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Abstract

A search is conducted for long lived dark photon production in proton-proton collisions
at the LHC by examining ATLAS detector data. Previous investigations into this signal
have only considered prompt decays of the dark photon. This analysis focuses on the
case where the dark photon is considered to be long lived, in which case electrons could
be reconstructed as photons by the detector. In this analysis, a Boosted Decision Tree
(BDT) is trained to separate the two photon signature of the signal from all other events
that occur during proton collisions. Due to the unknown nature of Z; and S, the BDT
is trained on many different signals with different Z; mass, S mass, and Z; lifetime.
This analysis will probe whether one BDT can be applied to all of the signals, or if the
kinematics of certain signals varies enough that a different BDT should be trained over
certain signals.



1 Introduction

1.1 The Standard Model

The Standard Model (SM) is a model which describes all known particles and their inter-
actions. In the SM, particles with half-integer spin are fermions. All quarks are fermions,
and they interact with the strong force to form hadrons. Leptons are fermions that do
not interact via the strong force. The three first generation leptons are electrons, muons,
and taus. Each of these leptons also has a corresponding flavor neutrino partner. Neutri-
nos are leptons that are neutrally charged and have very small mass. Each lepton has a
corresponding anti-particle. For first generation leptons, antiparticles have the same mass
but opposite charge. The positron is the anti-particle of the electron, with the same mass
as the electron but opposite charge. For neutrinos, antiparticles have the opposite sign
lepton number.

Gauge bosons are mediators of the fundamental forces. There are four fundamental forces
through which SM particles interact. One is the strong force which is mediated by the
gluon. Photons are bosons that mediate electromagnetic force. The weak force is me-
diated by both W and Z bosons. The last, and most well known, fundamental force is
gravity. It is theorized that particles interact with the Higgs field to gain mass. The Higgs
Boson is an excitation of the Higgs field, so in this way, the Higgs Boson is related to the
mechanism through which particles gain mass.

1.2 Dark Matter

There are many mysteries that cannot be explained by just SM particles. For example,
cosmological observations have been discovered that gravitational forces are stronger than
just what would be produced by standard visible matter. This means that there is more
matter in the universe than just what we can see. It is estimated that over 80% of
matter in the universe is dark matter. Dark matter is named for the fact that it doesn’t
interact electromagnetically, making it "invisible”. However, dark matter does interact
with gravity and has mass. If dark matter interacts with SM particles at all, it does so
very weakly, which is why it is so difficult to detect. However, there are various pieces of
evidence that prove dark matter is out there.

1.2.1 Rotation Curves

One piece of evidence of the existence of dark matter is found through measurement of
the orbital velocities at which objects rotate inside galaxies. Classical mechanics predicts
the rotational velocity v, of an object inside of a galaxy to be

o [GM(r)

Where G is the gravitational constant, r is the radial distance from the center of the
galaxy, and M(r) is the enclosed mass as a function of the radial distance from the center.
M(r) is expected to increase for radii inside the radius of visible mass of the galaxy, as
most of the visible mass in a galaxy is located around the center. For values of r past
where the visible mass is, M(r) is expected to remain constant. This means that v, is

expected to decrease proportional to \/g . However, what has been observed is that the
rotational velocity of objects in the galaxy remains constant at distances outside the



galaxy, meaning mass increases proportional to r at distances beyond the visible mass of
the galaxy[l]. A graph of the findings is shown in Figure 1. This means that there must
be additional invisible matter surrounding the galaxy.
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Figure 1: A graph of rotational velocity over distance[2]. The expected rotational velocity
is shown in the blue line. The black line shows the actual relationship between rotational
velocity and radius observed. The mass correction of an additional halo of invisible matter
is shown in the green line.

1.2.2 Gravitational Lensing

Light travelling through the universe to an observer is bent by gravity from massive
objects. The magnitude and location at which light is bent as it travels through a galaxy is
an indication of the distribution of matter the galaxy. This calculation of mass distribution
in a galaxy is called gravitational lensing. Gravitational lensing of the bullet cluster
provides another piece of evidence for the existence of dark matter.

The bullet cluster consists of two galaxies which collided billions of years ago. The visible
matter of the bullet cluster is located at the center, as the gases in the galaxies interacted
and slowed. This is shown by the pink region in the picture of the bullet cluster in figure
2. However, gravitational lensing calculations indicate that most of the mass should be
located in halos around the outside of the cluster[3], shown by the blue regions in figure 2.
The shape and location of these halos indicates that the dark matter halos passed right
through each other and the visible mass during the collision. This is proof that most
matter in a galaxy must be a form of matter which doesn’t interact electromagnetically
or with visible matter, but does interact with gravity.



Figure 2: An image of the bullet cluster [3]. Shown in pink is the visible mass of the
galaxy. In blue is the estimate of where most mass should be according to the effect of
gravitational lensing.

2 Instrumentation

2.1 The LHC

The Large Hadron Collider (LHC), located at the European Organization for Nuclear
Research (CERN), is the largest particle collider in the world. At roughly 27 km in
circumference, it spans parts of both Switzerland and France. Inside, two beams of
protons are sent in different directions. The LHC contains thousands of magnets which
produce a strong magnetic field of 8.3 T that directs and accelerates the proton beams
through the collider. Protons reach nearly the speed of light before they are collided in
highly energetic (13.6 TeV) collisions. Proton-proton collisions occur at four points at the
LHC, and a large detector is positioned at each point to take measurements [4].

2.2 The ATLAS Detector

One of the four large detectors at the LHC is the ATLAS detector. The ATLAS detector
is a multipurpose detector meaning it useful for a wide range of different experiments. Its
ability to take high precision measurements make ATLAS perfect for searching for new
physics beyond the standard model, such as dark matter.

ATLAS consists of an inner detector, an outer calorimeter, a muon spectrometer, and
a magnet system. The inner detector consists of a pixel detector and two trackers which
provide detailed trajectories of charged particles that pass through the detector. The
Semiconductor Tracker (SCT) is made of extremely small strips of silicon which can mea-
sure particle tracks with precision less than half the width of a human hair. Wrapped
around the SCT is the Transition Radiation Tracker (TRT), which consists of 4mm in
diameter straws filled with gas. When charged particles pass through the TRT, they ion-
ize the gas, which creates an electrical signal that reveals the particles’ location[5]. The
ATLAS detector also features a strong system of magnets. The Central Solenoid magnet
wraps around the inner detector and produces a 2 T magnetic field. There are also three
toroidal magnets, one at each end of the detector and one in the middle, that each produce
a 4 T magnetic field. The purpose of these magnetic fields is to bend charges particles [6].
When the track is measured by the trackers, the magnitude and direction of curvature in
the magnetic field provides information about the charge and momentum of the particle
that passed through the detector.



After passing through the tracker, particles hit the calorimeter. The calorimeter’s job is
to stop the particles and measure their momentum. There are two calorimeters in the
ATLAS detector: the Liquid Argon (LAr) calorimeter and the Tile Hadronic Calorimeter.
The LAr calorimeter wraps around the inner detector and consists of layers of different
kinds of metal with layers of liquid argon between each layer of metal. When electrons and
photons hit a metal layer, they produce a shower of particles which ionize the liquid argon
and produce a current which can be used to measure energy. The outermost calorimeter
is the Tile Hadronic Calorimeter, which consists of a steel layers which stop hadrons such
as protons and neutrons and produce a shower of particles. Sandwiched between the steel
layers are layers of plastic scintillating tiles, which measure the energy of the resulting
particle showers[7].

ATLAS

EXPERIMENT

Figure 3: A schematic drawing of the ATLAS detector|8]

2.2.1 Geometry

An x-y-z coordinate plane is defined in the ATLAS detector. The z-axis is set along the
beam. The x and y axes are perpendicular to the beamline, and the x-y plane is called
the transverse plane. ¢ is the azimuthal angle in the transverse plane. @ is the angle from
the beamline. However, 6 is not an invariant quantity, so pseudorapidity is used instead.
Pseudorapidity, 7 is calculated using n = —ln[tan(g)], and is the invariant angle from the
beamline. An 7 value of zero corresponds to 8 = 90°, and as n approaches infinity, it
approaches the beamline.

2.3 Boosted Decision Trees and TMVA

Boosted Decision Trees (BDTs) are a machine learning technique used to perform clas-
sification on a dataset. In particle physics, BDTs are used to split a dataset into signal
and background events. The signal is the process that is being examined, while the back-
ground is all other events. The process through which the BDT separates signal and
background events is as follows. Say the list of variables is described by a vector, U, of
length j. First, the BDT orders all of the events, signal and background, by their values
for variable v;, 7 € j. Then, it identifies the value, n, of v; which causes greatest separation
between signal and background events. This process is repeated for all ¢ € 7, until it finds
the v; which has a cut that results in the greatest separation in signal and background
events. The BDT makes a cut on the criteria for this value, in this example v; < n. After
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the cut, the full set of events (the first node) is split into two new nodes, one containing
events for which the variable meets the criteria and the other containing events for which
it does not. After this, the decision determines whether another cut on a variable improves
signal and background separation in either of the two new subsets. If it doesn’t, then it
declares the node as finished and moves on to the next node. It repeats this until no
nodes are left. After this, the decision tree defines each resulting leaf as either signal-like
or background-like. It does this by calculating S/(S + B), where S is the number of signal
events and B is the number of background events. This gives the ratio of signal events to
total events in the new sample. A ratio close to 1 is more signal-like, where a ratio closer
to 0 is background-like. These values are given as outputs in the tree[9]. An example of
a decision tree is shown in Fig [4].

Figure 4: An example of a boosted decision tree.

Boosting refers to the use of information about previous trees to inform the training of
new trees. There are many different algorithms for boosting, but one of the most effective,
and relevant to this analysis, is Adaptive Boosting, or AdaBoost. If a tree has poorer
performance, meaning it is a weak learner, the BDT will try to learn from it. It does
this by looking at the rate at which events are misclassified in all of the trees. The mis-
classification rate of an event in each of the trees is used to give a weight to each event.
More weight is given to events in with a higher misclassification rate. The tree is then
retrained with the events that have the weights applied. Since events that tended to be
misclassified in prior training have higher weights, the new tree will be more focused on
performing cuts that correctly classify them [9].

Before training, the BDT splits the full set of events up into testing and training events.
It performs the aforementioned training over the training events. Then, it tests the results
by making the same cuts on the testing events. This checks that the cuts made aren’t
specific to the training data, in which case the BDT would be overtrained.

Toolkit for Multivariate Data Analysis (TMVA) is a ROOT data analysis package used
to train BDTs for separating signal and background in particle physics. It contains the
BDT training algorithm as well as a user interface that is used to create classifier output
plots. TMVA also stores information about the training and creates classifier outputs
that are used to evaluate BDT performance. Following training, TMVA also prints out a
list of the variables by ranked by their importance in separating signal and background.



3 Search for Long Lived Dark Photons in the Two
Photon Signature

3.1 Motivation

The purpose of this search is to investigate a potential dark matter particle called a dark
photon. The dark photon is introduced in the Hidden Abelian Higgs Model (HAHM),
which predicts a new type of symmetry called dark gauge symmetry. This calls for the
existence of a dark gauge boson called a dark photon (Z;), as well as a new dark scalar
(S) [10]. The mass and lifetime of Z; is unknown, as is the mass of S. This analysis ex-
amines the possibility that this dark photon is produced during proton-proton collisions
at the LHC. We look at the process where S decays to two Z;, which then each decay
to an electron-positron pair. This process is described by the Feynman diagram in figure 5.

Figure 5: A Feynman diagram of the signal process used in this analysis: a scalar of
unknown mass decaying to two dark photons, which each decay to a pair of leptons

Prior searches for this signal process have been conducted. However, in these searches,
Z4 was considered to be prompt, meaning it decays almost instantly. This analysis
searches for the case where Zj; is considered to be long lived [11]. In this case, Z; decay
could occur near the edge of the TRT in the ATLAS detector. Electrons produced at the
edge of the TRT won’t have much, if any, tracking information. As can be seen in Fig.
3, the only way the ATLAS detector distinguishes electrons and photons is that electrons
have a track, since they are charged and interact with the tracker, while photons do not.
So, for this analysis, many of the electrons we are looking for will be reconstructed as
photons. The purpose of this project is to train a BDT to separate the signature of a
long-lived dark photon decaying to two reconstructed photons from the many other types
of processes that occur during proton-proton collisions in the LHC.

3.2 Samples Used in BDT Training

Each signal sample consists of MonteCarlo (MC) v1.0 FactoryTools ntuples. Each signal
contains around 50,000 events. These MC events are generated using the HAHM. Recon-
struction of the events is based on 2022 data-taking conditions at the ATLAS detector.
The control region (CR) background is around 3 million events of 2022 ATLAS data.
Preselection is applied to the samples to ensure we only look at events which are relevant
to this analysis. Preselection criteria is:

e >2 photons: Since we look for the 2 photon final state, events should contain at
least 2 photons



o < 2 electrons

e |photon time| < 12.5 ns: Because there is a 25 ns delay in pp collisions at the LHC,
this ensures we aren’t looking at photons from a prior collision

Signal events are required to have photon time > 0, while CR background events are

required to have photon time < 0. The purpose of these cuts is to blind the data by
making sure the background contains very few signal events. This cut blinds the data
because of the way time is calibrated. Time is calibrated by subtracting the time it takes
a particle traveling at the speed of light (c) from the time that the calorimeter measures
that the object hit the calorimeter. Since most particles resulting from pp collisions have
extremely high energies and travel at a speed very very close to ¢, the distribution of
photon time for the background (CR) is expected to be zero. Due to errors in calibration,
the actual timing CR distribution is a Gaussian centered at zero. The signal photons,
however, are produced by a long-lived particle, so they are expected to have a time above
zero. Thus, photon time distribution for signal is not symmetrical at zero, but has a
higher percentage of events with positive times than negative times. This is illustrated
by the normalized histogram of electron time in figure 6. This figure uses the 2 electron
final state as the signal, but the principle is the same for photons.
By only looking at photons with time < 0 in the background, we ensure that the back-
ground is expected to have very few signal events. Thus, when we train the BDT, we are
actually separating signal and background, and not signal and a mixture of signal and
background.
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Figure 6: Normalized distribution of electron time. Background data, shown by the black
and gray dots, is a Gaussian distribution symmetric around 0. The signals are represented
by the colored lines [12].

3.3 BDT Input Variables

The following are variables are used to train the BDT:

|t|: The absolute value of the calibrated time that the photon hits the calorimeter.

pe: The transverse momentum of the photon measured by the calorimeter

In|z|: A pointing variable, the "track” of the photon given by the calorimeter

f3: The ratio of the photon’s energy deposited in the third layer of the calorimeter
to the total energy of the photon.

fi: Ratio of photon’s energy deposited in the first layer of the calorimeter to the
total energy of the photon.

n: The pseudorapidity of the photon - the angle of the photon relative to the
beamline

ID: The ID of the photon, indicates likelihood of being a truth object
e Conversion type: Indicates whether or not a photon has been converted

The value of each of these variable is inputted into the BDT for each of the two photons.
Additional variables, which are either functions of the above variables or individual vari-
ables, are implemented into the BDT for training as well.

e [n|z; — z|: Natural logarithm of the differences in the pointing variables of the two
photons

e [n|z + z5|: Natural logarithm of the summation of the pointing variables of the two
photons

e A¢: Difference in azimuthal angle of the two photons, [¢; — ¢o|



An: Difference in angle from the beamline of the two photons, |7, — 75
e AR: The angular separation between the two photons, calculated as v/A¢? + An?

e MET: Missing transverse energy

n: Number of photons

3.4 Photon Pair Selection

As we look at variables for each of the two photons, how we choose the two photons to
perform the analysis is important. While most signal events result in only two photons
being reconstructed, some have three or all four. We wish to train the BDT on photons
which came from the same parent particle (vertex). This will give optimal separation
between signal and background distributions of angular variables such as AR. There are
two different methods of photon pairing investigated in this analysis.

The first way to pair up photons is by their transverse momentum p,. The photon with
the highest p, is called the leading photon, and the second highest is the subleading pho-
ton. Another option for photon pairing is by the leading photon and the photon which
minimizes the AR calculation with the leading photon (the minDR photon). This pair
provides the photon pair with the leading photon which has the lowest angular separation.
This method of photon matching is well motivated because a photon that is produced
from the same vertex as the leading photon will be close to it in the detector. Photons
produced close together will have small angular separation. A photon produced by a dif-
ferent vertex will be farther away from the leading photon and will have a greater angular
separation.

To determine which method of photon pairing is more effective at correctly pairing photons
from the same vertex, we use a process called truth-matching. During truth-matching, the
reconstructed photons are checked against truth-level information about the vertex from
which they originate. If the two protons each came from the same vertex (which could be
either of the two possible vertices), they are truth-matched to the same vertex. A com-
parison of how many signal events are truth-matched to the same vertex for each of the
methods of photon pairing is given below. Figure 7 shows a histogram of AR distributions
for for signal events after preselection. The black line shows the distribution for all signal
events, the red line shows the distribution for just pairs truth-matched to the same vertex.

Proof of the effectiveness of truth-matching can be seen in the shape of the AR his-
tograms. The AR distribution has peaks at two different values. The first peak at a
lower angular separation corresponds to the case where photons are closer together and
thus more likely to have come from the same vertex. The second peak at a higher AR
corresponds to the case where the photons are far apart and likely to have come from a
different vertex. We can see in the plot of both distributions that after truth-matching is
performed on the events, the second peak is flattened. This indicates that truth-matching
removes some of the events with higher AR where the pairs did not come from the same
parent particle.

The number of events before and after the truth-matching can be determined by tak-
ing the integral of each histogram. Using these values, an efficiency of photons truth



matched to the same vertex can be calculated. The fraction of leading and subleading
photons which are truth-matched to the same vertex is 0.734, while the fraction of lead-
ing and minDR photons which are truth-matched to the same vertex is 0.777. Therefore,
matching up photons by minimizing the AR calculation results in more correctly vertexed
photon pairs. This indicates that if we wish to improve the likelihood of selecting photons
which came from the same vertex, we should look at the leading and minDR photons.
For the remainder of this analysis, variable values for leading and minDR photons will be
used to train the BDT.

DeltaR distribution, leading and i DeltaR distribution, leading and minDR

Figure 7: The AR distribution for all signal events compared to just events truth-matched
to the same vertex. Left: Leading and subleading photon pairs. Right: Leading and
minDR photon pairs.

3.5 Training over different signals
3.5.1 Signal Grid

The mass of S, mass of Z4, and lifetime of Z; are unknown. This analysis looks at 14
different combinations of S mass and Z; mass, shown on the signal mass grid in figure
8. We examine four possible Z; lifetimes as well: 0.1, 0.5, 2, and 10 ns. This leads to
56 total signal grid points. We want to determine if one BDT can effectively distinguish
each of these signals from background data, or if a different BDT should be trained for
certain signals. One way signals can be divided is by mass splitting, (AM). AM refers
to the mass difference between S and Z;. The reason why signals are split into high and
low AM is because high and low AM signals are expected to have different kinematics.
In high AM signals, each Z; will get a lot of energy from the parent S, where in low AM
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Figure 8: A grid of the signal mass points used in this analysis.
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Figure 9: Signal grid with line at mZ; = 0.2mS dividing up high and low AM signals.

Events All Low AM High AM
Signal (train/test) 93891/93891 89381/89381 6955/6955
Background (train/test) 40264/40264 40264/40264 40264,/40264

Table 1: The amount of events that are used for testing and training the BDT over each
signal file. Note that the signal events in the low AM training and high AM training do
not add up to the signal events used in the merged file containing all the signals. This
might indicate a signal is missing from the all signals file.

signals, each Z; gets less energy. For this analysis, high AM signals have % < 0.2. The
line dividing high and low AM signals is shown in figure 9. From this figure, it can be
seen that for this analysis, high AM events are all those with Z; mass of 10 or 15 GeV.
These signals have low mass Z; all have a high difference in masses between Z; and S. The
low AM signals are all other signals because they have minimal difference in S and Z,
mass. To determine if a separate BDT should be trained over low and high AM signals,
the same BDT is trained over the low AM signal points, the high AM signal points, as
well as a merged signal file containing each of the 56 signals.

3.6 BDT Training Results

A table of the number of events used in testing and training for each grouping of signals
is provided in table 1. High AM signals contain much fewer events than low AM signals.
This is because the dark photons have relatively tiny mass compared to S. Conservation
of energy mandates that each Z; receive large amounts of transverse energy since very
little of the S energy goes towards Z; mass. Each Z; produced in these events is boosted
(nearly relativistic). Most of the dark photons fly right through the detector without
decaying, so very few photons are reconstructed in the signal. Because of this, few high
AM events pass preselection.

Differences in important variables used in separating signal and background events among
the different signals was observed. A list of full variable rankings by importance for each
signal is shown in Table 2.

Overall, top variables are consistent for both the all and low AM signals. This is
because high AM signals make up a very small percentage of the total signal events after

11



Rank | Variable, All Variable, Low DM Variable, High DM
1 |t[minDRY]] |t[minDR]| AR

2 [£[0]] [£[0]] f3[minDR]

3 (0] (0] J5[0]

4 In|z[minDR]| In|z[minDR] MET

5 In|=[0]| In|z[0]| p[0]

6 pi[minDR] f3[minDR] ID[0]

8 n p[minDR] [n[0]]

9 f5[0] n In|z; — 2|

10 letalmin D R)| MET In|z[minDR]|

11 MET |n[minDR]| pe[minDR]

12 ID[minDR] AR In|z[0]|

13 In|z; + 29| In[0]| Ao

14 A¢ In|z; + 2| An

15 In[0]| conversionType[minDR] | fi[minDR]

16 conversionType[minDR] | A¢ ID[minDR]

17 AR conversionType|0] conversionType|0]
18 conversionType|0] ID[minDR] [n[minDR]|

19 fi[minDR] fi[minDR] |t]0]|

20 ID[0] ID[0] conversionType[minDR]
21 In|z; — 29 f110] In|zy + 29

22 f1[0] In|z; — 29| |t{minDR]|

23 An An n

Table 2: Variables ranked by importance in separating signal and background for BDT
training over each of the three signal files.
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preselection in the all signal file. After preselection, high AM signal events make up only
around 7% of the total events for all the signals.

Photon times are ranked first and second in low AM signals, but are ranked near the
bottom for high AM signals. This is because in low AM signals, photon time is expected
to be much higher than background events because the dark photon from which they
decay is considered to be long lived. However, this same pattern is not seen for high AM
signals which is due to the nature of these events. Since each Z; produced in these events
is boosted, the photons that are reconstructed must have a very small time of photon
production in order to be detected. This is why the signal distribution of photon time for
the high AM signals looks similar to the background, shown in Figure 10.

Input variable: |leading time| Input varable: |leadifg time|
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Figure 10: From TMVA, a comparison of the photon time variable distribution in signal
(blue) vs background (red). Left: Low AM signals. Right: High AM signals

AR ranks most important in training the BDT over the high AM signals, but 17th
and 12th in importance for the all and low AM signals respectively. The distributions of
AR for signal and background are shown in Figure 11. The AR distribution for the high
AM signal is sharply peaked at a very low AR value. This is because the dark photons
are boosted so their daughter electrons are collimated (extremely close together). This
makes a cut on AR much more effective at separating signal and background for the high
AM signal region than for the low AM signals.

MET also ranks highly in importance for high AM signals. This is because many of
the nearly relativistic dark photons escape the detector, contributing to larger amounts
of missing energy. This can be seen in the MET distribution for signal and background
given by TMVA in Figure 12.

There are many different outputs from TMVA that are used to analyze the perfor-
mance of the BDT. One is the Receiving Operator Characteristc (ROC) curve, shown for
each of the three signals in figure 13. ROC curves display background rejection over signal
efficiency. Background rejection is the fraction of background events that are removed
and signal efficiency is the fraction of signal that is kept. The desired shape of the ROC is
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Figure 11: A comparison of the AR variable distribution in signal (blue) vs background
(red), given by TMVA. Left: Low AM signals. Right: High AM signals
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Figure 12: From TMVA, a comparison of the missing transverse energy distribution in
signal (blue) vs background (red). Left: Low AM signals. Right: High AM signals

a horizontal line at background rejection = 1, since ideally we want to keep all the signal
when we remove all the background. This would correspond to a perfect separation be-
tween signal and background. ROC curves for all signals and low AM signals are similar
and indicate good performance of the BDT. The reason BDT performance is similar for
training over all signals put together and just the low AM signals is because the high
AM signals make up a very low percentage of the total signal events. Not many high
A DM signal events pass the preselection cuts due to the dark photons being boosted, so it
less likely that two photons will be reconstructed. The ROC curve for the high AM has
a significant dip on the top right corner. This indicates worse performance for the BDT
trained on the high AM signals than the other two groups of signals. The area under
the ROC curve (AUC) can also be computed as a quantitative check of quality of the
ROC curve. An AUC of 1 corresponds to perfect separation. AUC is printed by TMVA
following the training. The AUCs for all, low AM, and high AM signals are 0.999, 0.999,
and 0.938 respectively. While AUC is the same for all signals as for just low AM signals,
it is much lower in the high AM signals.

Not much distinction can be made in quality of BDT performance in the all and low AM

signals based on ROC curves and AUCs. A more precise measurement of BDT perfor-
mance is examined to see if there is a benefit separating the low and high AM signals.
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Figure 13: ROC curves for all signals (left), low AM signals (center), and high AM signals
(right)

For this the BDT score distribution is evaluation. BDT score is a classifier given by the
BDT to each event it trains over that indicates how likely the BDT thinks an event is to
be signal or background. A BDT score of 1 indicates that the BDT is absolutely certain
that the event is signal, and a BDT score of -1 indicates the BDT is absolutely certain
the event is background. The BDT score for each event is averaged among all the trees
trained. In an ideal BDT score distribution, all of the signal events would have a BDT
score above 0, and all the background events would have a BDT score below 0. The
BDT score distributions for each signal file trained over are shown in figure 14. There
are similar BDT score distributions for the all and low AM signals and both show good
separation between signal and background. Large error bars and a spiky shape of the
BDT score distribution for training over the high AM signal file indicates poor statistics.
To quantitatively compare BD'T score distributions, a cut is made on the BDT score
which corresponds to a background efficiency of 0.01. This cut removes the events on the
BDT score distribution which have a BDT score below the requested value. The signal
efficiency after the BDT score cut is the fraction of signal events that remain when we
remove 99% of the background. Signal efficiency at 0.01 background efficiency is printed
by TMVA after BDT training. The signal efficiencies for all signals, low AM signals, and
high AM signals are 0.986, 0.988, and 0.938 respectively. From these values, we observe a
slightly lower quality BDT performance for all signals put together than for the low AM
signals. Furthermore, we see a much lower signal efficiency at 0.01 background efficiency
for the high AM signals. It’s important to note again the poor statistics of the high AM
signals. Poor statistics could be a cause of the low signal efficiency after the BDT score
cut, as can be seen in the outlier around BDT score = -0.35 in the high AM BDT score
distribution in figure 14. This outlier corresponds to only one events, and could be the
main reason why the signal efficiency is so low. So, it cannot be definitively claimed that
BDT performance is worse in high AM signals. BDT training should be redone with
improved high AM statistics to confirm the result.

4 Conclusion

In this analysis, a starter BDT was trained to separate the 2 photon signature of the
S— ZyZ4 — 2eT2e” signal process from other events that occur at the LHC. The BDT
was applied to two categories of signals which were expected to have different kinematics:
high AM and low AM. The varying kinematics led to different variables being effective
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Figure 14: BDT score distributions for all signals (left), low AM signals (center), and
high AM signals (right)

at separating each of these groups of signals from background events. Outputs of the
BDT indicated that when the BDT was applied to the high AM signals, performance
was slightly worse compared to the high AM signals, indicating we may want to train a
different BDT for high and low AM signals. However, this result may have been influenced
by the low statistics for the high AM signals. This training should be redone with more
events in the high AM signals so the claim can fully be made.
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6 Appendix

List of variables that were tried and later removed from BDT training.

e 71: Z coordinate of photon in first layer of the calorimeter used in pointing calcula-
tion

e 72: 7 coordinate of photon in second layer of the calorimeter used in pointing
calculation

e photon_E

e photon_dz

e photon_rl

e photon_r2

e photon_maxEcell t
e photon_clusterkE

e photon_maxFEcell x

e photon_maxFEcell .y
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e photon_maxFEcell z
e photon_isConversion
BDT Hyperparameter values:
e NTrees=800
e MinNodeSize=7
e MaxDepth=3
e BoostType=AdaBoost
e AdaBoostBeta=0.1
e UseBaggedBoost
e BaggedSampleFraction=0.6
e SeparationType=Ginilndex
e nCuts=15
e Transformations = I;D;P;G,D

Link to code used to run BDT:
https://gitlab.cern.ch/ewoodwar/dark-photons-bdt/-/tree/2gBDT?ref_type=heads

18



