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Abstract

MicroBooNE is one of the current leading experiments in the search for neutrino
oscillations. As such, it is important to characterize the experiment’s sensitivity to
different sterile neutrino oscillation models and compare/constrain the sensitivity with
external experimental results. This study performs a χ2 sensitivity analysis on simu-
lated MicroBooNE Wire-Cell events according to the 3+1 sterile neutrino model, using
simultaneous νe appearance, νe disappearance, and νµ disappearance channels. The
sensitivity regions are then further constrained using best-fit parameters from the Ice-
Cube experiment (∆m2

41 = 4.5eV and sin2(2θ24) = 0.1) and the upper parameter limit
set by PROSPECT (sin2(2θ14) ≳ 0.02). When considering both of these external con-
straints, MicroBooNE loses sensitivity to the globally allowed parameter region for the
3+1 sterile neutrino model.
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1 Background

1.1 Neutrinos

Figure 1: Outline of the Standard Model in-
cluding quarks, leptons, and force carriers

Neutrinos are one type of fundamental
particle predicted by the Standard Model of
particle physics. This Standard Model (SM)
is the mathematical framework by which sci-
entists understand the building blocks of
matter (particles) and the glue that hold
them together (forces).

There are two main sub-classes of parti-
cles: leptons and quarks. Quarks are spin
1/2 particles with electrical charge -1/3 or
2/3 that combine to create other particles,
such as protons and neutrons (3 quarks).

Then, there are leptons, which are spin
1/2 with electrical charge of -1 or 0, but do
not combine to form new particles. Within
leptons are the electron, muon, and tau,
along with their cousins the neutrinos.

The three forces in the SM are the weak
force, which acts on both quarks and leptons, the strong force, which only acts on quarks,
and the electromagnetic force, which only acts on electrically charged particles.

Looking more closely at neutrinos, there are 3 flavours that mirror their cousins: the
electron neutrino (νe), the muon neutrino (νµ), and the tau neutrino (ντ ). Additionally,
neutrinos have a charge of 0, meaning they don’t interact with the electromagntic force, and
as neutrinos are leptons, they also don’t interact with the strong force. Thus, neutrinos can
only interact with the weak force.

So why should we still care about and study neutrinos if they are understood by the
Standard Model? Well, it turns out there are still physical phenomena that are not pre-
dicted by the SM, implying the model has small inaccuracies or is incomplete. One such
phenomenon is the mass of neutrinos. Traditionally, the SM predicted that neutrinos were
massless. However, experimental evidence has since proved that neutrinos DO have mass,
though it’s several orders of magnitude smaller than any other known particle.

This revelation on neutrino mass started in the late 1900s, when physicists were noticing
several experimental neutrino anomalies. When measuring the flux of solar νe produced by
the sun, detectors were counting only about a third of the predicted number. Additionally,
when measuring the flux of atmospheric neutrinos, there was a deficit in the νµ/νe flux ratio
compared to the predicted model [1].

Further study into these anomalies showed that the deficits of different neutrino flavors
were proportional to each other and could be explained by the neutrinos switching, or "oscil-
lating", between flavours as they travel. This oscillation phenomenon occurs because of the
separation between neutrino mass eigenstates and flavour eigenstates, which will be further
explained in Sec. 1.3.
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Thus, the presence of neutrino oscillations directly implies a mass difference between
different flavours, meaning neutrinos cannot have the 0 mass the SM originally predicted.
As neutrinos cannot receive their mass through the same Higgs mechanism as other particles
(since this would have been included in the SM), neutrino oscillations offer a tantalizing
glimpse into physics beyond the standard model for physicists to explore.

1.2 MicroBooNE

After the detection of solar and atmospheric neutrino oscillations, neutrino experiments
moved onto Earth through the use of particle accelerators and detectors. One of these early
accelerator experiments was the Liquid Scintillator Neutrino Detector (LSND) at Los Alamos
National Lab. In addition to the different neutrino source, LSND also looked at neutrinos
that had traveled a much shorter distance, or baseline, before being detected.

Figure 2: Differences in neutrino
mass eigenstates and their corre-
sponding oscillation baselines, with
the theoretical 4th sterile neutrino
having a much larger mass difference
compared to the 3 known neutrinos

At the time, short-baseline neutrino oscillations
were not expected as the mass differences between
the 3 known neutrino eigenstates corresponded to the
previously seen long-baseline oscillations (solar and
atmospheric distances) as seen in Fig. 2. Thus, when
LSND measured an excess of νe, the theoretical model
of neutrinos was forced to expand again. One of the
leading theories for short-baseline oscillations is the
"sterile neutrino", a theoretical 4th type of neutrino
that lacks any flavour or interaction with the weak
force. This sterile neutrino, if it had a much higher or
lower mass, might create the required mass difference
to facilitate oscillations with other neutrino flavours
at such short distances.

The MiniBooNE experiment at FermiLab was cre-
ated to further investigate these short-baseline oscil-
lations, and then found an even more anomalous νe
excess at low energies (called the Low Energy Excess
or LEE). Thus, MicroBooNE was created to replace
MiniBooNE and probe for these possible signals of
low energy short-baseline oscillations.

The MicroBooNE experiment consists of a Liquid
Argon Time Projection Chamber detector (LArTPC) and Booster neutrino beamline located
at FermiLab. As shown in Fig. 3, the process starts with protons being accelerated, then
shot towards the detector through several layers: empty space (where the protons can decay
into particle showers, producing neutrinos), absorber (where any non-neutrino particles are
stopped), and dirt (where neutrinos can travel uninhibited and experience short-baseline
oscillations). Finally, the neutrinos reach the LArTPC detector, which measures the flux (or
number) of neutrinos and their flavour. This is achieved using dense argon gas to increase
the chance of a neutrino-molecule interaction within the detector and then by measuring
the electrical current caused by charged particles released in the interaction. The LArTPC
can also distinguish between the neutrino flavours (as well as sort out other background
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Figure 3: MicroBooNE experiment diagram, starting with neutrino beam from accelerator
and ending at LArTPC detector. Image Credit: APS/Alan Stonebraker

particles) based on the specific interaction characteristics, such as total energy, shape, size
of particle tracks, and others.

MicroBooNE’s neutrino beam is 99% νµ and ν̄µ (muon antineutrinos) and <1% νe, with
an average energy of 0.5 GeV. The entire length of the experiment, from beam production to
detector, is 470 meters [2]. These energy and distance specifications were chosen to optimize
the predicted neutrino oscillation probabilities (read more in Sec. 1.3) based on previous
experiments’ best fits for parameters.

1.3 3+1 Oscillations

In this study, I focus on examining the 3+1 sterile neutrino model, which assumes there
are the three normal neutrinos (νe, νµ, ντ ) and one additional sterile neutrino (νs). This is
the minimal model with the addition of only a single sterile neutrino in comparison to other
models such as the 3+2 or 3+3. However, no sterile neutrino model has been completely
ruled out yet, so I chose to focus on this simplest case.

Introduction to Neutrino Mixing

To start explaining the mechanism behind 3+1 neutrino oscillations, lets take one step
back and first consider the known 3 neutrino model. In this model, the 3 neutrinos νe, νµ,
and ντ are all in definitive flavour states, meaning they are allowed to interact with the
weak force as an electron, muon, or tau neutrino. However, it turns out that we cannot
define a specific mass to each of these flavour-state neutrinos. This is dissimilar to most
other particles, where one can look up the exact mass for a known particle. Instead, for
the neutrinos, each νe, νµ, ντ is actually a linear combination of different mass eigenstates,
which we call ν1, ν2, and ν3.

Conversely, this means we can also consider each neutrino mass eigenstate ν1, ν2, ν3 to
actually be a linear combination of flavour eigenstates. In Fig. 4 below, this mixing of mass-
states and flavour-states is shown as the different color components (which correspond to
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flavour eigenstates) making up each mass eigenstate. For example, ν1 is consists of mostly
νe in combination with smaller fractions of νµ and ντ .

When a neutrino is freely traveling through space, it is in one of the mass eigenstates
and does have a definite mass. But then, when it interacts with another particle through
the weak force, the neutrino snaps into one of its possible flavour eigenstates, as the weak
force only impacts the flavour-states and not the mass-states. Thus, traveling neutrinos
can’t be defined as a νe, νµ, or ντ until they interact and are forced to "choose" which
neutrino flavour they will be for the weak force interaction. This "choosing" is actually done
probabilistically with each mass-state neutrino having a different probability of swapping into
each flavour-state according to their specific combination (this can be seen as the differing
color combinations for each mass-state in Fig. 4). So, as a neutrino travels, it can actually
change it’s flavour-state between 2 different interactions (or measurements) and look like it
is swapping between flavours. This phenomenon is called neutrino oscillation.

For the 3+1 model, there is an additional sterile neutrino νs included in this mass mixing,
meaning there is also an additional ν4 mass eigenstate. This addition of a sterile flavour-
state means that sometimes when a neutrino enters an interaction and becomes a specific
flavour, it might become "sterile" and then continue on without actually interacting with
the weak force at all. This means that the sterile neutrino state cannot be directly detected
and can only be inferred through the oscillation of other neutrino flavours into or from sterile
neutrinos in experiments.

Figure 4: Linear combination of neutrino mass eigenstates and flavour eigenstates for
the three neutrino model. The mass hierarchy, or the ordering of the ν1, ν2, and ν3 mass
eigenstates from lightest to heaviest, is unknown as only the mass differences can be measured
through oscillations. This means the normal hierarchy and the inverted hierarchy shown here
are equally as likely to be true. Image Credit: Adrián-Martínez et al (2016) [3]

Oscillation Probability Equations

Mathematically, we can express the mixing of neutrino mass eigenstates and flavour
eigenstates as a matrix rotation between the 2 sets:
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
νe
νµ
ντ
νs

 =


Ue1 Ue2 Ue3 Ue4

Uµ1 Uµ2 Uµ3 Uµ4

Uτ1 Uτ2 Uτ3 Uτ4

Us1 Us2 Us3 Us4



ν1
ν2
ν3
ν4

 (1)

From this matrix rotation, we can calculate the probabilities of each flavour-state either
remaining the same flavour or swapping to a different flavour between 2 measurements (based
on the different amounts of each flavour in the mass-state linear combination, represented
as the U ’s in Eq. 1). For this study, the relevant probability equations are:

Pνe→νe = 1− sin2(2θee)sin
2(1.27∆m2

41L/E) (2)

Pνµ→νµ = 1− sin2(2θµµ)sin
2(1.27∆m2

41L/E) (3)

Pνµ→νe = sin2(2θµe)sin
2(1.27∆m2

41L/E) (4)

Equations 2 and 3 refer to the probability of an electron or muon neutrino remaining the
same flavour after a certain distance traveled (called the survival probability). Equation 4
refers to the probability of an electron neutrino swapping to a muon neutrino (or vice-versa)
after a certain distance (called the appearance probability).

There are six unknown parameters in these oscillation probability equations, and they
are defined as [4]:

• θee = This is the flavour mixing angle between two electron neutrinos and characterizes
their mass-state mixing proportions. In relation to the mixing matrix in Eq. 1 or mass
mixing angles:

sin2(2θee) = 4(1− |Ue4|2)|Ue4|2 ≈ sin2(2θ14) (5)

• θµµ = This is the flavour mixing angle between two muon neutrinos and characterizes
their mass-state mixing proportions. In relation to the mixing matrix in Eq. 1 or mass
mixing angles:

sin2(2θµµ) = 4(1− |Uµ4|2)|Uµ4|2 ≈ sin2(2θ24) (6)

• θµe = This is the flavour mixing angle between an electron and muon neutrino, chara-
terizing their mass-state mixing proportions. In relation to the mixing matrix in Eq. 1
or mass mixing angles:

sin2(2θµe) = 4|Ue4|2|Uµ4|2 ≈
1

4
sin2(2θ14)sin

2(2θ24) (7)

• ∆m2
41 = The difference in squared masses between the ν1 and ν4 mass eigenstates,

∆m2
41 = m2

4 −m2
1

• L = The distance between two measurement points in meters, also called the baseline

• E = The energy of the neutrino in GeV

• 1.27 = This is a constant that adjusts for the given units of meters and GeVs
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Appearance vs Disappearance

When physicists take experimental measurements of neutrinos, we can only measure
the total flux of νe and/or νµ at a specific moment. Thus, in order to measure neutrino
oscillations, we compare the flux measurements of νe and νµ at the start of the neutrino
beam to the flux measurements at the detector.

In this study, since I’m using MicroBooNE simulation data (read more in Fig. 3.1),
the only oscillations that are predicted to occur by the 3+1 model are the short-baseline
oscillations with the sterile neutrino (νe → νs, νµ → νs, νs → νe, νs → νµ).

Thus, we expect some of the νe and νµ that were originally in the beam (called the
intrinsic νe and νµ) to "disappear" as they oscillate to a sterile νs that we can’t measure or
observe. This means there would be less neutrinos counted at the detector than there were
at the start of the neutrino beam,

However, within the space between the accelerator and the detector, some neutrinos might
oscillate to sterile and then back again to a detectable flavour. This means the multi-step
oscillation νµ → νs → νe can essentially look like a direct short-baseline νµ → νe oscillation,
which could only be allowed at such short distances by transitioning through the sterile-state.

Since the original MicroBooNE neutrino beam is composed primarily of νµ (with only
<1% νe), this multi-step sterile oscillation would occur more frequently as νµ → νe than in
the other direction. Thus, we would then expect to see more νe "appear" at the detector
than there were originally in the beam as some of the νµ oscillate into νe via the sterile-state.

Throughout the last few decades, different neutrino experiments have focused primarily
on appearance and/or disappearance searches based on which flavours of neutrinos they could
detect. For example, LSND was an appearance search in that the detector could only measure
νe and so the analysis focused on finding and excess number of νe over the background noise.
Since MicroBooNE has the capability of deetecting both νe and νµ, this study combines the
appearance of νe and the disappearance of νµ methods in order to maximize the amount of
information available to the analysis.

2 Sensitivity Analysis Motivation

Sensitivity studies are an important part of the experimental process because physicists
need a way to quantify how sensitive an individual experiment’s measurements will be (how
small or precise) in a way that can be compared to other experiments. In particular, we also
need to determine how sensitive an experiment is to specific models.

To understand this, first consider the overall goal of a neutrino oscillation experiment: to
take flux data and fit different oscillation probability models to the observations in order to
find the best parameters (θee, Uµ4,∆m2

41, etc.) that explain the observations. However, some
parameter combinations will only cause very small observable oscillation effects due to the
low frequency or amplitude of their oscillations. This means that if an experiment is unable
to detect those very small effects, we might not be able to identify that an oscillation is
actually occurring.

Since MicroBooNE cannot detect every small variation in flux, due to the inherent un-
certainty in distinguishing between background "noise" and true oscillation "signal", it is
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important to determine which parameter regions MicroBooNE is sensitive to. These regions
will be where we can statistically differentiate between the background neutrinos and the
predicted oscillation neutrinos.

Overall, a sensitivity study looks at all possible predictions of what the MicroBooNE
detector would measure based on different parameter combinations, and then compares these
predicted signals to the known background to determine which parameter combinations the
experiment could possibly detect if that combination contained the "true" parameters. Thus,
if the true parameters fall outside of the sensitive region, MicroBooNE would be unable to
detect them and could rule out all parameter combinations within it’s sensitivity region.

In this study, I will be performing a sensitive analysis for the MicroBooNE experiment
considering the 3+1 sterile neutrino model with parameters Ue4, Uµ4, and ∆m2

41. This
analysis is different from previous MicroBooNE sensitivity studies [5] in that it includes
the predictions for νe appearance, νe disappearance, and νµ disappearance combined, in
comparison to only considering the appearance or disappearance channel. Additionally,
I will be incorporating several external best-fit parameters and parameter limits into the
analysis using previous results from the IceCube and PROSPECT experiments.

3 Methods

3.1 MC Sample Events

When performing a sensitivity study, it can be helpful to use Monte Carlo (MC) sim-
ulation data instead of real events. This is because the MC sample includes "truth-level"
information on all neutrino events in addition to the reconstructed values. When looking at
actual science run data, physicists only have access to the neutrinos variable values (such as
energy, flavour type, neutrino baseline, etc.) that we can reconstruct from the raw detector
information.

However, in a MC simulation, all aspects of the MicroBooNE experiment (including
the neutrino beam and detector) are digitally re-created in a simulation software. Then,
the software can use these system specifications and probability models to simulate an entire
detection run: what the neutrino beam exactly consists of, which interactions happen, which
neutrinos oscillate, what the detector would receive, and what the reconstruction software
would read out.

The important part of the simulation process is that all of the information prior to the
reconstruction stage, which is unknown during a physical run, is saved and viewable to
researchers. We call these the "truth-level" values as they include the true energy (and
flavour type, neutrino baseline, etc.) of each neutrino the simulation produced before it
interacts with the detector and reconstruction software.

This is helpful for sensitivity studies because we can know the exact intrinsic νe and νµ
flux in the neutrino beam before oscillations, and then accurately compare this to the flux
signal measured by the detector after oscillations.

In this study, I utilized a Monte Carlo Simulation Sample from the Wire-Cell reconstruc-
tion software. In particular, I used the following FermiLab files as my MC events:
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• The charged-current (CC) channel from the "NumuSelection_Modern_Uboone_Lite"
file as my intrinsic νµ events

• The "NueSelection_Modern_UBOONE_Intrinsic_Nue_Lite" file as my intrinsic νe
events

• The "NueSelection_Modern_UBOONE_Nu_Osc_Lite" file as my fully oscillated νµ
events (assuming a νµ → νe probability of 100%) after accounting for detector cross-
section, flux, and detection uncertainties

3.2 Plotting νe and νµ Spectra

The way we visualize the flux measurements from the MicroBooNE detector is by using
neutrino energy histograms. This allows us to count the total number of measured neutrino
events and categorize them into bins based on their neutrino energy values. When repre-
senting these flux counts, we want to choose large enough bin widths so each individual bin
has >5 events(so we have statistical power), but small enough bin widths that we can see
the finer distinctions between different energy levels (not just lumping all the events into a
few bins).

In the case for the MicroBooNE MC sample, I chose to use variable bin widths in order
to accomplish both of these goals. Since there are very few high energy events, I grouped
together several smaller bins into one larger bin to increase the bin count number, while
leaving the bin width smaller at lower energies where there are more events.

Figure 5: Layered νe Spectra, from the intrinsic νe flux, to the survival νe flux, to the
survival + appearance νe flux

To further understand the appearance and disappearance mechanisms of neutrino oscil-
lation, I plotted a step-by-step layering of the electron neutrino νe spectra using the MC
truth-level values, as shown in Fig. 5. Each of these layers was normalized to a Proton on
Target (POT) value of 1.2e21, essentially normalizing the number of events based on how
many initial protons were used in the simulation accelerator. Since these histogram bins
represent a counting process, they also have an inherent statistical error in them that is
equal to the

√
N for each bin, represented by vertical error bars.

• Layer 1 (red bars in Fig. 5) = The intrinsic νe in the neutrino beam as the beam leaves
the accelerator (the background νe)
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• Layer 2 (blue bars in Fig. 5) = The survival νe in the neutrino beam as the beam hits
the detector. These counts are calculated by applying the Pνe→νe probability equation
to each individual intrinsic νe as a weight, predicting how many of the initial νe will
remain νe

• Layer 3 (orange bars in Fig. 5) = The appearance νe in the neutrino beam as the
beam hits the detector. These counts are calculated by taking the fully unoscillated
νµ events and applying the Pνµ→νe probability equation to each individual intrinsic νµ,
predicting how many νµ will oscillate into a νe and be measured by the detector

Then, we compare the total νe that is measured at the detector (survival νe + appearance
νe) to the original intrinsic νe flux to determine how the number of electron neutrinos in the
beam has changed due to oscillations. As the detector cannot differentiate between which νe
are "survival" or "appearance" neutrinos, we can only measure their combined flux and thus
can have some degeneracy between the number of νe that disappeared vs appeared within
the neutrino beam (this degenergy is explored more in [6] and [7])

Figure 6: Layered νµ Spectra, from the intrinsic νµ flux to the survival νµ flux

To help counter this degeneracy, I also plotted the muon neutrino νµ spectra considering
νµ disappearance in Fig. 6. Here we only have two layers as I don’t consider νµ appearance
(this is because the expected count is very small due to the <1% of νe originally in the
beam).

• Layer 1 (orange bars on Fig. 6) = The intrinsic νµ in the neutrino beam as the beam
leaves the accelerator

• Layer 2 (green bars on Fig. 6) = The survival νµ in the neutrino beam as the beam hits
the detector. These counts are calculated by applying the Pνµ→νµ probability equation
to each individual intrinsic νµ, predicting how many of the initial νµ will remain νµ

Figures 5 and 6 contain the spectra for the specific combination of oscillation param-
eters ∆m2

41 = 4.5eV ,sin2(2θ14) = 0.35, and sin2(2θ24) = 0.1. For this sensitivity study, I
constructed the νe and νµ spectra for 2,700 parameter combinations, each with a different
∆m2

41, Ue4, and Uµ4.
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3.3 χ2 Analysis

Why χ2?

From a statistical point of view, there is always some uncertainty to measurements and
models, so we need a way to determine if differences between the expected model and ob-
served data come from underlying physics, or if they are just random fluctuations in the
measurements. If the difference between prediction and observation is large, the model is
likely not accurate and the predictions are incorrect. Whereas, if the difference is small,
the differences might just come from inherent measurement noise and the prediction can
be considered a good fit. The χ2 test was developed by statisticians to help quantify this
difference and determine if a prediction is a good fit for the observed data or not.

Since we need to quantify the difference between the oscillation signal and the background
intrinsic flux on the νe and νµ spectra for each oscillation parameter combination, the χ2

test is a good statistical technique to use. This will then allow us to determine which regions
of the parameter space the MicroBooNE experiment is sensitive too (where the signal can
statistically be differentiated from the background neutrinos).

In order to define a cut-off value between a prediction fitting an observation and NOT
fitting an observation, we use χ2 critical values. These values are determined using statistical
models and each correlate to a specific confidence level (CL) that we then have in that given
model prediction. These critical values thus depend on how much confidence a physicist
requires to have in their prediction and how many free parameters are being simultaneously
fit in that prediction (called degrees of freedom, or dof).

For example, with a prediction model that contains three parameters (dof = 3), the
critical value χ2 = 6.251 corresponds to the confidence level of 90%. If the χ2 calculation for
the observed data and the model produces a χ2 > 6.251, then we can be 90% confident that
the model does NOT fit the data. On the other hand, if the χ2 < 6.251, we cannot be sure if
any observed differences come from a true difference between the model and observed data,
or if they come from statistical noise, so we can only say we are 90% confident the model IS
a good fit to the data.

In either case (χ2 > CriticalV alue or χ2 < CritialV alue), we cannot be 100% certain
in our conclusion as the natural statistical fluctuations could just be abnormally large or
small. However, the larger the χ2 value gets, the more confident we can be that the model
is incorrect, and the smaller the χ2 value gets, the more confident we can be that the model
is correct.

χ2 Equation

The generic χ2 equation that takes into account correlation between bin counts and
systematic errors can be written in summation form as [8]:

χ2 =
N∑
i

N∑
j

(Observei − Expecti) ∗M−1
ij ∗ (Observej − Expectj) (8)

Where M is the full covariance matrix encapsulating the expected data’s following errors
added in quadrature (with ρij being the correlation coefficient between bins i and j) [9]:
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• σ2
stat statistical error = Ni

• σ2
flux systematic flux error = Ni ∗Nj ∗ σflux,i ∗ σflux,j ∗ ρflux,ij

• σ2
cross systematic cross-section error = Ni ∗Nj ∗ σcross,i ∗ σcross,j ∗ ρcross,ij

• σ2
detect systematic detection error = Ni ∗Nj ∗ σdetect,i ∗ σdetect,j ∗ ρdetect,ij

Thus, each diagonal Mii element with ρii = 1 can be calculated as:

Mii = σ2
stat,i + σ2

flux,i + σ2
cross,i + σ2

detect,i (9)

And each off-diagonal Mij element can be calculated as:

Mij = σ2
flux,ij + σ2

cross,ij + σ2
detect,ij (10)

3 Bin Example

To fully understand the χ2 calculation, I will present the step-by-step calculation for a
simple histogram containing only three bins. Let us consider the following expected/predicted
and observed bin counts:

Dataexpected =
[
10 2 6

]
Dataobserved =

[
20 3 8

]
And the following average systematic uncertainties and bin correlations found from pre-

vious MicroBooNE simulation studies:

FluxSystematics : σflux,i = 0.15, ρflux,ij = 0.5

Cross− SectionSystematics : σcross,i = 0.2, ρcross,ij = 1

DetectionSystematics : σdetect,i = 0.03, ρdetect,ij = 0

Then, the full covariance matrix M will be the linear combination of the four following
matrices:

• The statistical error matrix Mstat, with elements σ2
stat,i = Ni,expect

Mstat =

 10 0 0
0 2 0
0 0 6


• The Flux systematic error Mflux, with elements σ2

flux,ij = Ni,expect ∗Nj,expect ∗ σflux,i ∗
σflux,j ∗ ρflux,ij

Mflux =

 10 ∗ 10 ∗ 0.15 ∗ 0.15 ∗ 1 2 ∗ 10 ∗ 0.15 ∗ 0.15 ∗ 0.5 6 ∗ 10 ∗ 0.15 ∗ 0.15 ∗ 0.5
10 ∗ 2 ∗ 0.15 ∗ 0.15 ∗ 0.5 2 ∗ 2 ∗ 0.15 ∗ 0.15 ∗ 1 6 ∗ 2 ∗ 0.15 ∗ 0.15 ∗ 0.5
10 ∗ 6 ∗ 0.15 ∗ 0.15 ∗ 0.5 2 ∗ 6 ∗ 0.15 ∗ 0.15 ∗ 0.5 6 ∗ 6 ∗ 0.15 ∗ 0.15 ∗ 1


=

 2.25 0.225 0.675
0.225 0.09 0.135
0.675 0.135 0.81


13



• The Cross-section systematic error Mcross,ij, with elements σ2
cross,ij = Ni,expect∗Nj,expect∗

σcross,i ∗ σcross,j ∗ ρcross,ij

Mcross =

 10 ∗ 10 ∗ 0.2 ∗ 0.2 ∗ 1 2 ∗ 10 ∗ 0.2 ∗ 0.2 ∗ 1 6 ∗ 10 ∗ 0.2 ∗ 0.2 ∗ 1
10 ∗ 2 ∗ 0.2 ∗ 0.2 ∗ 1 2 ∗ 2 ∗ 0.2 ∗ 0.2 ∗ 1 6 ∗ 2 ∗ 0.2 ∗ 0.2 ∗ 1
10 ∗ 6 ∗ 0.2 ∗ 0.2 ∗ 1 2 ∗ 6 ∗ 0.2 ∗ 0.2 ∗ 1 6 ∗ 6 ∗ 0.2 ∗ 0.2 ∗ 1


=

 4 0.8 2.4
0.8 0.16 0.48
2.4 0.48 1.44


• The Detection systematic error Mdetect, with elements σ2

detect,ij = Ni,expect ∗ Nj,expect ∗
σdetect,i ∗ σdetect,j ∗ ρdetect,ij

Mdetect =

 10 ∗ 10 ∗ 0.03 ∗ 0.03 ∗ 1 2 ∗ 10 ∗ 0.03 ∗ 0.03 ∗ 0 6 ∗ 10 ∗ 0.03 ∗ 0.03 ∗ 0
10 ∗ 2 ∗ 0.03 ∗ 0.03 ∗ 0 2 ∗ 2 ∗ 0.03 ∗ 0.03 ∗ 1 6 ∗ 2 ∗ 0.03 ∗ 0.03 ∗ 0
10 ∗ 6 ∗ 0.03 ∗ 0.03 ∗ 0 2 ∗ 6 ∗ 0.03 ∗ 0.03 ∗ 0 6 ∗ 6 ∗ 0.03 ∗ 0.03 ∗ 1


=

 0.09 0 0
0 0.0036 0
0 0 0.0324


These four statistical and systematic errors add to the final covariance matrix:

M = Mstat +Mflux +Mcross +Mdetect

=

 10 0 0
0 2 0
0 0 6

+
 2.25 0.225 0.675

0.225 0.09 0.135
0.675 0.135 0.81

+
 4 0.8 2.4

0.8 0.16 0.48
2.4 0.48 1.44

+
 0.09 0 0

0 0.0036 0
0 0 0.0324


=

 16.34 1.025 3.075
1.025 2.2536 0.651
3.075 0.615 8.28240012


And the inverse covariance matrix is:

M−1 =

 0.06706507 −0.0241985 −0.02310236
−0.0241985 0.46164344 −0.02529464
−0.02310236 −0.02529464 0.13119337


Then, once we’ve found the total inverse covariance matrix, we can calculate the χ2 value

for our observed data using Eq. 8, going through the summation one element at a time:

14



(Observe1−Expect1)∗M−1
11 ∗(Observe1−Expect1) = (20−10)∗0.06706507∗(20−10) = 6.706507

(Observe1−Expect1)∗M−1
12 ∗(Observe2−Expect2) = (20−10)∗−0.0241985∗(3−2) = −0.241985

(Observe1−Expect1)∗M−1
13 ∗(Observe3−Expect3) = (20−10)∗−0.02310236∗(8−6) = −0.4620472

(Observe2−Expect2)∗M−1
21 ∗(Observe1−Expect1) = (3−2)∗−0.0241985∗(20−10) = −0.241985

(Observe2−Expect2)∗M−1
22 ∗(Observe2−Expect2) = (3−2)∗0.46164344∗(3−2) = 0.46164344

(Observe2−Expect2)∗M−1
23 ∗(Observe3−Expect3) = (3−2)∗−0.02529464∗(8−6) = −0.05058928

(Observe3−Expect3)∗M−1
31 ∗(Observe1−Expect1) = (8−6)∗−0.02310236∗(20−10) = −0.4620472

(Observe3−Expect3)∗M−1
32 ∗(Observe2−Expect2) = (8−6)∗−0.02529464∗(3−2) = −0.05058928

(Observe3−Expect3)∗M−1
33 ∗(Observe3−Expect3) = (8−6)∗0.13119337∗(8−6) = 0.52477348

So, the final χ2 sum is then:

χ2 = 6.706507− 0.241985− 0.4620472− 0.241985 + 0.46164344− 0.05058928

− 0.4620472− 0.05058928 + 0.52477348 = 6.18368096

Applying χ2 to Oscillations

Returning to the MicroBooNE MC data, we consider the "expected" data to be the
intrinsic νe and νµ flux counts and compare this to the "observed" simulated oscillation
signal flux (survival νe + appearance νe, as well as survival νµ). We do this because we
want to compare all of the separate parameter oscillation signals to our "null" hypothesis
of there being no oscillations, in order to determine which parameter combinations would
create statistically significant oscillations.

I performed the chi2 calculation over all of the νe and νµ spectra bins (including all νe
and νµ appearance and disappearance channels) in order to give the χ2 summation the most
possible information, thus leading to a more accurate and sensitive chi2 value.

For the 3+1 model which fits three parameters (∆m2
41, Ue4, and Uµ4) to the data, meaning

a dof of 3, the χ2 critical values are:

• CL = 90% ↔ χ2 = 6.251

• CL = 99% ↔ χ2 = 11.345

• CL = 90% ↔ χ2 = 16.266

Any oscillation parameter combinations that produce a χ2 less than the critical value
would be considered outside of the sensitivity region because the experimental statistics
can’t confidently distinguish between the background neutrinos + noise and the oscillation
signal.

Any oscillation parameter combinations that produce a χ2 greater than the critical value
would be considered within the sensitivity region, and if the true parameters exist within
that region, the experiment will be able to detect that signal with statistical significance.
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4 Results

4.1 χ2 Contours in MicroBooNE Parameter Space

I calculated the oscillation probabilities and corresponding χ2 values for 2,700 parameter
combinations by stepping through the 3D parameter space created by ∆m2

41, U2
e4, and U2

µ4.
Each axis contained 30 points spaced evenly on a log-10 scale with the limits:

• 0.1 < ∆m2
41 < 10

• 0.0001 < U2
e4 < 0.16

• 0.0001 < U2
µ4 < 0.16

Figure 7: χ2 values for each point within the 30x30x30 log-space grid in the ∆m2
41, U2

e4,
and U2

µ4 parameter space

Plotting the corresponding χ2 values as the colors in the 3D space gives Fig. 7 above.
However, it is difficult to make out any contour details on this 3D plot, so I also looked at
several 2D slices of the parameter space. Figure 8 below shows six slices in the ∆m2

41 vs
U2
e4 plane with varying U2

µ4 values and Figure 9 shows six slices in the perpendicular ∆m2
41

vs U2
µ4 plane with varying U2

e4 values.
On these plots, the χ2 critical values corresponding to the 90%, 99%, and 99.9% confi-

dence levels are depicted as the white, red, and blue contour lines, and all of area to the

16



Figure 8: χ2 color contours on 2D slices of the ∆m2
41 vs U2

e4 plane with varying U2
µ4 values:

0.00017, 0.00077, 0.00454, 0.01621, 0,04484, 0.16
Animated GIF available at https: // github. com/ SarahPyth/ Nevis_ Labs_ Neutrino_
Reu_ 2024/ blob/ main/ 2D_ chi2_ contour_ animation_ deltam_ Ue4. gif

17

https://github.com/SarahPyth/Nevis_Labs_Neutrino_Reu_2024/blob/main/2D_chi2_contour_animation_deltam_Ue4.gif
https://github.com/SarahPyth/Nevis_Labs_Neutrino_Reu_2024/blob/main/2D_chi2_contour_animation_deltam_Ue4.gif


Figure 9: χ2 color contours on 2D slices of the ∆m2
41 vs U2

µ4 plane with varying U2
e4 values:

0.00013, 0.00028, 0.00099, 0.00454, 0.01257, 0.12406
Animated GIF available at https: // github. com/ SarahPyth/ Nevis_ Labs_ Neutrino_
Reu_ 2024/ blob/ main/ 2D_ chi2_ contour_ aimation_ deltam_ Um4. gif
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right of these contours has a χ2 value above the critical values, indicating MicroBooNE has
sensitivity to these parameter regions. All of the parameter regions to the left of the contours
have χ2 values less than the critical values, meaning MicroBooNE lacks sensitivity to these
regions.

Additionally, on these χ2 contour plots, we can see a χ2 range from 10−8 < χ2 < 100.
We can also see that the χ2 values have a spike of low values at approximately U2

µ4 ≈ 0.006
in Fig. 9. This can also be seen in Fig. 8 as the shrinking of the large χ2 region in the upper
right as U2

µ4 increases, until a little after U2
µ4 = 0.00454, when the region starts to rapidly

grow again.

4.2 Incorporating External Constraints

(a) IceCube: Neutrino detector at South
Pole that detects all neutrino flavors, but pri-
marily measures atmospheric muon neutrino
disappearance Image Credit: IceCube Col-
laboration

(b) PROSPECT: Neutrino detector at Oak
Ridge National Labs that measures short
baseline reactor electron antineutrino disap-
pearance Image Credit: NIST/Sean Kelley

I also included external parameter information from two independent non-accelerator
neutrino experiments: IceCube (Fig. 10a) and PROSPECT (Fig. 10b). IceCube’s analy-
sis found the best-fit parameters for the sterile neutrino model to be ∆m2

41 = 4.5eV and
sin2(2θ24) = 0.1 [10].

By specifying these two parameter values within the MicroBooNE oscillation probability
equations and χ2 calculation, I end up with a χ2 plot that only depends on the single
remaining free parameter sin2(2θ14), shown below in Figure 11.

Incorporating these IceCube best-fit constraints to the χ2 analysis, MicroBooNE is only
sensitive to the the parameter region where sin2(2θ14) is larger than ∼0.25 (about 1/2 of the
available parameter space).
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Figure 11: χ2 values as a function of sin2(2θ14) holding ∆m2
41 = 4.5eV and sin2(2θ24) = 0.1

constant at the IceCube best-fit values

Figure 12: PROSPECT experiment’s
sensitivy curves in ∆m2

41 and sin2(2θ14)
parameter space. Image Credit:
PROSPECT Collaboration

Then, I included the parameter constrain-
ing limits set by the PROSPECT experiment.
PROSPECT’s analysis found no evidence for
sterile neutrino oscillations within its sensitivity
parameter space, thus setting limits on the global
parameter regions that could still contain 3+1
neutrino oscillations [11].

Looking at Fig. 12, if we choose to keep the
IceCube best-fit value for ∆m2

41 at 4.5eV, we can
see that PROSPECT rules out any sin2(2θ14)
greater than ∼0.02 at a 99.73% confidence level
[12].

Adding in this upper limit on sin2(2θ14) on
Fig. 13, we can see that only the sin2(2θ14)’s to
the left of the vertical purple line are within this
allowed region. We can clearly see that all of the
sin2(2θ14) values within this region lead to a χ2

value below the critical values.
Thus, if we constrain the MicroBooNE

3+1 oscillation search by both IceCube’s ∆m2
41

and sin2(2θ24) best-fit values, as well as
PROSPECT’s sin2(2θ14) upper limit, I find that
MicroBooNE loses all sensitiviy to this allowed
parameter region.
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Figure 13: χ2 values as a function of sin2(2θ14) holding ∆m2
41 = 4.5eV and sin2(2θ24) = 0.1

constant at the IceCube best-fit values with upper limit set by PROSPECT

5 Conclusion

In this study, I calculated the νe and νµ oscillation probabilities according to the 3+1
sterile neutrino model for the MicroBooNE experiment. I found the 3D parameter regions
in ∆m2

41, U2
e4, and U2

µ4 for which MicroBooNE is sensitive at confidence levels of 90%, 99%,
and 99.9%.

Additionally, I added in the external parameter constraints from both the IceCube and
PROSPECT experiments, which found a best fit value for the ∆m2

41 and sin2(2θ24) param-
eters, and an upper limit on the sin2(2θ14) parameter respectively. Using both of these
constraints, I found the MicroBooNE lost all sensitivity to the allowed parameter region.

This means that if both IceCube and PROSPECT’s analysis is correct, MicroBooNE will
not be sensitive enough to detect the true oscillation parameters, and thus will likely find no
evidence for 3+1 neutrino oscillations within its own sensitivity parameter space.If, on the
other hand, MicroBooNE does find strong evidence for 3+1 oscillations within its parameter
space, this will directly oppose the results of IceCube and/or PROSPECT.
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