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Abstract9

Dark matter is the leading explanation for the observed discrepancy between visible matter and10

the total gravitational mass in the universe. Detecting a dark matter particle would not only11

confirm its existence but also deepen our understanding of the fundamental constituents of matter12

and the structure of the universe. The XENON Collaboration is dedicated to advancing direct13

detection efforts, targeting dark matter candidates known as Weakly Interacting Massive Particles14

(WIMPs) in the mass range GeV - TeV. Achieving this goal requires effective background-signal15

discrimination. One such background arises from double electron capture (DEC) events. Models16

have been developed to describe the DEC background, and this study investigates whether the17

Wasserstein distance as a Goodness-of-Fit test is sensitive enough to evaluate model agreement18

with observed data. This study shows that the Wasserstein test has the most power to detect19

differences in hypotheses when the LL parameter is positive and the LM parameter is negative20

and the least power when the parameters are close to the null hypothesis or when the parameters21

are close to each other. Overall, it has shown to be a powerful test in some regions, but future22

work in a two tail test would be suggested to gain power specifically in the regions of greatest23

interest.24
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1 Introduction36

Astrophysical and cosmological observations, including measurements of the cosmic microwave37

background, gravitational lensing, galaxy rotation curves, and the dynamics of the Bullet Clus-38

ter, provide compelling evidence for the existence of a non-luminous, non-baryonic form of matter39

known as dark matter. This hypothetical substance does not appear to interact via the elec-40

tromagnetic force, making it extraordinarily difficult to detect directly. Its presence is inferred41

solely through gravitational effects on visible matter, radiation, and the large-scale structure of42

the universe.43

2 XENON Collaboration44

To search for direct evidence of dark matter, the XENON collaboration utilizes a dual-phase45

liquid xenon time projection chamber (TPC) designed to detect rare interactions between dark46

matter particles, particularly weakly interacting massive particles (WIMPs), and xenon nuclei.47

The detector consists of a cylindrical volume filled with liquid xenon, with a thin layer of gaseous48

xenon above it. Photomultiplier tubes (PMTs) are positioned at both the top and bottom of the49

chamber, while a cathode and anode establish an electric field throughout the detector.50

When a particle interacts with a xenon atom in the liquid phase, the collision produces prompt51

scintillation photons (referred to as S1) and ionization electrons. The electrons drift upward under52

the influence of the electric field and enter the gas phase, where they are accelerated by a stronger53

field and produce a secondary scintillation signal (S2) via electroluminescence. The signals are54

then reconstructed during data analysis and grouped together as events. Electronic recoil (ER),55

which constitutes most of the background, refers to collisions of particles with the electrons in56

the xenon atom, whereas nuclear recoil (NR) refers to collisions of a WIMP with the nucleus of57

a xenon atom. The ratio of S2 to S1 provides a means of discriminating between ER and NR, as58

ER events typically exhibit a higher ionization yield and thus a larger S2/S1 ratio.59

Despite this discrimination, certain rare background processes can mimic NR signals. Notably,60

the double electron capture (DEC) decay of xenon isotopes such as 124Xe can produce signals with61

S2/S1 ratios consistent with those of nuclear recoils. These events pose a challenge to background62

rejection efforts, as they may be misidentified as potential dark matter candidates.63

To evaluate the performance of models designed to identify double electron capture (DEC)64

events, the Wasserstein distance is employed as a goodness-of-fit test statistic. The statistical65

power of the test is then computed to quantify its sensitivity in distinguishing between competing66

hypotheses.67

3 Double Electron Capture68

Double electron capture (DEC) events deposit energy through X-ray and Auger cascades,69

resulting in a more spatially localized energy deposition than β decays of comparable energy. This70

increased localization leads to higher ionization densities and enhanced electron-ion recombination,71

which causes DEC signals to more closely resemble nuclear recoil (NR) events than typical β72

decays.73

Two-neutrino double electron capture is an extremely rare nuclear process in which two orbital74

electrons are simultaneously captured by the nucleus, converting two protons into neutrons and75

emitting two electron neutrinos.76

77

124Xe + 2e− →124 Te + 2νe + (X-rays and Auger electrons)78
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Figure 1: 124Xe captures two electrons and releases two neutrinos, x-rays, and auger electrons.

79

80

Following the capture, the resulting vacancies in the atomic shell—most commonly in the81

innermost (K) shell—are filled through a cascade of X-rays and Auger electrons, producing a82

low-energy, localized signature in the detector. While K-shell captures are more probable and83

produce more energetic, easily distinguishable signals, decays involving two electrons from the L84

shell (LL) or one each from the L and M shells (LM) result in lower-energy signatures. These85

events are of particular interest because their more localized energy deposition leads to higher86

ionization densities and enhanced recombination, causing them to resemble nuclear recoil (NR)87

events more closely.88

Because the energy deposited by LL and LM modes lies within the WIMP search region of in-89

terest (ROI), they represent an important background, with this analysis predicting approximately90

13.7 DEC events in total, occurring in an estimated LL:LM ratio of roughly 2:1, as predicted in91

the XENONnT DEC hypothesis study [7].92

4 Wasserstein Distance93

The Wasserstein distance, also known as the Earth Mover’s Distance (EMD), is a met-94

ric used to quantify the difference between two probability distributions. Intuitively, it rep-95

resents the minimum amount of "work" required to transform one distribution into another,96

Figure 2: Discrete 1D example of
EMD[10].

where "work" is defined as the product of the97

amount of probability mass moved and the distance98

it is transported.99

The p-Wasserstein distance between two proba-100

bility distributions µ and ν on a metric space (R, d)101

is defined as:102

Wp(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
Rd×Rd

d(x, y)p dγ(x, y)

)1/p

103

104

Here, Γ(µ, ν) denotes the set of all joint distributions (couplings) on X ×X with marginals µ and105

ν, and d(x, y) is the distance between points x and y.106

In this work, we focus on the cases p = 1 and p = 2. For p = 1, the Wasserstein distance107

corresponds to the Earth Mover’s Distance with cost measured by the Euclidean distance between108

points, d(x, y) = ∥x−y∥2. For p = 2, the cost function is given by the squared Euclidean distance,109

d(x, y)2 = ∥x − y∥22, which places greater emphasis on larger displacements. The choice to use110

p = 2 increases the sensitivity of the Wasserstein distance to variations.111
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Figure 3: Power values are positive showing that using p = 2 is more powerful than p = 1.
2-Wasserstein Distance will be used moving forward as it is a more sensitive test.

We apply the Wasserstein distance as a two-dimensional, unbinned goodness-of-fit test to112

compare observed data to a background model of DEC events. The test operates on empirical113

samples in two-dimensional space (R2), thereby preserving the full resolution of the data.114

Unlike classical goodness-of-fit tests such as the Kolmogorov–Smirnov or χ2 tests; its sampling115

distribution under the null hypothesis depends on the specific shape and variance of the under-116

lying distribution. To investigate this, sample pairs were drawn from a 2D Gaussian distribution117

with fixed covariance, and the Wasserstein distance was computed for each pair. This process was118

repeated 10,000 times to approximate the distribution of the test statistic under the null hypoth-119

esis. The procedure was then repeated with Gaussians having different means and covariances120

to assess whether the statistic depends on the absolute location and spread of the distribution.121

The same methodology was applied using the KS test to validate the approach and confirm its122

distribution-free behavior under analogous conditions.123

(a) (b)

Figure 4: Wasserstein (a) and Kolmogorov–Smirnov (b) test statistic distributions for 10,000
sample pairs drawn from identical 2D Gaussian distributions with fixed covariance and varying
mean. In each case, samples were drawn from the same distribution to evaluate the null distribu-
tion of the test statistic. The results confirm that both tests are insensitive to shifts in the absolute
location of the mean under H0.

Consequently, we employ a toy Monte Carlo approach to numerically approximate the distri-124

bution of the test statistic under the null hypothesis. This procedure enables the calculation of125

empirical p-values and allows us to assess the statistical significance of deviations between the126

observed data and the background model.127
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(a) (b)

Figure 5: Wasserstein (a) and Kolmogorov–Smirnov (b) test statistic distributions for 10,000
sample pairs drawn from identical 2D Gaussian distributions with fixed mean and varying covari-
ance. In each case, samples were drawn from the same distribution to evaluate the null distribution
of the test statistic. The results confirm that while the KS test is insensitive to changes in the
spread of H0, as expected, the Wasserstein distribution is easily influenced. This confirms the
Wasserstein distance in not distribution-free.

To quantify the sensitivity of the Wasserstein distance as a test statistic (W), we perform128

a one-tailed hypothesis test to compute the statistical power of detecting deviations from the129

background model. Under the null hypothesis H0, the observed data are assumed to follow the130

DEC distribution. The alternative hypothesis H1 corresponds to the mis-modeling of DEC events.131

The power of the test is the probability of correctly rejecting the null hypothesis when the132

alternative hypothesis is true. Mathematically, it is defined as:133

Power = 1− β134

135

β = PH1(W < T )136

where PH1 denotes the probability evaluated under the alternative hypothesis.137

At a 95% confidence level, the threshold T is determined from the upper tail of the null138

distribution, obtained via toy Monte Carlo simulations, such that 0.05 of the area of the pdf lies139

beyond the threshold. The power of the test is then calculated as the fraction of MC pseudo-140

experiments, or samples, generated under the alternative hypothesis for which the Wasserstein141

distance exceeds T . This approach allows us to determine the probability of correctly identifying142

a model deviation when it is present, thereby characterizing the test’s discriminating ability; it143

provides a quantitative measure of any mis-modeling of the data.144

Earth Mover’s Distance Function145

To compute the 2-Wasserstein (Earth Mover’s) distance between two empirical distributions,146

we consider two samples: a source distribution and a target distribution. Each distribution147

consists of a collection of events, where each event is characterized by a location and an associated148

probability mass.149

Let {xi}ni=1 ⊂ R2 be the locations in the source distribution with corresponding mass vector150

a ∈ Rn, and {yj}mj=1 ⊂ R2 be the locations in the target distribution with mass vector b ∈ Rm,151

such that:152

n∑
i=1

ai = 1,
m∑
j=1

bj = 1, ai, bj ≥ 0153
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Each location is defined by its cs1 and cs2 values (i.e., xi = (cs1i, cs2i)), and the mass represents154

the normalized fraction of events at that location in the dataset.155

To quantify the cost of transporting mass between the source and target distributions, we156

define a cost matrix C ∈ Rn×m, where each entry is the squared Euclidean distance between157

locations:158

Cij = ∥xi − yj∥22159

The goal is to find a transport plan γ ∈ Γ(a,b) ⊂ Rn×m, which specifies how much mass to160

move from xi to yj, that minimizes the total transport cost subject to the marginal constraints,161

where Γ(a,b) denotes the set of all valid transport plans with marginals a and b. In other words,162

each row of γ sums to the source mass ai, each column of γ sums to the target mass bj, all γij163

must be non-negative, and γ must represent the least costly path, or the optimal transport plan.164

The optimal plan is found using a linear programming algorithm, or more specifically the network165

simplex algorithm.166

Mass Constraints Non-negativity Constraint∑m
j=1 γij = ai ∀i (row sums) γij ≥ 0 ∀i, j∑n
i=1 γij = bj ∀j (column sums)

167

The 2-Wasserstein distance (W), used as the test statistic, is computed by summing the168

product of the optimal and the corresponding cost matrix Cij over all source and target locations.169

W = (
n∑

i=1

m∑
j=1

γijCij)
1/2

170

This formulation enables a rigorous computation of the distance between two empirical dis-171

tributions, providing a measure of mis-modeling, which serves as a sensitive test statistic in our172

analysis.173

5 Methodology174

5.1 Templates175

The templates used to model DEC (double electron capture) events were constructed from176

simulations in which the light and charge yields of the DEC events were varied. The LL and

Figure 6: Example Template Plotted
177
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LM parameters define the energy deposited by events resulting from electron captures originating178

from the L shell and from both the L and M shells, respectively. In total, 11 distinct LL parameter179

values and 11 distinct LM parameter values were used across the simulations, yielding 121 unique180

templates spanning the combined range of these two parameters. Adjusting these parameters shifts181

the bulk of the simulated distribution along energy contours. Simulated events are subsequently182

binned and transformed into multi-dimensional histograms for further analysis.183

Figure 7: Varying LL parameter changes
energy deposition of DEC events from LL
shell.

Figure 8: Varying LM parameter changes
energy deposition of DEC events from L and
M shells.

5.2 Sampling184

A total of 13 events were randomly drawn using Monte Carlo methods for each test, correspond-185

ing to the expectation of 13 DEC events [7]. Each Monte Carlo sample was directly compared186

Figure 9: Large Sample (500 000) reveals
binning in template and edge.

to the template from which it was generated using187

the Wasserstein distance. To approximate the dis-188

tribution under the null hypothesis, this sampling189

procedure was repeated multiple times, generating190

a distribution of Wasserstein distances for each tem-191

plate. The templates are binned representations of192

simulated data and exhibit edges where the distri-193

bution is effectively truncated, limiting their ability194

to capture the full spread of the data as the un-195

derlying parameters shift. However, given the small196

size of each data set, the influence of edge behavior197

on the computed Wasserstein distance is minimal198

and does not significantly affect the results. Ad-199

ditionally, excessively large reference samples were200

avoided to prevent overemphasizing the discrete structure of the template. Conversely, very small201

samples were also avoided, as they reduce sensitivity to differences between competing hypotheses.202

For these reasons, comparisons were made directly between the test samples and their respective203

templates.204

6 Results and Discussion205

Figure 10 shows the statistical power of the 2-Wasserstein distance test evaluated over a grid of206

LL and LM parameter values, where the null hypothesis corresponds to the baseline DEC model207

7



Figure 10: Power Heat Map - Most powerful when (LL,LM) = (-5,-5) where power = X.

at (LL, LM) = (0,0). For each parameter combination, the power represents the probability of208

correctly rejecting the null hypothesis when the alternative is true, as estimated via Monte Carlo209

simulations. The heatmap indicates that the Wasserstein test is most sensitive when either the210

LL or LM parameter takes on negative values, corresponding to hypotheses that deviate substan-211

tially from the null model. In these regions, the test achieves near-maximal power, demonstrating212

a strong ability to detect significant differences in the energy deposition characteristics of DEC213

events. Conversely, the power decreases markedly as the parameters approach zero or deviate214

only slightly from the null, suggesting that the test is less effective at distinguishing subtle model215

variations with the available sample size. Moreover, the power distribution is asymmetric, im-216

plying that deviations in certain directions in parameter space produce more detectable changes217

in the underlying distribution than others. These findings indicate that while the 2-Wasserstein218

distance is an effective goodness-of-fit metric for identifying pronounced mis-modeling of the DEC219

background, its sensitivity diminishes for small parameter shifts. This highlights the importance220

of sample size and suggests that complementary methods or additional data features may be nec-221

essary to improve discrimination in cases of minor deviations. Overall, this analysis confirms the222

utility of the Wasserstein distance for validating DEC background models within the XENONnT223

experiment and clarifies the parameter regimes where it is most informative.224

7 Summary and Conclusions225

This study demonstrated the effectiveness of the 2-Wasserstein distance as a two-dimensional,226

unbinned goodness-of-fit test for validating the DEC background model in the XENONnT ex-227

periment. By comparing Monte Carlo random samples to simulated templates across a range of228

LL and LM parameters, we evaluated the test’s statistical power in detecting deviations from229

the baseline model. The results showed that the test is highly sensitive to large mis-modelings,230

particularly when the energy deposition parameters deviate significantly from the null hypothe-231

sis. However, sensitivity declines for small parameter shifts, limiting its ability to detect subtle232

discrepancies under the current sampling conditions. These findings establish the 2-Wasserstein233

distance as a powerful diagnostic tool for model validation while also revealing its limitations in234
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low-contrast scenarios.235

Further analysis revealed that using a two-tailed test significantly improved the ability to236

detect deviations within regions of low sensitivity, particularly within the central purple band of237

the power heatmap. Unlike the one-tailed test, which only captures deviations in a single direction,238

the two-tailed approach accounts for bidirectional differences and was able to identify mismatches239

that were previously undetectable. Future work will focus on integrating this approach more240

systematically, optimizing the sensitivity across a larger parameter space, and exploring additional241

test statistics or dimensional representations to enhance detection capability.242
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