

₁ Goodness-of-Fit Testing using Wasserstein Distance to
₂ Validate Model of DEC Background

₃ REU Program at Columbia University - Nevis Labs

₄ Eleni Mandarakas¹

¹Bucknell University

₅ January 12, 2026

Abstract

10 Dark matter is the leading explanation for the observed discrepancy between visible matter and
11 the total gravitational mass in the universe. Detecting a dark matter particle would not only
12 confirm its existence but also deepen our understanding of the fundamental constituents of matter
13 and the structure of the universe. The XENON Collaboration is dedicated to advancing direct
14 detection efforts, targeting dark matter candidates known as Weakly Interacting Massive Particles
15 (WIMPs) in the mass range GeV - TeV. Achieving this goal requires effective background-signal
16 discrimination. One such background arises from double electron capture (DEC) events. Models
17 have been developed to describe the DEC background, and this study investigates whether the
18 Wasserstein distance as a Goodness-of-Fit test is sensitive enough to evaluate model agreement
19 with observed data. This study shows that the Wasserstein test has the most power to detect
20 differences in hypotheses when the LL parameter is positive and the LM parameter is negative
21 and the least power when the parameters are close to the null hypothesis or when the parameters
22 are close to each other. Overall, it has shown to be a powerful test in some regions, but future
23 work in a two tail test would be suggested to gain power specifically in the regions of greatest
24 interest.

25 **Contents**

26	1	Introduction	2
27	2	XENON Collaboration	2
28	3	Double Electron Capture	2
29	4	Wasserstein Distance	3
30	5	Methodology	6
31	5.1	Templates	6
32	5.2	Sampling	7
33	6	Results and Discussion	7
34	7	Summary and Conclusions	8
35	8	Acknowledgements	9

36 1 Introduction

37 Astrophysical and cosmological observations, including measurements of the cosmic microwave
38 background, gravitational lensing, galaxy rotation curves, and the dynamics of the Bullet Cluster,
39 provide compelling evidence for the existence of a non-luminous, non-baryonic form of matter
40 known as dark matter. This hypothetical substance does not appear to interact via the elec-
41 tromagnetic force, making it extraordinarily difficult to detect directly. Its presence is inferred
42 solely through gravitational effects on visible matter, radiation, and the large-scale structure of
43 the universe.

44 2 XENON Collaboration

45 To search for direct evidence of dark matter, the XENON collaboration utilizes a dual-phase
46 liquid xenon time projection chamber (TPC) designed to detect rare interactions between dark
47 matter particles, particularly weakly interacting massive particles (WIMPs), and xenon nuclei.
48 The detector consists of a cylindrical volume filled with liquid xenon, with a thin layer of gaseous
49 xenon above it. Photomultiplier tubes (PMTs) are positioned at both the top and bottom of the
50 chamber, while a cathode and anode establish an electric field throughout the detector.

51 When a particle interacts with a xenon atom in the liquid phase, the collision produces prompt
52 scintillation photons (referred to as S1) and ionization electrons. The electrons drift upward under
53 the influence of the electric field and enter the gas phase, where they are accelerated by a stronger
54 field and produce a secondary scintillation signal (S2) via electroluminescence. The signals are
55 then reconstructed during data analysis and grouped together as events. Electronic recoil (ER),
56 which constitutes most of the background, refers to collisions of particles with the electrons in
57 the xenon atom, whereas nuclear recoil (NR) refers to collisions of a WIMP with the nucleus of
58 a xenon atom. The ratio of S2 to S1 provides a means of discriminating between ER and NR, as
59 ER events typically exhibit a higher ionization yield and thus a larger S2/S1 ratio.

60 Despite this discrimination, certain rare background processes can mimic NR signals. Notably,
61 the double electron capture (DEC) decay of xenon isotopes such as ^{124}Xe can produce signals with
62 S2/S1 ratios consistent with those of nuclear recoils. These events pose a challenge to background
63 rejection efforts, as they may be misidentified as potential dark matter candidates.

64 To evaluate the performance of models designed to identify double electron capture (DEC)
65 events, the Wasserstein distance is employed as a goodness-of-fit test statistic. The statistical
66 power of the test is then computed to quantify its sensitivity in distinguishing between competing
67 hypotheses.

68 3 Double Electron Capture

69 Double electron capture (DEC) events deposit energy through X-ray and Auger cascades,
70 resulting in a more spatially localized energy deposition than β decays of comparable energy. This
71 increased localization leads to higher ionization densities and enhanced electron-ion recombination,
72 which causes DEC signals to more closely resemble nuclear recoil (NR) events than typical β
73 decays.

74 Two-neutrino double electron capture is an extremely rare nuclear process in which two orbital
75 electrons are simultaneously captured by the nucleus, converting two protons into neutrons and
76 emitting two electron neutrinos.

77

$$^{124}\text{Xe} + 2e^- \rightarrow ^{124}\text{Te} + 2\nu_e + (\text{X-rays and Auger electrons})$$

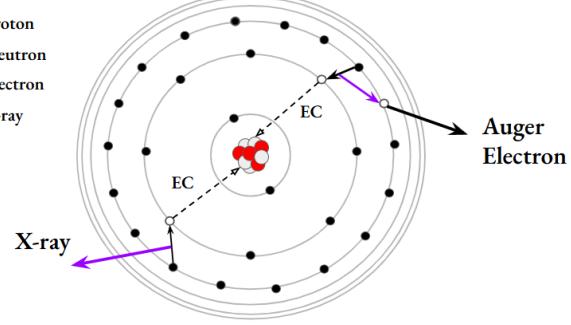


Figure 1: ^{124}Xe captures two electrons and releases two neutrinos, x-rays, and auger electrons.

79

80

81 Following the capture, the resulting vacancies in the atomic shell—most commonly in the
 82 innermost (K) shell—are filled through a cascade of X-rays and Auger electrons, producing a
 83 low-energy, localized signature in the detector. While K-shell captures are more probable and
 84 produce more energetic, easily distinguishable signals, decays involving two electrons from the L
 85 shell (LL) or one each from the L and M shells (LM) result in lower-energy signatures. These
 86 events are of particular interest because their more localized energy deposition leads to higher
 87 ionization densities and enhanced recombination, causing them to resemble nuclear recoil (NR)
 88 events more closely.

89 Because the energy deposited by LL and LM modes lies within the WIMP search region of in-
 90 terest (ROI), they represent an important background, with this analysis predicting approximately
 91 13.7 DEC events in total, occurring in an estimated LL:LM ratio of roughly 2:1, as predicted in
 92 the XENONnT DEC hypothesis study [7].

93 4 Wasserstein Distance

94 The Wasserstein distance, also known as the Earth Mover's Distance (EMD), is a met-
 95 ric used to quantify the difference between two probability distributions. Intuitively, it rep-
 96 resents the minimum amount of "work" required to transform one distribution into another,
 97 where "work" is defined as the product of the
 98 amount of probability mass moved and the distance
 99 it is transported.

100 The p -Wasserstein distance between two proba-
 101 bility distributions μ and ν on a metric space (\mathbb{R}, d)
 102 is defined as:

$$103 \quad W_p(\mu, \nu) = \left(\inf_{\gamma \in \Gamma(\mu, \nu)} \int_{\mathbb{R}^d \times \mathbb{R}^d} d(x, y)^p d\gamma(x, y) \right)^{1/p}$$

104 Here, $\Gamma(\mu, \nu)$ denotes the set of all joint distributions (couplings) on $\mathcal{X} \times \mathcal{X}$ with marginals μ and
 105 ν , and $d(x, y)$ is the distance between points x and y .

106 In this work, we focus on the cases $p = 1$ and $p = 2$. For $p = 1$, the Wasserstein distance
 107 corresponds to the Earth Mover's Distance with cost measured by the Euclidean distance between
 108 points, $d(x, y) = \|x - y\|_2$. For $p = 2$, the cost function is given by the squared Euclidean distance,
 109 $d(x, y)^2 = \|x - y\|_2^2$, which places greater emphasis on larger displacements. The choice to use
 110 $p = 2$ increases the sensitivity of the Wasserstein distance to variations.

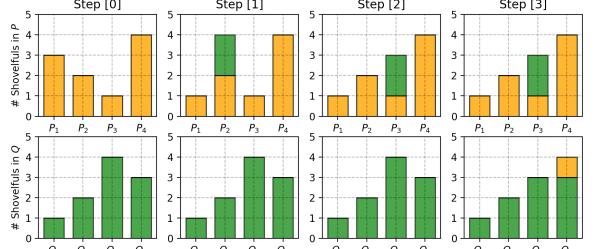


Figure 2: Discrete 1D example of EMD[10].

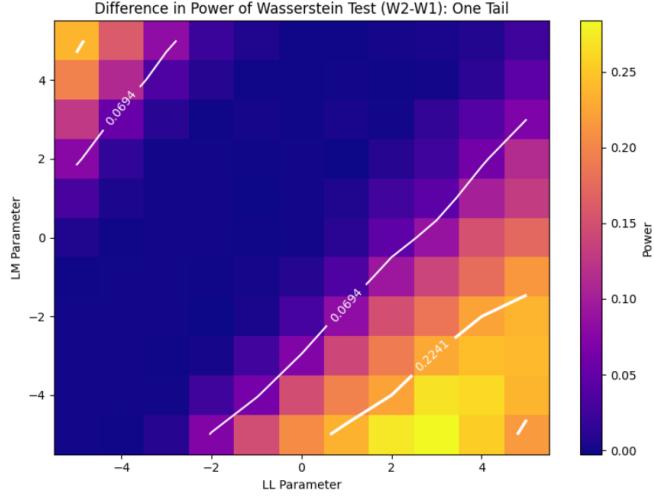


Figure 3: Power values are positive showing that using $p = 2$ is more powerful than $p = 1$. 2-Wasserstein Distance will be used moving forward as it is a more sensitive test.

112 We apply the Wasserstein distance as a two-dimensional, unbinned goodness-of-fit test to
 113 compare observed data to a background model of DEC events. The test operates on empirical
 114 samples in two-dimensional space (\mathbb{R}^2), thereby preserving the full resolution of the data.

115 Unlike classical goodness-of-fit tests such as the Kolmogorov–Smirnov or χ^2 tests; its sampling
 116 distribution under the null hypothesis depends on the specific shape and variance of the under-
 117 lying distribution. To investigate this, sample pairs were drawn from a 2D Gaussian distribution
 118 with fixed covariance, and the Wasserstein distance was computed for each pair. This process was
 119 repeated 10,000 times to approximate the distribution of the test statistic under the null hypoth-
 120 esis. The procedure was then repeated with Gaussians having different means and covariances
 121 to assess whether the statistic depends on the absolute location and spread of the distribution.
 122 The same methodology was applied using the KS test to validate the approach and confirm its
 123 distribution-free behavior under analogous conditions.

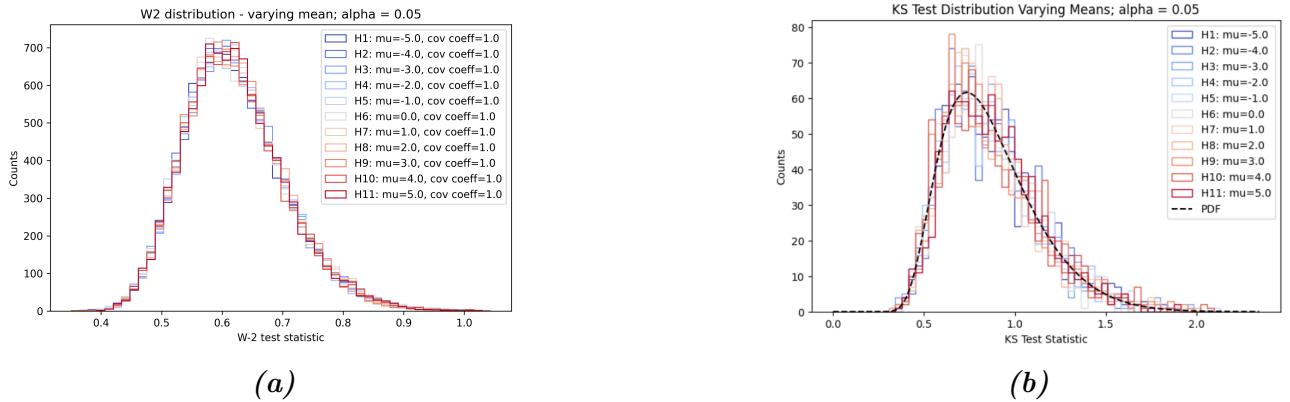


Figure 4: Wasserstein (a) and Kolmogorov–Smirnov (b) test statistic distributions for 10,000 sample pairs drawn from identical 2D Gaussian distributions with fixed covariance and varying mean. In each case, samples were drawn from the same distribution to evaluate the null distribution of the test statistic. The results confirm that both tests are insensitive to shifts in the absolute location of the mean under H_0 .

124 Consequently, we employ a toy Monte Carlo approach to numerically approximate the distri-
 125 bution of the test statistic under the null hypothesis. This procedure enables the calculation of
 126 empirical p -values and allows us to assess the statistical significance of deviations between the
 127 observed data and the background model.

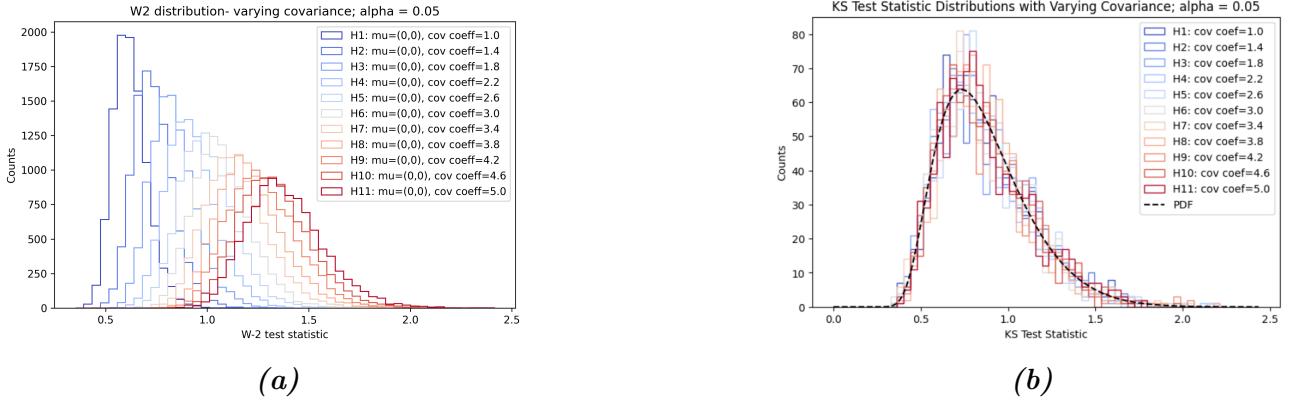


Figure 5: Wasserstein (a) and Kolmogorov-Smirnov (b) test statistic distributions for 10,000 sample pairs drawn from identical 2D Gaussian distributions with fixed mean and varying covariance. In each case, samples were drawn from the same distribution to evaluate the null distribution of the test statistic. The results confirm that while the KS test is insensitive to changes in the spread of H_0 , as expected, the Wasserstein distribution is easily influenced. This confirms the Wasserstein distance is not distribution-free.

128 To quantify the sensitivity of the Wasserstein distance as a test statistic (W), we perform
 129 a one-tailed hypothesis test to compute the statistical power of detecting deviations from the
 130 background model. Under the null hypothesis H_0 , the observed data are assumed to follow the
 131 DEC distribution. The alternative hypothesis H_1 corresponds to the mis-modeling of DEC events.

132 The power of the test is the probability of correctly rejecting the null hypothesis when the
 133 alternative hypothesis is true. Mathematically, it is defined as:

$$134 \quad \text{Power} = 1 - \beta$$

$$135 \quad \beta = P_{H_1}(W < T)$$

137 where P_{H_1} denotes the probability evaluated under the alternative hypothesis.

138 At a 95% confidence level, the threshold T is determined from the upper tail of the null
 139 distribution, obtained via toy Monte Carlo simulations, such that 0.05 of the area of the pdf lies
 140 beyond the threshold. The power of the test is then calculated as the fraction of MC pseudo-
 141 experiments, or samples, generated under the alternative hypothesis for which the Wasserstein
 142 distance exceeds T . This approach allows us to determine the probability of correctly identifying
 143 a model deviation when it is present, thereby characterizing the test's discriminating ability; it
 144 provides a quantitative measure of any mis-modeling of the data.

145 Earth Mover's Distance Function

146 To compute the 2-Wasserstein (Earth Mover's) distance between two empirical distributions,
 147 we consider two samples: a source distribution and a target distribution. Each distribution
 148 consists of a collection of events, where each event is characterized by a location and an associated
 149 probability mass.

150 Let $\{x_i\}_{i=1}^n \subset \mathbb{R}^2$ be the locations in the source distribution with corresponding mass vector
 151 $\mathbf{a} \in \mathbb{R}^n$, and $\{y_j\}_{j=1}^m \subset \mathbb{R}^2$ be the locations in the target distribution with mass vector $\mathbf{b} \in \mathbb{R}^m$,
 152 such that:

$$153 \quad \sum_{i=1}^n a_i = 1, \quad \sum_{j=1}^m b_j = 1, \quad a_i, b_j \geq 0$$

154 Each location is defined by its $cs1$ and $cs2$ values (i.e., $x_i = (cs1_i, cs2_i)$), and the mass represents
 155 the normalized fraction of events at that location in the dataset.

156 To quantify the cost of transporting mass between the source and target distributions, we
 157 define a cost matrix $C \in \mathbb{R}^{n \times m}$, where each entry is the squared Euclidean distance between
 158 locations:

$$159 \quad C_{ij} = \|x_i - y_j\|_2^2$$

160 The goal is to find a transport plan $\gamma \in \Gamma(\mathbf{a}, \mathbf{b}) \subset \mathbb{R}^{n \times m}$, which specifies how much mass to
 161 move from x_i to y_j , that minimizes the total transport cost subject to the marginal constraints,
 162 where $\Gamma(\mathbf{a}, \mathbf{b})$ denotes the set of all valid transport plans with marginals \mathbf{a} and \mathbf{b} . In other words,
 163 each row of γ sums to the source mass a_i , each column of γ sums to the target mass b_j , all γ_{ij}
 164 must be non-negative, and γ must represent the least costly path, or the optimal transport plan.
 165 The optimal plan is found using a linear programming algorithm, or more specifically the network
 166 simplex algorithm.

$$167 \quad \begin{array}{ll} \text{Mass Constraints} & \text{Non-negativity Constraint} \\ \sum_{j=1}^m \gamma_{ij} = a_i & \forall i \quad (\text{row sums}) \quad \gamma_{ij} \geq 0 \quad \forall i, j \\ \sum_{i=1}^n \gamma_{ij} = b_j & \forall j \quad (\text{column sums}) \end{array}$$

168 The 2-Wasserstein distance (W), used as the test statistic, is computed by summing the
 169 product of the optimal and the corresponding cost matrix C_{ij} over all source and target locations.

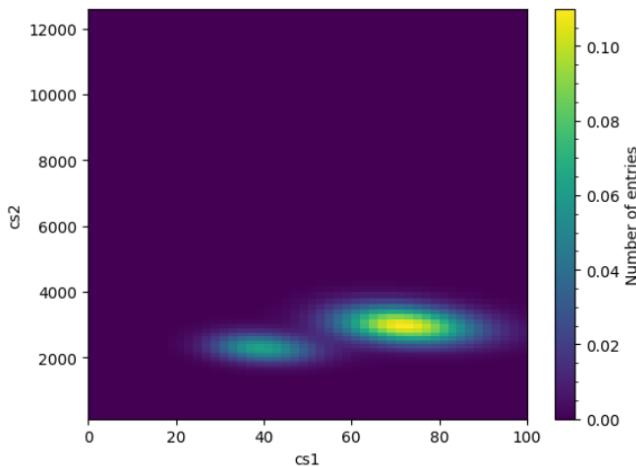
$$170 \quad W = \left(\sum_{i=1}^n \sum_{j=1}^m \gamma_{ij} C_{ij} \right)^{1/2}$$

171 This formulation enables a rigorous computation of the distance between two empirical dis-
 172 tributions, providing a measure of mis-modeling, which serves as a sensitive test statistic in our
 173 analysis.

174 5 Methodology

175 5.1 Templates

176 The templates used to model DEC (double electron capture) events were constructed from
 simulations in which the light and charge yields of the DEC events were varied. The LL and



177 *Figure 6: Example Template Plotted*

178 LM parameters define the energy deposited by events resulting from electron captures originating
 179 from the L shell and from both the L and M shells, respectively. In total, 11 distinct LL parameter
 180 values and 11 distinct LM parameter values were used across the simulations, yielding 121 unique
 181 templates spanning the combined range of these two parameters. Adjusting these parameters shifts
 182 the bulk of the simulated distribution along energy contours. Simulated events are subsequently
 183 binned and transformed into multi-dimensional histograms for further analysis.

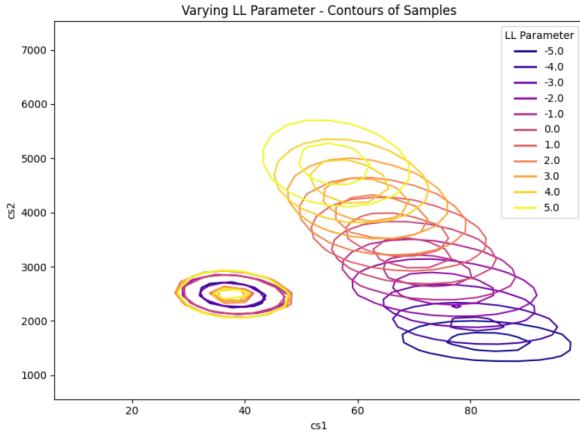


Figure 7: Varying LL parameter changes energy deposition of DEC events from LL shell.

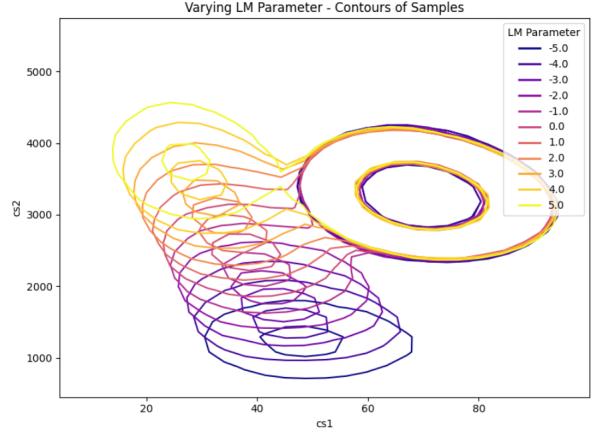


Figure 8: Varying LM parameter changes energy deposition of DEC events from L and M shells.

184 5.2 Sampling

185 A total of 13 events were randomly drawn using Monte Carlo methods for each test, corresponding
 186 to the expectation of 13 DEC events [7]. Each Monte Carlo sample was directly compared
 187 to the template from which it was generated using
 188 the Wasserstein distance. To approximate the distribution under the null hypothesis, this sampling
 189 procedure was repeated multiple times, generating
 190 a distribution of Wasserstein distances for each tem-
 191 plate. The templates are binned representations of
 192 simulated data and exhibit edges where the distri-
 193 bution is effectively truncated, limiting their ability
 194 to capture the full spread of the data as the un-
 195 derlying parameters shift. However, given the small
 196 size of each data set, the influence of edge behavior
 197 on the computed Wasserstein distance is minimal
 198 and does not significantly affect the results. Ad-
 199 ditionally, excessively large reference samples were
 200 avoided to prevent overemphasizing the discrete structure of the template. Conversely, very small
 201 samples were also avoided, as they reduce sensitivity to differences between competing hypotheses.
 202 For these reasons, comparisons were made directly between the test samples and their respective
 203 templates.

205 6 Results and Discussion

206 Figure 10 shows the statistical power of the 2-Wasserstein distance test evaluated over a grid of
 207 LL and LM parameter values, where the null hypothesis corresponds to the baseline DEC model

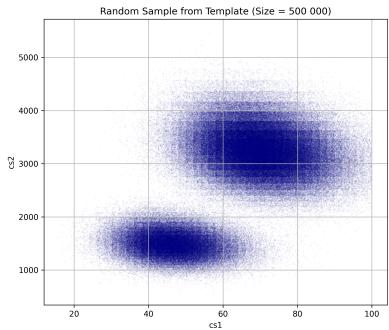


Figure 9: Large Sample (500 000) reveals binning in template and edge.

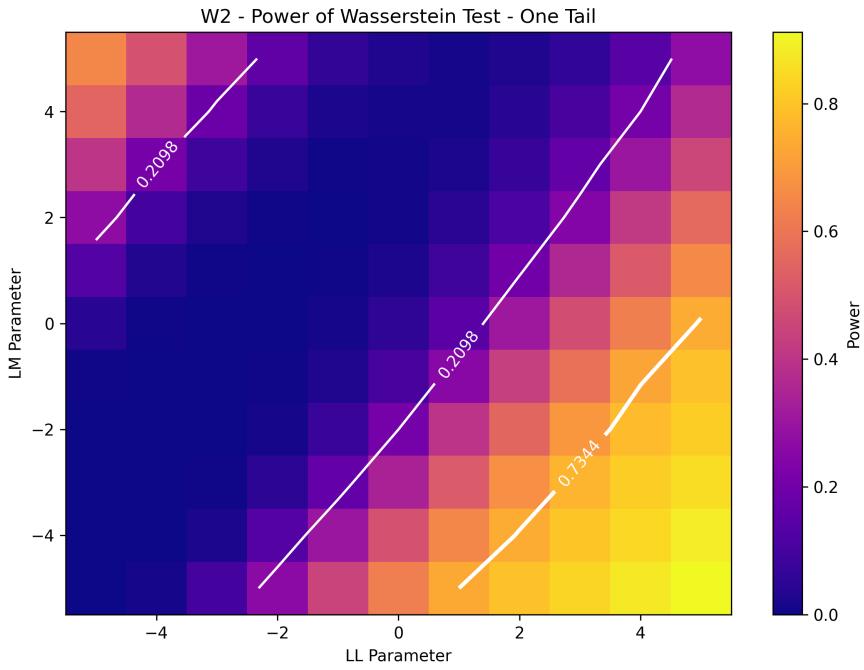


Figure 10: Power Heat Map - Most powerful when $(LL, LM) = (-5, -5)$ where power = X .

at $(LL, LM) = (0,0)$. For each parameter combination, the power represents the probability of correctly rejecting the null hypothesis when the alternative is true, as estimated via Monte Carlo simulations. The heatmap indicates that the Wasserstein test is most sensitive when either the LL or LM parameter takes on negative values, corresponding to hypotheses that deviate substantially from the null model. In these regions, the test achieves near-maximal power, demonstrating a strong ability to detect significant differences in the energy deposition characteristics of DEC events. Conversely, the power decreases markedly as the parameters approach zero or deviate only slightly from the null, suggesting that the test is less effective at distinguishing subtle model variations with the available sample size. Moreover, the power distribution is asymmetric, implying that deviations in certain directions in parameter space produce more detectable changes in the underlying distribution than others. These findings indicate that while the 2-Wasserstein distance is an effective goodness-of-fit metric for identifying pronounced mis-modeling of the DEC background, its sensitivity diminishes for small parameter shifts. This highlights the importance of sample size and suggests that complementary methods or additional data features may be necessary to improve discrimination in cases of minor deviations. Overall, this analysis confirms the utility of the Wasserstein distance for validating DEC background models within the XENONnT experiment and clarifies the parameter regimes where it is most informative.

7 Summary and Conclusions

This study demonstrated the effectiveness of the 2-Wasserstein distance as a two-dimensional, unbinned goodness-of-fit test for validating the DEC background model in the XENONnT experiment. By comparing Monte Carlo random samples to simulated templates across a range of LL and LM parameters, we evaluated the test's statistical power in detecting deviations from the baseline model. The results showed that the test is highly sensitive to large mis-modelings, particularly when the energy deposition parameters deviate significantly from the null hypothesis. However, sensitivity declines for small parameter shifts, limiting its ability to detect subtle discrepancies under the current sampling conditions. These findings establish the 2-Wasserstein distance as a powerful diagnostic tool for model validation while also revealing its limitations in

235 low-contrast scenarios.

236 Further analysis revealed that using a two-tailed test significantly improved the ability to
237 detect deviations within regions of low sensitivity, particularly within the central purple band of
238 the power heatmap. Unlike the one-tailed test, which only captures deviations in a single direction,
239 the two-tailed approach accounts for bidirectional differences and was able to identify mismatches
240 that were previously undetectable. Future work will focus on integrating this approach more
241 systematically, optimizing the sensitivity across a larger parameter space, and exploring additional
242 test statistics or dimensional representations to enhance detection capability.

243 8 Acknowledgements

244 I am grateful to Prof. Elena Aprile for her constant support, Dr. Pueh Leng Tan for her men-
245 torship, direction, and impactful discussions, and XENON Collaboration and Laboratori Nazionali
246 del Gran Sasso for hosting and supporting the project. Thank you also to the Nevis Labs REU
247 Program. This material is based upon work supported by the National Science Foundation under
248 Grant No. PHY-2349438.

249 References

250 [1] Jelle Aalbers. *Dark Matter Search with XENON1T*. PhD thesis, University of Amsterdam,
251 2018. PhD Thesis.

252 [2] E. Aprile et al. Observation of two-neutrino double electron capture in ^{124}Xe with xenon1t.
253 *Nature*, 568(7753):532–535, 2019.

254 [3] E. Aprile et al. Wimp dark matter search using a 3.1 tonne-year exposure of the xenonnt
255 experiment. *arXiv preprint*, 2025. Submitted February 2025.

256 [4] Laura Baudis. Dual-phase xenon time projection chambers for rare-event searches. *Philosophical
257 Transactions of the Royal Society A*, 382(20230083), 2023.

258 [5] Glen D. Cowan. *Statistical Data Analysis*. Oxford Science Publications. Oxford University
259 Press, Oxford, UK, 1998. Clarendon Press edition.

260 [6] Marc Hallin, Gilles Mordant, and Johan Segers. Multivariate goodness-of-Fit tests based on
261 Wasserstein distance. *arXiv preprint*, 2021. Revised version (v3) submitted 27 Jan 2021.

262 [7] Robert Hammann. Dec hypothesis test and wimp roi in xenonnt, 2024. XENON1T Internal
263 Note, accessible via XENON Wiki.

264 [8] Tudor Manole. Pot: Python optimal transport code (contributed by t. manole among others).
265 <https://github.com/PythonOT/POT>, 2025. Open-source optimal transport library, MIT
266 license.

267 [9] Tudor Manole. *Statistical Inference for Optimal Transport*. PhD thesis, Carnegie Mellon
268 University, 2025. PhD Thesis, Department of Statistics Data Science.

269 [10] Lilian Weng. Gan by example (part 1), 2017. Accessed: 2025-07-22.