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Abstract

This paper describes the selection process that can be applied to cosmic muon data in SBND to
reconstruct the Michel electron energy spectrum using a Boosted Decision Tree. This BDT takes
into account muon and michel information to accurately seperate signal and background events.
In which precisely maps the Michel electron energy spectrum. The Michel energy spectrum will
be useful as a calibration method to test detector response to low energy particles.

1 Background

1.1 The Standard Model

The Standard Model is a fundamental theory in
physics that explains the elementary particles and
the forces acting upon them, which constitute all
visible matter in the universe. It identifies twelve
elementary particles known as fermions, each hav-
ing a corresponding antiparticle. These fermions

are divided into two main types, quarks (up, down,
charm, strange, top, bottom) and leptons (elec-
tron, electron neutrino, muon, muon neutrino,
tau, tau neutrino). Both quarks and leptons are
further grouped into three generations.

The Standard Model also includes particles
that act as force carriers: gluons, W± and Z0

bosons, and photons, which mediate the strong,
weak, and electromagnetic forces, respectively.
Quarks carry fractional electric charges (+2/3 or
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-1/3) and are organized by their flavors. They
combine to form hadrons, which are subdivided
into baryons (made up of three quarks) and
mesons (consisting of a quark and an antiquark).
Examples of hadrons are protons and neutrons
(baryons) and pions (mesons).

Leptons have integer electric charges, either -1
or 0. For example, electrons have a charge of -1,
while neutrinos are considered to have zero charge
and very small masses. The recently discovered
Higgs boson plays a crucial role in the Standard
Model by providing mass to these fundamental
particles. However, the model does not fully ex-
plain gravity or the small but non-zero masses of
neutrinos.

Despite these gaps, the Standard Model has
been remarkably successful in explaining a wide
range of phenomena and remains a cornerstone
of modern physics, validated by numerous experi-
mental and theoretical studies.

Figure 1: The Standard Model of Particle
Physics. Increasing generations of fermions (from
left to right) correspond to increasing masses. [4]

1.2 Neutrino Oscillations

Neutrino oscillations describe a quantum mechan-
ical phenomenon where neutrinos, which are fun-
damental particles with very small masses, change
their type or ”flavor” as they travel through space.
Neutrinos come in three flavors, electron neutri-
nos, muon neutrinos, and tau neutrinos. Unlike
other particles, neutrinos can transform from one
flavor to another, a process known as oscillation.

This oscillation occurs because the flavor states
of neutrinos are not the same as their mass states.
Instead, each flavor state is an independent ad-
mixture of three different mass states. As neu-
trinos propagate, the differences in their masses
cause the probability of detecting a specific flavor

to change periodically.

The discovery of neutrino oscillations has mas-
sive implications for our understanding of parti-
cle physics. It provides strong evidence that neu-
trinos have non-zero masses, a fact that is not
accounted for in the original formulation of the
Standard Model. This discovery has prompted re-
visions to the model and has opened up new areas
of research in both theoretical and experimental
physics.

Neutrino oscillations are typically studied
through experiments involving neutrino sources
such as the Sun, nuclear reactors, or particle ac-
celerators. Detectors placed at various distances
from these sources measure the changing propor-
tions of neutrino flavors, providing data that can
be used to calculate the differences in mass be-
tween the neutrino mass states and the mixing
angles that describe how flavor states combine to
form mass states.

Understanding neutrino oscillations is crucial
for answering fundamental questions about the na-
ture of neutrinos, the asymmetry between matter
and antimatter in the universe, and the overall
structure of the Standard Model. Despite many
advances, the precise values of neutrino masses
and the full implications of neutrino oscillations
remain active areas of research.

1.3 The Booster Neutrino Beam at
Fermilab

For the short base-line experiment at Fermilab
which includes the SBND detector the source for
these neutrinos is The Booster Neutrino Beam
(BNB). Rather than waiting for neutrinos from
the sun, we create a neutrino beam which we can
control in many ways. The process begins with
the Booster synchrotron, which accelerates pro-
tons to an energy of approximately 8 GeV. These
high energy protons are then directed towards a
beryllium target, where they collide and produce a
variety of secondary particles, including pions and
kaons. These secondary particles are unstable and
quickly decay into neutrinos and other particles.

Specifically, the pions and kaons produced in
the target decay primarily into muon neutrinos.
To focus these secondary particles and direct them
towards the detectors, a system of magnetic horns
is used. These horns are large, current-carrying
devices that generate strong magnetic fields to fo-
cus the charged pions and kaons, guiding them
down a decay pipe. As these particles travel
through the decay pipe, they decay into muons
and neutrinos.

The resulting neutrino beam is composed pre-
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dominantly of muon neutrinos, which are then di-
rected towards various detectors positioned along
the beamline. The three detectors MicroBooNE,
ICARUS and SBND, are located at different dis-
tances from the source to study the oscillations of
the neutrinos over varying baselines.

1.4 How a LArTPC works

All of the three detectors mentioned previously are
LArTPC’s (Liquid Argon Time Projection Cham-
ber). A Liquid Argon Time Projection Cham-
ber is an advanced particle detector technology
used extensively in experimental particle physics.
It is particularly crucial for the study of neu-
trino interactions, which are elusive and require
highly sensitive and precise detection methods.
The LArTPC technology has the ability to pro-
vide high-resolution, three-dimensional imaging of
particle trajectories, offering amazing insight into
particle interactions.

The operation of an LArTPC is based on sev-
eral fundamental principles. When a charged par-
ticle traverses the liquid argon, it ionizes the ar-
gon atoms along its path. This ionization process
results in the production of free electrons and pos-
itively charged argon ions. The number of ioniza-
tion electrons generated is proportional to the en-
ergy deposited by the particle, making it possible
to infer the particle’s energy from the ionization
signal.

A uniform electric field is applied across the
liquid argon volume, typically generated by apply-
ing a high voltage to a cathode placed at one end
of the chamber. This electric field causes the free
electrons, produced by the ionization process, to
drift towards a collection plane. The direction and
magnitude of the electric field are carefully con-
trolled to ensure consistent and predictable elec-
tron movement.

The collection plane consists of an array of
wires or other types of sensors arranged in mul-
tiple layers. As the electrons reach the collection
plane, they induce signals on the wires, which are
then read out and recorded. The time it takes for
the electrons to travel from their point of origin
to the collection plane, combined with the known
drift velocity of electrons in liquid argon, allows for
precise determination of the original ionization lo-
cation. This process effectively translates the ion-
ization pattern into a three-dimensional image of
the particle’s path through the detector.

One of the significant advantages of LArTPCs
is their ability to provide detailed spatial resolu-
tion and excellent particle identification. The liq-
uid argon medium is dense, offering a high proba-
bility of interaction for passing particles, particu-

larly neutrinos. The high granularity of the detec-
tion system allows for the reconstruction of com-
plex interaction topologies, such as those involving
multiple particles and intricate decay chains.

Furthermore, LArTPCs are equipped to han-
dle large volumes of data, which is essential for
capturing rare events like neutrino interactions.
The detectors can be scaled to substantial sizes,
making them good for experiments requiring large
detection volumes to increase interaction rates.
Additionally, the cryogenic technology used to
maintain argon in its liquid state is well-developed,
it uses a process of filtration, recirculation, and a
purification system to ensure the stable operation
of these detectors over extended periods.

In summary, the Liquid Argon Time Projec-
tion Chamber is a powerful and sophisticated tool
in particle physics. Its ability to provide high-
resolution, three-dimensional imaging of particle
interactions, coupled with its excellent particle
identification capabilities, makes it invaluable for
studying neutrino interactions. The detailed un-
derstanding gained from LArTPCs continues to
advance our knowledge of fundamental particles
and their behaviors. An exmaple of a LArTPC
can be seen in Figure 2.

Figure 2: An exmaple event for an LArTPC. An
neutrino interacting with argon nucelus and ioniz-
ing. [3]

1.5 The SBND Experiment

The Short-Baseline Near Detector (SBND) is a
crucial component of the Short-Baseline Neutrino
(SBN) program at Fermilab, aimed at investigat-
ing the properties of neutrinos. As one of the
three detectors in the SBN program, SBND plays a
pivotal role in understanding neutrino oscillations
and addressing fundamental questions in particle
physics.
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SBND is the first detecor in the line of three
and is the closest to the neutrino source at Fermi-
lab and is designed to measure the neutrino flux
and interactions with high precision before any
significant oscillation can occur. This near detec-
tor is positioned just 110 meters from the target
where neutrinos are produced, providing a critical
baseline measurement for comparing with the far
detectors, MicroBooNE and ICARUS, which are
located further away.

One of the primary scientific goals of SBND
is to search for evidence of sterile neutrinos, hypo-
thetical particles that do not interact via the weak
force like regular neutrinos. The existence of ster-
ile neutrinos could provide explanations for several
anomalies observed in previous neutrino experi-
ments. By precisely measuring the neutrino flux
and interaction rates at the near detector, SBND
helps identify any deviations from expected behav-
ior that could signal the presence of sterile neutri-
nos.

Figure 3: A diagram of the SBND detector.[2]

SBND has just starting taking data in July
2024 so, it will provide essential data that will
inform and refine our understanding of neutrino
properties. The insights gained from SBND
will contribute to resolving outstanding questions
about neutrino masses, mixing angles, and the po-
tential existence of sterile neutrinos. Additionally,
the technology and methodologies developed for
SBND will benefit future neutrino experiments,

paving the way for further discoveries in particle
physics.

The Short-Baseline Near Detector is a impor-
tant aspect of the SBN program, playing a vi-
tal role in advancing our knowledge of neutrino
physics. Through its precise measurements and
advanced detection capabilities, SBND is poised to
address fundamental questions about neutrino os-
cillations and the possible existence of sterile neu-
trinos.

2 Michel Electrons as a cali-
bration tool

2.1 Characteristics of Michel Elec-
trons

When a muon decays at rest via the weak interac-
tion, the most dominant decay mode leads to an
electron and two neutrinos. Seen in Figure 4.

Figure 4: The Muon decay into an Michel electron,
muon neutrino and electron anti-neutrino via the
weak force (W boson).

Simillarily to conservation of energy, a par-
ticle decay must conserve its lepton number as
well as charge conservation. To guarantee lep-
ton number conservation, one neutrino must be
a muon-type neutrino, the other, an electron-type
anti-neutrino. For charge conservation, the elec-
tron will have the same charge as the muon since
neutrinos do not have charge. The Michel energy
spectrum is understood extremely well due to its
purely weak decay process.
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Figure 5: The theoretical Michel energy spec-
trum.

The energy spectrum of the Michel electron as
what we would measure in a LArTPC is shown
in figure 6. The red spectrum includes radiative
photons due to the fact when Michel electron in-
teracts with Argon nucleus it goes through a pro-
cess called Bremsstrahlung which releases a pho-
ton, contributing to the over all energy. The grey
spectrum is strictly the Michel electron spectrum.
It is important to notice that this spectrum drops
off around 52Mev.

Figure 6: The Michel energy spectrum taken by
MicroBooNE simulation. The grey curve is the
Michel energy excluding the radiative photon en-
ergy, while the red is including both Michel and
photon energy from Brehmselung. [3]

2.2 Michel Electrons in SBND

Muons from cosmic rays are a significant source of
background in the Short-Baseline Near Detector
(SBND) experiment. Cosmic rays, which are high-
energy particles originating from outer space, con-
tinuously bombard the Earth’s atmosphere. Once
inside SBND, they ionize the liquid argon, creat-
ing ionization tracks that can mimic the signals
produced by neutrino interactions. Being able to
successfully reconstruct the Michel electron en-
ergy spectrum in SBND would be a great ben-
chamrk for low energy detector calibration since
the Michels spectrum is roughly 0-60 Mev range.
This calibration will also be good for compar-
ing cosmic data samples which can be comapred
to priot neutrino experiments like (MiniBooNE,
Minerνa, ICARUS, and TWIST) that have al-
ready completed the reconstruction of the Michel
spectrum to show a good understanding of the de-
tectors detection process. Figure 7 is an example
of a muon event inside MicroBooNE.

Figure 7: An example of a muon event inside
the MicoBooNE detector. The coloring spectrum
shows the muon ionizing throught the detector and
stopping creating a Bragg peak and decaying re-
leasing a Michel. The Michel has a distinct curl
due to the electron interacting with the argon nu-
cleus and scattering. [3]
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3 Updating Selection

3.1 Distance Selection

Physically in the process of a muon stopping inside
our detecor and decaying, the michel electron will
start exactly where the muon decays, so there is
no displacement between the two. However, since
the reconstruction process is not perfect, there is
going to be a displacement between the Muon end
point and where the Michel electron starts. Since
the displacement is not uniform, we need to find a
proper cut to place on all events to eliminate back-
ground events. If the cut is too small, we might
eliminate true events, and if it is too big, we might
include things other than just the michel. To do
so, we plot the efficiency and purity at each cut
value along the entire data set as seen in Figure
8. To pick a cut value, we look at where the two
lines intersect. However since the two ranges are
so drastically different, we can choose to prioritize
efficiency and set the cut at 2 cm. Chooseing a
cut value past 2 cm would result in an increase in
Miss ID’d events.

Figure 8: The Purity and Efficiency graph for each
cut value over all data.

3.2 Pixel Selection

The Pixel selection is very similar to the distance
selection. Once the muon stops and decays in the
detector, the Michel electron ionizes the surround-
ing liquid argon, creating a trail of ionization elec-
trons. These ionization electrons drift under an
electric field toward the readout planes. The TPC
captures the 3D image of the resulting electron
track. We call these pixels, every single Michel
electron hit, is a pixel. These pixels directly cor-
relate to electrons energy. We need to place on a
cut how many pixels we recieve in the michel clus-
ter to try and eliminate any background events,
if our cut is too low, we may include background
events, if our cut is too high, we may eliminate
some true events. Similarily to how we find the

distance selection, we calculate the efficiency and
purity at each cut value and find where they in-
tersect as seen in Figure 9. Commonly to find a
proper cut value, we plot the Signal divided by the
square root of background and see where it peaks.
When doing so, we see that the optimal cut value
is at 7 pixels.

Figure 9: The Purity and Efficiency graph for each
cut value over all data.

3.3 Results

When applying these cuts, we are looking for a
better representation of the reconstructed Michel
energy spectrum. Figure 10 is the resulting spec-
trum with these selections. We can see that we are
including Miss ID’d events as well as eliminating
some events from 30-50 Mev range. The result-
ing efficiency and purity is 72.25% and 97.19%.
While the purity is very good, there is room for im-
provement with efficiency. An efficiency at 72.25%
means we are eliminating some true events. Con-
sidering only two different cuts does not ade-
quately represent the Michel energy spectrum, so
we need to find a better way to do so.

Figure 10: The Michel energy spectrum after ap-
plying updated cuts.
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4 Boosted Decision Tree

Instead of optimizing each cut value by hand,
we use machine learning to do so, specifically a
Boosted Decision Tree. A Boosted Decision Tree
using XGBoost (Extreme Gradient Boosting) is an
advanced implementation of gradient boosting de-
signed for high efficiency, speed, and performance.

Figure 11: The process the BDT takes to achieve
a proper prediction.

Boosting is a machine learning technique that
improves prediction accuracy by combining the
outputs of several weak learners. The process is
sequential, with each model in the series working
to correct the errors made by the previous ones.
By building on the shortcomings of earlier models,
boosting creates a strong, highly accurate predic-
tive model.

In XGBoost, decision trees are used as weak
learners. However, unlike traditional decision
trees that are grown until they can perfectly clas-
sify training data, the trees in XGBoost are usu-
ally shallow, with limited depth. This approach
helps prevent overfitting and ensures that each
tree contributes just enough to improve the overall
model’s performance.

The gradient boosting process starts with an
initial simple prediction, often the mean of the
target variable. In each subsequent iteration, the
model calculates residuals, which are essentially
the errors of the current predictions. A new deci-
sion tree is then trained to predict these residuals.
The model is updated by adding the predictions
of this new tree to the ensemble, adjusted by a
learning rate. This iterative process is designed to
minimize a loss function, gradually improving the
accuracy of the predictions.

XGBoost builds on the basic gradient boosting
framework with several advanced features. It in-
cludes L1 and L2 regularization to reduce the risk

of overfitting, handles sparse and missing data effi-
ciently, and uses techniques like weighted quantile
sketching to optimize tree construction.

4.1 BDT Input

We provide the BDT with all relevant variables
to achieve the best possible classification perfor-
mance. We split the data into a test and train-
ing set, 80% of the events are used to train the
model, while the remaining 20% are for testing its
performance. The training set had 8000 events to
train on, 7209 of those events being signal and 791
being background. Then the BDT had 204 back-
ground events and 2158 signal events to test on
to determine its efficiency. Figure 12 shows the
importance of each variable at determining if the
event is an background or signal.

Figure 12: The Featured Importance Graph for
the variables given to the BDT

4.2 Results

When looking at the BDT score predictions for
each event in figure 13, we can see that the BDT
did an excellent job at labeling each event as ei-
ther background or signal, we know this by events
being strongly near 1 or 0. By plotting the sig-
nal over the square root of the background graph,
we observe a peak at a BDT score of 0.97. This
peak allows us to assign each event its BDT score
and place a cut at 0.97, effectively eliminating the
background events from our data. Consequently,
we plot our energy spectrum in figure 14.

The previously misidentified events are now re-
moved, and many events in the 30-52 MeV range
are now correctly filled in. The significant gap
at higher energy is due to the reconstruction pro-
cess missing many radiative photons. Many events
would have been shifted to higher energy if their
radiative photons had been included in the Michel
energy calculation.
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As a result, we find a purity of 99.76% and an
efficiency of 82.20%. With our new cuts, there is
an increase of 2.3% in purity and a decrease of
2.73% in efficiency, which is a small price to pay
for achieving a very pure result.

Figure 13: The resulting prediction from BDT.
This shows that the BDT did a good job separat-
ing signal and background events.

Figure 14: The resulting Michel energy spectrum
with updated cuts from BDT.

5 Conclusion

For this Michel electron energy reconstruction and
selection project we have built a machine learning
process which creates the well defined energy spec-
trum. This algorithm was tested on both muons
passing through our detector and stopping muons
decaying in our detector. By improving the selec-
tion process we were able to produce a high purity
and also a high efficiency for eliminating a large
majority of miss ID’d Michels.

For the future, we should look at further in-
creasing the efficiency of this data, by improv-
ing the reconstruction process to include radiative
photons. Once we have improved and have a well
matched energy spectrum then it can be compared
to real data taken by SBND.
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