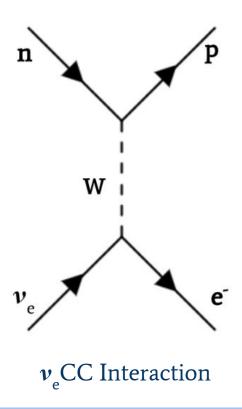
- We now have developed tools to optimize selection for $v_{\mu} \rightarrow v_{\tau}$ oscillation in MicroBooNE. Kinematics selections based on truth-level analysis give us information about the underlying mechanics of signal and background events.
- Particle identifying selections allow preliminary kinematics studies with reconstruction information.
- Actual detection of $v_{\mu} \rightarrow v_{\tau}$ excess will be very difficult to see in MicroBooNE alone, very few signal events means low significance even if they are there. However, there is still hope for the greater SBN program.

Next Steps

- 1. BDT training for track recognition \rightarrow Better selection efficiency
- 2. Refine selection algorithm for reconstructed simulation
- 3. Test the algorithm on the full MicroBooNE MC and real data to look for any discrepancies
- 4. Expand to the full SBN program
- 5. Evaluate the first sensitivity for $v_{\mu} \rightarrow v_{\tau}$ oscillations in MicroBooNE and SBN!

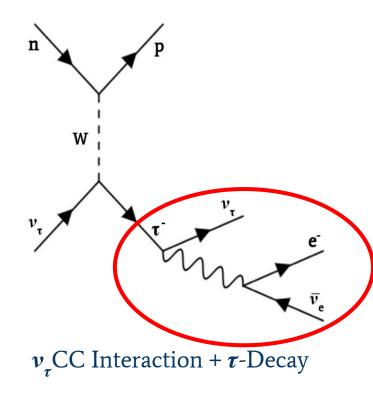
Acknowledgements

I would like to thank Dr. Georgia Karagiorgi, Dr. Michael Shaevitz, Dr. Leslie Camilleri, PhD candidate Guanqun Ge, and undergraduate student Eva Savin for their guidance and support. This material is based upon work supported by the National Science Foundation under Grant No. PHY/1950431.



References

- [1] Hamilton, I. A. (n.d.). A Golden Chamber buried under a mountain in Japan contains water so pure it can dissolve metal, and it's helping scientists detect dying stars. Business Insider.
- https://www.businessinsider.com/super-kamiokande-neutrino-detector-is-unbelievably-beautiful-2018-6
- [2] Shaevitz, M. PowerPoint Presentation "Introduction to Neutrino Experiments". REU Lecture 2023
- [3] Fermilab Creative Services. 19-01017-02. June 28, 2019. Url: https://mod.fnal.gov/mod/stillphotos/2019/0100/19-0107-02.hr.jpg
- [4] Zarko Pavlovic. PowerPoint Presentation "Booster Neutrino Beam". NA61/SHINE at Low Energy. December 8, 2020.
- [5] J. Altegoer, C. et al., A search for $\nu\mu \rightarrow \nu\tau$ oscillations using the NOMAD detector, Physics Letters B, Volume 431, Issues 1–2, 1998, Pages 219-236, ISSN 0370-2693, https://doi.org/10.1016/S0370-2693(98)00521-8.
- [6] Ludovici, L. (2001). Recent results from the chorus search for $v\mu \rightarrow v\tau$ oscillation. Nuclear Physics B Proceedings Supplements, 91(1–3), 177–183. https://doi.org/10.1016/s0920-5632(00)00938-5
- [7] Thomas Kosc. Kinematic search for tau neutrino appearance in the DUNE experiment. Nuclear Experiment [nucl-ex]. Université de Lyon, 2021. English.
- [8] Tanabashi, M.; et al. (Particle Data Group) (2018). "Review of Particle Physics". *Physical Review D.* **98** (3): 030001. Bibcode:2018PhRvD.:98c0001T. doi:10.1103/PhysRevD.98.030001


Neutrino Charged Current Interactions

Neutrino interacts with a neutron, knocking out a proton and producing it's charged lepton cousin.

Energy threshold for tau production is 3.5 GeV.

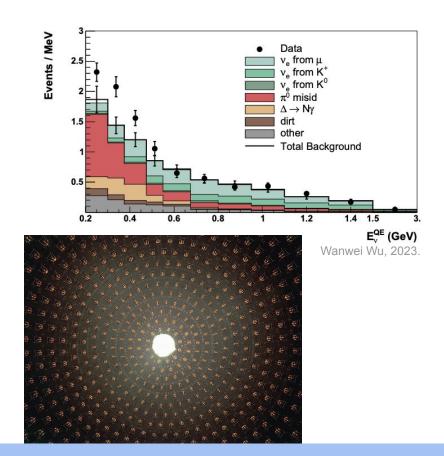
Allows us to identify the flavor of the incident neutrino.

Neutrino Oscillations + Sterile Neutrinos

Desperately seeking sterile

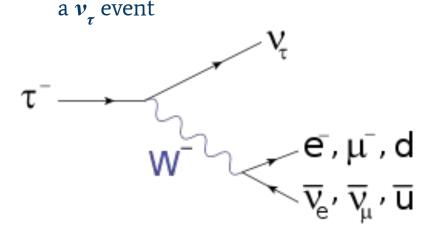
The three known types of neutrino might be "balanced out" by a bashful fourth type

What do all of these anomalies mean?


Points towards new physics beyond the Standard Model!

Most investigated theory is that of the sterile neutrino, an additional particle to the three flavors known in the SM.

Even more difficult to detect than ordinary neutrinos!!


MiniBooNE

- Primary Goal: Investigate the anomalous mass-squared difference of the Los Alamos Liquid Scintillator Neutrino Detector (LSND)
- Ended up with another anomaly! an excess of electron-like events at low energies
- What is the source of the extra events?
 - Single electron or single photon at neutrino interaction vertex

$v_{\tau}CC$: τ -Decay Branches

- Only concerned with leptonic decay pathways
- v_{μ} flux is much too high to have a chance of detecting a v_{τ} to any significance
- v_e flux is much lower, giving a low background for the electron decay pathway for

Decay Mode	Resonance	Branching Ratio (%)
Leptonic Decays		35.2
$\tau^- \to e^- \bar{\nu_e} \nu_{\tau}$		17.8
$\tau^- \to \mu^- \bar{\nu_\mu} \nu_\tau$		17.4
Hadronic Decays		64.8
$ au^- o h^- u_ au$		11.5
$ au^- o h^- \pi^0 \nu_{ au}$	$\rho(770)$	25.9
$ au^- o h^- \pi^0 \pi^0 u_ au$	$a_1(1260)$	9.5
$ au^- ightarrow h^- h^+ h^- u_ au$	$a_1(1260)$	9.8
$\tau^- \to h^- h^+ h^- \pi^0 \nu_\tau$		4.8
Other		3.3

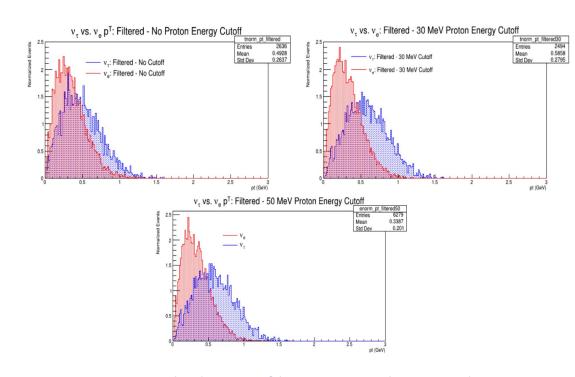
Monte Carlo Truth-Level Analysis

GENIE (Generates Events for Neutrino Interaction Experiments)

~20,000 events each for signal and background

Accounts for the neutrino-nucleon interactions as well as the Fermi momentum.

Study the kinematic differences at truth-level, without the uncertainty of reconstruction.


How do we optimize selection?

The goal is to find the best separation and reduce background as much as possible.

Place cuts on the events and kinematic variables.

Could be based on:

- Kinetic energy of the protons
- Number of final state protons
- Are there other final state charged particles (pions, kaons, etc)

Many, many different filtering/inclusion themes!

POT Normalization

- MicroBooNE POT (Protons On Target):
 - o Runs 1-3: 6.8 E20
 - o Runs 1-5: 1.32 E21
- POT required for GENIE to produce 20k events:
 - \circ v_{τ} : 1.51 E23
 - \circ v_e : 2.56 E22
- Simulation POT much higher → Need to normalize MC data down to the proper MicroBooNE POT
- High v_{τ} CC interaction threshold means not very many actual v_{τ} events would have been seen by MicroBooNE, if any.