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Summary

Fermi two-year all-sky map

2FGL 31305041152

1. Dark Matter
Evidence

5 WIMPs

' Cena

2. Gamma-ray detection

Nova VA0TCyg  © Wég

CTAO

3. Analytical Methods
Background Estimation
Statistics

Credit: NASA/DOE/Fermi/LAT Collaboration 4. Resu ltS
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Figure courtesy of K. Garrett and G. Duda

Dark Matter

Evidence:

- Rotational curves of galaxies

- Outer mass should escape gravitational

pull

- DM binding



Dark Matter
(cont.)

More evidence:

Gravitational Lensing

galaxy cluster

distorted light-rays

{




DM annihilation & decay

Why ga m m a - ;a|§/\/se, can analyze the resulting gamma
ray searches?
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WIMP Dark
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WIMP Dark
Matter Particles
Ecv~100GeV

Weakly Interacting
Massive Particles

“Cold” dark matter

- WIMP’s theoretical
mass determines
energy of emitted
gamma rays

- Prompt emissions
- Secondary emissions

- Mass range of 50GeV -
10TeV well motivated
SUSY extensions of SM



Air showers

Development of gamma-ray air showers
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Gamma rays travel through galactic & intergalactic space
until they hit Earth

Interact with atmosphere (Bremsstrahlung)

Development of cosmic—ray air showers

Primary particle

(e.g. iron nucleus)
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Cherenkov
Radiation

- Charged particles traveling faster than light (in
medium)

- Emit light wavefront at a characteristic angle

(%
- cosf =L
nc

- Visible blue light is emitted

vAt

- Analogous to supersonic “boom” of sound wave



high energy
gamma ray photon

I interaction
3 (pair production)

Imaging Atmospheric Cherenkov Telescopes shower of secondary
(|ACTS) particles

- VERITAS

- CTAO

“pool” of
Cerenkov light

ground-based
telescope







CTAO - Performance

- Unparalleled sensitivity inthe 0.1 -10 TeV
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Gammapy & the
second Science Data
Challenge (SDC)

A Python package for
gamma-ray astronomy

Gammapy:

- Gamma ray analysis package for
python

- Open-source

- Community-developed

CTAO SDC:

- Simulated datasets for a variety of
sources

- Goal: to demonstrate CTAO
performance



Sources

Willman-I

- Dwarf spheroidal galaxy
Sagittarius-Il

- Dwarf spheroidal galaxy

Galactic DM Subhalo




Dwarf Spheroidal
Galaxies

- Good nearby DM targets
- Large mass/ luminosity ratio (10 —
Mo
1007°/,.)
- Expect no gamma -ray background
- DM distribution unknown
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halo
(dark matter)

spiral disk
(visible stars)

DM
Subhalos

Good nearby DM targets

* Expect no gamma-ray
background

* Galactic sources

e Canbevery DM-dense

* Detected through gravitational
lensing

* Hard to detect

* Not much info



Analysis Pipeline

Background estimation

Modeling, fitting, and more estimation

Markarian-421 validation source




Start:
Counts
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ON/OFF regions

Background Ring

Reflected Regions

E Sti m at i O n Estimate point source (exclusion region =
0.07 deg)
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Excess
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Flux &
Sighificance
Estimation

E
d(E) = ¢y - (E_o>

10-10 4
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10-13 4
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Flux:

TeV /(s cm2)

Estimation:

Use a basic model (power law)
Fit model to excess (minuit) & find y?

Forward-folding algorithm for flux estimation
(model-dependent)

Backward-folding algorithm for significance map
(not model-dependent)

Further analysis needed to account for trial factor
(LEE)
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Results!

We got ‘em



Mkn 421 Spectrum
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Data from VERITAS & Fermi-LAT, Figure courtesy of Zach Curtis-Ginsburg
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Significance

We see a peak significance of 3.70 with a normal significance distribution, showing no significant gamma-ray
emissions




Sagittarius-
2 Flux
Spectrum

We find the upper limits for 1 energy
bin.

For future observations, we can
calculate a suggestion for how much
more observational time will be
needed based on the upper limit

S T

e2dnde [ergs—lcm™?]

10712 -

{PRELIMINARY

10-13 -

10-14 -

—

lﬂ_IE

101

Energy [TeV]



10°

| 1071
-43°30"
-44°00' 10-21
5 ™
™
= 1073,
[ %]
& -45°00
30' —4]
107 s all bins
I  all bins - exclusion region
-46°00" u=-0.00 £ 2.74E-02
o=1.00 £ 2.23E-02
ahs6m 52m 48m a4m S~ 1 5 3 4
Right Ascension Significance

We see a peak significance of 4.00 with a normal significance distribution, showing no significant gamma-ray
emissions
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We find the upper limits for 2 energy
bins.

For future observations, we can
calculate a suggestion for how much
more observational time will be
needed based on the upper limits.



Willman-1

A 5.40 significance detectlon, with a grain of salt PRELIMINARY
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Significance distribution shows either extended source or analytical error.
Analyses of many source sizes provide evidence that the distribution most likely an analytical error.
Further analysis will be required to confirm and fix the error.




Willman-1
Flux
Spectrum

Three flux points detected.
More analysis required to verify flux
points.
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Conclusions

Dark matter continues to be one of the
most compelling mysteries in physics,
and indirect DM detection is one
convincing avenue forward.

With CTAO’s unrivaled sensitivity and
wide energy range, researchers can
analyze VHE-gamma-ray emission better
than ever before.

We pave the way forward by establishing
a robust data analysis pipeline

While results are from simulated data,
still useful for comparison, analysis
familiarization, and software package
verification.
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