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Abstract6

XENONnT is a direct detection experiment in search of one viable dark matter (DM) can-7

didate: weakly interacting massive particles (WIMPs). With its dual-phase Time Projection8

Chamber (TPC), XENONnT investigates incident particle interactions with xenon atoms in a9

rare signal search for theorized WIMP collisions. Due to the high rate of background events and10

the elusivity of the target signals, thorough background reduction is critical for DM direct detec-11

tion experiments. This study investigates the resiliency and sensitivities of current XENONnT12

data analysis techniques and discusses the subsequent implications.13
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1 Introduction29

In 1933, California Institute of Technology’s Fritz Zwicky found the high velocities of galaxies to30

be inconsistent with their observed masses; implying the existence of some elusive form of matter31

evading direct observation. [1] Due to its lack of interaction with the electromagnetic force, this32

missing matter was dubbed “dark matter” (DM), and remains the primary target of physics exper-33

iments around the world. A variety of candidates have been proposed and subsequently ruled out,34

but WIMPs remain a key player in question. WIMPs emerged naturally, independent of dark matter35

searches, in physics beyond the standard model making them well-motivated DM candidates. [7]36

37

XENONnT aims to directly detect particle dark matter using a dual-phase Time Projection38

Chamber (TPC) filled with liquid xenon (LXe). LXe is a desirable detector medium with external39

radiation shielding capabilities due to its high atomic mass number and density. And since noble40

gasses have low rates of chemical interaction, they can be highly purified to reduce background. [5]41

Incident particles will interact with xenon atoms either electronically (by hitting a xenon atom’s shell42

electron) or nuclearly (by hitting the atom’s nucleus directly). Both interactions produce a pair of43

scintillation and charge signals that can be used to infer fundamental qualities of the incident particle.44

XENONnT’s DM direct detection search works under the assumption that WIMPs scatter elastically45

off xenon atoms and produce nuclear recoils (NR), from which the resulting deposited energy can be46

measured. [2]47

48

WIMP interactions are expected to be extraordinarily rare, and likely only happen within the de-49

tector a few times a year. Meanwhile, a plethora of non-WIMP events are recorded by the XENONnT50

experiments at much higher rates of occurrence. Thus, thorough background reduction is critical in51

XENON’s search for elusive DM signals. Proactive background reduction measures are taken through-52

out the experiment, such as hosting the XENONnT detector underground at the INFN Laboratori53

Nazionali del Gran Sasso (LNGS) laboratory, incorporating active veto systems to identify neutrons54

and muons, as well as selecting a quiet, inner fiducial volume for analysis.55

56

The XENONnT background is dominated by electronic recoils (ER). These ER events must be57

properly modeled and fit to differentiate background from the target data. Current XENONnT data58

analysis uses a Bayesian Band Fit (BBF) to fit data to the expected models, better understand LXe59

microphysics, and quantify the uncertainties in the regions of events. The model for ER events ac-60

counts for the physics behind the particle interactions, the detector response, and the reconstruction61

and correction of the signals. The BBF framework imposes a Markov-Chain Monte Carlo (MCMC)62

to find a best fit for the data versus the model, and constrain fundamental parameters in the process.63

64

This method has proven reliable in the context of particle physics, and with it XENONnT has65

placed some of the most restrictive limits on WIMP cross sections thus far (see Figure 1). But the66

resiliency of the BBF framework when outliers are introduced to the data had yet to be quantified,67

until this study sought to investigate the impacts of outlier events on XENONnT data analysis68

techniques. In this paper, we discuss the nature and implementation of the BBF framework for ER69

event data, test the model and fit responses to outlier events in the calibration data sets, and analyze70

the subsequent potential impacts.71
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Figure 1: Sensitivities of current and predicted searches for spin-independent WIMP interactions.
DARWIN is an anticipated dark matter detector that will be the product of multiple collaborations,
including XENON.

2 Modeling the Detector Response for ER Events in Liquid72

Xenon73

The majority of events in the XENONnT TPC fall into one of two categories: ER or NR. ER and74

NR events have different energy loss rates and thus dominate different regions of the S1-S2 space.75

(see Figure 2) Identifying these regions is critical, for they determine the interpretation of the science76

data. Due to the complexity of scattering in LXe, energy depositions within the detector must be77

analyzed by parameterization of the emission models. The XENONnT calibration and background78

reduction process use simulations created via informed signal response models that account for mi-79

crophysics within the TPC, the detector response, and the reconstruction of event signals. These80

models are fit to calibration data from the regions of interest, and the parameters are constrained by81

a BBF.82

83

It can be noted that the NR event model is similar to that of ERs, but is significantly more84

complicated and unpredictable due to energy loss and a higher recombination rate.85

2.1 ER Emission Event Model86

The ER emission model describes the production of scintillation photons and ionization electrons87

by the initial energy deposition. When incident particles scatter off of xenon electrons in the detector88

medium, the recoil energies excite and ionize the xenon atoms. The total number of detectable quanta,89

Nq, is the sum of the number of excitons Nex and ions Nion produced. [4] Nq is used to construct the90
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Figure 2: cS1 and cS2 space for XENONnT. WIMPs are expected to nuclearly recoil, while ER
events dominate the background.

intial deposited energy ϵ,91

Nq ∼ Binom(
ϵ

W
,L), (1)92

where W is the average energy needed to creare an exciton or ion-electron pair in XENONnT, and93

the Linhard factor L describes the energy lost to heat (which is negligible for ER events).94

95

A portion of the released electrons and ions will recombine and produce additional excitons. These96

electron-ion pairs are modeled by,97

Ni ∼ Binom(Nq,
1

1+ < Nex/Ni >
), (2)98

where < Nex/Ni > is the exciton-to-ion ratio, which is assumed to be constant for ER events in LXe.99

The subsequent ionization electrons may recombine with a xenon atom to form an excimer,100

Ne ∼ Binom(Ni, 1− r), (3)101

where 1 − r is the probability of recombination determined by r, the recombination factor. The102

recombination factor fluctuates, and follows a Gaussian distribution determined by the mean recom-103

bination fraction < r > and the recombination fluctuation ∆r. The mean recombination fraction for104
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ER events < r >er requires the deposited energy and electric field, and is described by a modified-105

Thomas-Imel (TI) box model. [8] Recombination results in the release of a scintillation photon Nγ106

when de-excited,107

Nγ = Ni −Ne +Nex. (4)108

These Nγ photons are detected by the detector’s PMTs as a flash of 178 nm scintillation light and109

recorded as S1 signals. The produced ionization electrons Ne that do not recombine are drifted110

upwards by an induced electric field and subsequently extracted into the gas phase by an increased111

electric field. These ionization electrons are recorded as S2 signals. ER events have a lower re-112

combination probability than NR events, resulting in smaller S1-S2 ratios. This is key for ER-NR113

differentiation. [3]114

2.2 ER Detector Reconstruction Model115

The ER detector reconstruction model is responsible for determining signal spatial coordinates116

and modeling the related efficiencies. The x and y coordinates are determined by the location of117

the detected signal on the PMTs, and z is calculates by the electron drift time. The light collection118

efficency ϵL and the gas gain G (the number of photoelectrons per electron extracted into the gas119

layer) are spatially dependent. These are related to the energy scale parameters g
′
1 and g

′
2, and120

modeled by121

g
′

1(x, y, z) = (1 + pdpe) ∗ ϵL(x, y, z) ∗ ϵQE ∗ ϵCE, (5)122

123

g
′

2(x, y) = ϵextG(x, y), (6)124

where pdpe is the probability of seeing an extra photoelectron emitted from the PMT cathode, ϵext is125

the extraction efficiency, ϵQE is the quantum efficiency of the PMTs and ϵCE is the PMT’s average126

collection efficiency.127

128

The detector reconstruction model also considers inherent detector effects, software Reconstruc-129

tion biases, and the resulting impacts on the event signals. For drifted electrons, electric field effects130

along the TPC walls and electron extraction efficiency impact the received S2 signals. The position131

coordinates are corrected using the photoelectrons from the PMT photocathode, the total propor-132

tional scintillation light detected, and the biases and fluctuations that occur within the detector. The133

final, corrected event signals, cS1 and cS2, are given by134

cS1 = S1
g1

g
′
1(xr, yr, zr)

, (7)135

136

cS2 = S2
g2

g
′
2(xr, yr)

e
z

(τ
′
e∗νd) , (8)137

where xr, yr, and zr are the corrected position coordinates. τ
′
e represents the measured electron138

lifetime and νd is the electron drift velocity. From here, data quality is ensured by the data selection139

process, which is detailed in (?).140

2.3 Fit to Calibration Data141

The emission and reconstruction models are used to simulate the ER band and create a sample142

data set of 2000 events. This data set is fit to calibration data from the region of interest to constrain143

ER parameters and determine where it lies in the S1-S2 space. ER calibrations are performed using144

220Rn. The 220Rn decay chain includes 212Pb, whose β-radiation produces a uniform, low-energy ER145
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spectrum. (?)146

147

The modeled ER events are fit to the calibration data using a GPU-supported Markov chain Monte148

Carlo (MCMC) algorithm. The MCMC samples from the distributions of the posterior parameters,149

and over the course of several iterations, fits to the model parameters. The MCMC is generally run150

until the samples converge to the posterior parameter distributions. For more detailed reading on151

MCMC specifics, see [6].152

3 ER Simulation and Model Parameters153

The models, simulations, and fits are executed using Appletree: XENONnT’s software framework154

for event modeling, reconstruction, and analysis. This project included an ER simulation using the155

emission and detector reconstruction models, from which sample, ’toy’ data sets were created to156

represent a selection of ER event signals. Experimental alterations were made to individual model157

parameters to test their impacts on the resulting ER band. This section describes ER simulation158

details and workflow, the model parameters, and the impacts of altered select parameters.159

3.1 Simulation Specifics and Workflow160

The ER simulation and sampling is as follows. The 220Rn calibration data was sampled and161

placed in 2-dimensional equi-probable bins. The ER component is initialized alongside an additional162

component to account for accidental coincidences (AC). AC events are formed by incorrect pairing of163

S1 and S2 signals in the calibration data set. The posterior parameters are defined by the marginal164

posteriors from the XENONnT 2024 WIMP search. [9] The simulation creates 1e6 events to visualize165

the ER event model. The simulated events are plotted in a 2-dimensional histogram with cS1 on the166

x-axis, cS2 on the y-axis, and the efficiencies act as weights. Unlikely events are disposed of from the167

simulation set by comparing the cS1 signal to its associated efficiency value, leaving 551961 events168

remaining. A toy data set of 2000 is sampled from this remainder to represent a selection of ER169

events.170

3.2 Testing Select Parameter Impacts171

The ER model takes 18 parameters; 6 fixed, 5 of normal or uniform distributions, and 7 free.172

Some parameters could be better constrained by setting the posterior values to those of the marginal173

posteriors determined via the XENONnT WIMP search in 2024 (see Table 2). [9] Parameters not174

listed include the ER rate, the AC rate, and select cuts for S1 and S2 acceptances and associated175

thresholds. The free parameters are associated with the recombination process in the emission176

model, and greatly impact the ER band shape at large. To better understand the elusive and vague177

free parameters in the context of this project, select free parameter posterior values were individually178

adjusted and used to create new ER simulations and sample data sets. The results were plotted in179

2-dimensional histograms.180

181

Multiple free parameters were altered, used to create sample data sets, and plotted to inform the182

direction of the project. For the reader’s reference, this process is documented below for one select free183

parameter: py2. It should be noted that in some XENON documentation, this parameter is referred184

to as "δer, as is seen in Table 2. This parameter comes from the recombination model embedded185
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Parameter Prior Marginal Posterior Unit

W 13.7± 0.2 13.7+0.2
−0.2 eV

f 0.059 0.059 -

< Nex/Ni > 0.06 – 0.20 0.13+0.04
−0.04 -

γ free 0.13+0.03
−0.02 -

δ free −0.34+0.07
−0.07 -

ω free 57+15
−12 keV

q0 free 1.32+0.17
−0.20 keV

q1 free 0.47+0.07
−0.05 keV

q2 free 0.030+0.002
−0.002 -

q3 free 0.47+0.40
−0.31 keV

Table 1: Table of prior and marginal posterior distributions of parameters in the ER emission model.
Determined via the XENONnT WIMP search 2024. [9]

within the emission model. Specifically, py2 is included in the calculation of the field-dependent186

TI-model parameter,187

ζ =
1

4

E

W

1

1+ < Nex/Ni >
× py0 exp (−E/py1)F py2 (9)188

which is included in the calculation of the mean recombination fraction,189

< r >=
1

e−(E−q0)/q1 + 1
(1− log(1 + ζ)

ζ
), (10)190

which represents the mean value of the true recombination probability distribution r,191

r ∼ Norm(< r >,∆r). (11)192

As py2 increases, ζ increases, and therefore the mean recombination fraction increases. If the recom-193

bination fraction is greater, then more exciton-ion pairs will recombine and result in higher rates of194

s2 signals. The py2 parameter was changed from −0.14 to −0.68 with a step size of 0.07 to create195

an altered ER band simulation to sample toy data sets from. These data sets were plotted on top of196

the original, accepted simulation of the ER band in Figure 3. As the py2 value decreases from -0.14197

to -0.68, the resulting data set moves upwards in the S1-S2 space. As seen in Table 2, the accepted198

marginal posterior value for py2 is −0.34+0.07
−0.07, and thus the sample data set matches the ER band199

simulation best in Figure 3b.200
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(a) Py2 = −0.14 (b) Py2 = −0.34 (accepted marginal posterior)

(c) Py2 = −0.55 (d) Py2 = −0.68

Figure 3: Toy data sets sampled from a simulation with altered py2 parameters plotted over ER
band simulation without altered parameters.

4 Mis-modeling Thresholds and Impacts201

The primary focus of this project was to study the resiliency of the ER model and fit when tested202

with outliers in the calibration data. The study is concerned with the thresholds of tolerance the203

models have for outliers in different regions as well as which goodness of fit tests were more capable204

of detecting the effects of outliers. This section describes the method of adding increasing quantities205

of outliers to the sample data sets and evaluating their goodness of fit prior to and after the MCMC.206

4.1 Adding Imposter ER Events to Sampled Data Sets207

The impacts of outlier events were tested in the regions of 2 to 3σ, upper 2 to 3σ, and lower208

2 to 3σ deviations, as well as uniform distributions across the ER region of the S1-S2 space. The209
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distributions of outlier events are illustrated by Figure 6.210

211

(a) Uniformly distributed outlier events. (b) Outlier events in the symmetric 2 to 3σ region.

(c) Outlier events in the lower 2 to 3σ region. (d) Outlier events in the upper 2 to 3σ region.

Figure 4: The distributions of outlier events that were selected for this study.

Note that uniformly distributed outlier events were restricted to the general ER region of the212

S1-S2 space for a more relevant study. Outliers in the median to 1σ region were initially considered,213

but largely abandoned in this study for events falling within a 1σ-deviation from the median are214

likely ER events, and not outliers. Outlier events were increasingly added with a set step size to215

1 sample data set for each region. Maintaining the same sample data set for each set of increased216

values was critical to maintain consistency.217

218

As of current standing, magnitude of outlier events existing in calibration data is unknown. Sim-219

ilarly, it is unknown where outlier events would most likely fall if they did exist in the collected220

calibration data sets. This project was not aimed at analyzing the calibration data directly, but221

instead looked to determine thresholds where XENONnT’s current models and goodness of fit eval-222
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Figure 5: Example GOF evaluation on a toy data set.

uations will no longer tolerate outlier events in various regions of the S1-S2 space.223

4.2 Goodness of Fit Evaluations224

To evaluate how well the ER models describe the calibration data when faced with imposter ER225

events, we calculated the probability (p) values of the data prior to and after the MCMC using our226

Goodness of Fit (GOF) evaluations. The GOF evaluation used for this study was a Binned Poisson227

χ2 evaluation to determine the compatibility of the model and calibration data. A χ2 for binned data228

with a Poisson distribution can be calculated via,229

χ2 =
∞∑
i=0

(Ni− < Ni >)2

< Ni >
(12)230

where i represents your number of counts in a specified period, Ni is the observed frequency, and231

< Ni > is the frequency predicted by the model. In Appletree, the Binned Poisson χ2 test uses232

equiprobable binning to distribute the data and compare the observed number of counts to the233

expected number. An example GOF evaluation is depicted in Figure 5. The GOF evaluations234

provide an associated Probability (p) value that is our measure of how well the model describes the235

calibration data.236

4.3 Determining Sensitivity Thresholds237

P-value calculations using the Binned Poisson χ2 GOF evaluation were evaluated for the specified238

types of mis-modeling for increasing numbers of imposter ER events both prior to and after the239

MCMC.240

241
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(a) P-value calculations for mis-modeling in the
symmetric 2 to 3 σ range.

(b) P-value calculations for uniformly distributed
mis-modeling.

(c) P-value calculations for mis-modeling in the
postitive 2 to 3 σ range.

(d) P-value calculations for mis-modeling in the
negative 2 to 3 σ range.

(e) P-value calculations for mis-modeling in the
median to 1 σ range.

Figure 6: The results of the sensitivity/threshold tests performed by this study for the specified types
of mis-modeling.
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For each type of mis-modeling, we calculated the p-values for 20 random data sets prior to the242

MCMC while steadily increasing the quantity of imposter ER events. Then, we sampled one random243

data set and performed the same p-value calculations with the same GOF evaluation (represented244

by the black lines in each of the Figure 6 subplots). Subsequently, we took that random data set and245

re-calculated the p-values after performing the MCMC. It was expected that the post-fit p-values246

would be higher than those calculated prior to the fit, as the MCMC is supposed to better constrain247

the model’s description of the calibration data and thus increase the threshold at which the model,248

fit, and GOF evaluation will detect mis-modeling. For some tests, particularly the one for the -2 to249

-3σ range (Figure 6d), this was not explicitly the case. We believe this is due to potential noise in the250

sample data set stemming from the method of generating the outlier imposter ER events. From these251

tests, we were able to determine the general thresholds for when the model, MCMC, and associated252

GOF test are able to detect mis-modeling in specified regions (Table 2).253

254

Mis-modeling Type Threshold Prior-fit Threshold Post-fit

2 to 3σ ∼220 events (9.9%) ∼280 events (12.3%)

-2 to -3σ ∼140 events (6.5%) -

+2 to +3σ ∼120 events (5.6%) ∼160-180 events (7.4-8.3%)

Uniform ∼200 events (9%) ∼300 events (13.6%)

Median to 1σ ∼700 events (26%) -

Table 2: Quantity of imposter ER events needed for GOF evaluation to consistently provide a p-
value of 0.

The post-fit test for mis-modeling in the -2 to -3σ region was inconclusive, likely due to the255

aforementioned noise in the GOF evaluation as well as a likely issue with binning in this region of256

the ER band. Additionally, post-fit p-value calculations were not determined for the median to 1σ257

range due to time constraints.258

5 Results and Discussion259

It was found that the uniformly distributed mis-modeling and the mis-modeling in the symmetric260

2 to 3 σ ranges required a higher quantity of imposter ER events to be detected than the asymmetric261

2 to 3 σ ranges. This is likely due to the less concentrated nature of the mis-modeling. The more262

condensed the mis-modeling, the more likely it will be detected earlier by the GOF evaluation since263

the Binned Poisson χ2 test does not register the distance of events from the median. Similarly, it is264

sensical that mis-modeling in the median to 1σ range would be more difficult to detect. Events that265

fall within this range are likely true ER events, and mis-modeling in this region is less of a concern.266

Thus, it follows that it would require a significant portion of the data set for the mis-modeling in267

this region to be detected. The thresholds for mis-modeling detection prior to and after the MCMC268

pose a variety of implications. It was found that Appletree is capable of fitting large deviations in269

the calibration data, which requires more critical analysis of the calibration data prior to fitting.270

This is not detrimental in itself, as Appletree’s purpose is to constrain the model parameters to the271

calibration data. But this does increase the threshold for which mis-modeling becomes detectable,272
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and calls for skeptical analysis of the calibration data prior to the MCMC.273

274

Ultimately, if any mis-modeling exists within ER analysis process, then the model will not accu-275

rately describe ER events. It is necessary that XENONnT is highly critical of the calibration data276

prior to and after the fit to mitigate the risk of mis-modeling impacting the statistical inference of277

the science data.278
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