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Abstract

Dark matter is the leading explanation for the observed discrepancy between visible matter and
the total gravitational mass in the universe. Detecting a dark matter particle would not only
confirm its existence but also deepen our understanding of the fundamental constituents of matter
and the structure of the universe. The XENON Collaboration is dedicated to advancing direct
detection efforts, targeting dark matter candidates known as Weakly Interacting Massive Particles
(WIMPs) in the mass range GeV - TeV. Achieving this goal requires effective background-signal
discrimination. One such background arises from double electron capture (DEC) events. Models
have been developed to describe the DEC background, and this study investigates whether the
Wasserstein distance as a Goodness-of-Fit test is sensitive enough to evaluate model agreement
with observed data. This study shows that the Wasserstein test has the most power to detect
differences in hypotheses when the LL parameter is positive and the LM parameter is negative
and the least power when the parameters are close to the null hypothesis or when the parameters
are close to each other. Overall, it has shown to be a powerful test in some regions, but future
work in a two tail test would be suggested to gain power specifically in the regions of greatest
interest.
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1 Introduction

Astrophysical and cosmological observations, including measurements of the cosmic microwave
background, gravitational lensing, galaxy rotation curves, and the dynamics of the Bullet Clus-
ter, provide compelling evidence for the existence of a non-luminous, non-baryonic form of matter
known as dark matter. This hypothetical substance does not appear to interact via the elec-
tromagnetic force, making it extraordinarily difficult to detect directly. Its presence is inferred
solely through gravitational effects on visible matter, radiation, and the large-scale structure of
the universe.

2 XENON Collaboration

To search for direct evidence of dark matter, the XENON collaboration utilizes a dual-phase
liquid xenon time projection chamber (TPC) designed to detect rare interactions between dark
matter particles, particularly weakly interacting massive particles (WIMPs), and xenon nuclei.
The detector consists of a cylindrical volume filled with liquid xenon, with a thin layer of gaseous
xenon above it. Photomultiplier tubes (PMTs) are positioned at both the top and bottom of the
chamber, while a cathode and anode establish an electric field throughout the detector.

When a particle interacts with a xenon atom in the liquid phase, the collision produces prompt
scintillation photons (referred to as S1) and ionization electrons. The electrons drift upward under
the influence of the electric field and enter the gas phase, where they are accelerated by a stronger
field and produce a secondary scintillation signal (S2) via electroluminescence. The signals are
then reconstructed during data analysis and grouped together as events. Electronic recoil (ER),
which constitutes most of the background, refers to collisions of particles with the electrons in
the xenon atom, whereas nuclear recoil (NR) refers to collisions of a WIMP with the nucleus of
a xenon atom. The ratio of S2 to S1 provides a means of discriminating between ER and NR, as
ER events typically exhibit a higher ionization yield and thus a larger S2/S1 ratio.

Despite this discrimination, certain rare background processes can mimic NR signals. Notably,
the double electron capture (DEC) decay of xenon isotopes such as '?*Xe can produce signals with
S2/S1 ratios consistent with those of nuclear recoils. These events pose a challenge to background
rejection efforts, as they may be misidentified as potential dark matter candidates.

To evaluate the performance of models designed to identify double electron capture (DEC)
events, the Wasserstein distance is employed as a goodness-of-fit test statistic. The statistical
power of the test is then computed to quantify its sensitivity in distinguishing between competing
hypotheses.

3 Double Electron Capture

Double electron capture (DEC) events deposit energy through X-ray and Auger cascades,
resulting in a more spatially localized energy deposition than 3 decays of comparable energy. This
increased localization leads to higher ionization densities and enhanced electron-ion recombination,
which causes DEC signals to more closely resemble nuclear recoil (NR) events than typical
decays.

Two-neutrino double electron capture is an extremely rare nuclear process in which two orbital
electrons are simultaneously captured by the nucleus, converting two protons into neutrons and
emitting two electron neutrinos.

24Xe 4+ 2¢” =% Te + 21, + (X-rays and Auger electrons)
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Figure 1: ?*Xe captures two electrons and releases two neutrinos, z-rays, and auger electrons.

Following the capture, the resulting vacancies in the atomic shell—most commonly in the
innermost (K) shell—are filled through a cascade of X-rays and Auger electrons, producing a
low-energy, localized signature in the detector. While K-shell captures are more probable and
produce more energetic, easily distinguishable signals, decays involving two electrons from the L
shell (LL) or one each from the L. and M shells (LM) result in lower-energy signatures. These
events are of particular interest because their more localized energy deposition leads to higher
ionization densities and enhanced recombination, causing them to resemble nuclear recoil (NR)
events more closely.

Because the energy deposited by LL and LM modes lies within the WIMP search region of in-
terest (ROI), they represent an important background, with this analysis predicting approximately
13.7 DEC events in total, occurring in an estimated LL:LM ratio of roughly 2:1, as predicted in
the XENONnT DEC hypothesis study [7].

4 Wasserstein Distance

The Wasserstein distance, also known as the Earth Mover’s Distance (EMD), is a met-
ric used to quantify the difference between two probability distributions. Intuitively, it rep-
resents the minimum amount of "work" required to transform one distribution into another,
where "work" is defined as the product of the
amount of probability mass moved and the distance
it is transported.

The p-Wasserstein distance between two proba-
bility distributions p and v on a metric space (R, d)
is defined as:

Step [0] Step [1] Step [2] Step [3]
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Here, I'(11, ) denotes the set of all joint distributions (couplings) on X x X with marginals p and
v, and d(x,y) is the distance between points x and y.

In this work, we focus on the cases p = 1 and p = 2. For p = 1, the Wasserstein distance
corresponds to the Earth Mover’s Distance with cost measured by the Euclidean distance between
points, d(z,y) = || —y||2. For p = 2, the cost function is given by the squared Euclidean distance,
d(z,y)* = ||z — y||3, which places greater emphasis on larger displacements. The choice to use
p = 2 increases the sensitivity of the Wasserstein distance to variations.
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Figure 3: Power values are positive showing that using p = 2 is more powerful than p = 1.
2-Wasserstein Distance will be used moving forward as it is a more sensitive test.

We apply the Wasserstein distance as a two-dimensional, unbinned goodness-of-fit test to
compare observed data to a background model of DEC events. The test operates on empirical
samples in two-dimensional space (R?), thereby preserving the full resolution of the data.

Unlike classical goodness-of-fit tests such as the Kolmogorov—Smirnov or x? tests; its sampling
distribution under the null hypothesis depends on the specific shape and variance of the under-
lying distribution. To investigate this, sample pairs were drawn from a 2D Gaussian distribution
with fixed covariance, and the Wasserstein distance was computed for each pair. This process was
repeated 10,000 times to approximate the distribution of the test statistic under the null hypoth-
esis. The procedure was then repeated with Gaussians having different means and covariances
to assess whether the statistic depends on the absolute location and spread of the distribution.
The same methodology was applied using the KS test to validate the approach and confirm its
distribution-free behavior under analogous conditions.

W2 distribution - varying mean; alpha = 0.05 KS Test Distribution Varying Means; alpha = 0.05
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Figure 4: Wasserstein (a) and Kolmogorov-Smirnov (b) test statistic distributions for 10,000
sample pairs drawn from identical 2D Gaussian distributions with fived covariance and varying
mean. In each case, samples were drawn from the same distribution to evaluate the null distribu-
tion of the test statistic. The results confirm that both tests are insensitive to shifts in the absolute
location of the mean under Hy.

Consequently, we employ a toy Monte Carlo approach to numerically approximate the distri-
bution of the test statistic under the null hypothesis. This procedure enables the calculation of
empirical p-values and allows us to assess the statistical significance of deviations between the
observed data and the background model.
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Figure 5: Wasserstein (a) and Kolmogorov-Smirnov (b) test statistic distributions for 10,000
sample pairs drawn from identical 2D Gaussian distributions with fived mean and varying covari-
ance. In each case, samples were drawn from the same distribution to evaluate the null distribution
of the test statistic. The results confirm that while the KS test is insensitive to changes in the
spread of Hy, as expected, the Wasserstein distribution is easily influenced. This confirms the
Wasserstein distance in not distribution-free.

To quantify the sensitivity of the Wasserstein distance as a test statistic (W), we perform
a one-tailed hypothesis test to compute the statistical power of detecting deviations from the
background model. Under the null hypothesis Hy, the observed data are assumed to follow the
DEC distribution. The alternative hypothesis H; corresponds to the mis-modeling of DEC events.

The power of the test is the probability of correctly rejecting the null hypothesis when the
alternative hypothesis is true. Mathematically, it is defined as:

Power =1— 73

ﬁ: PHl(W < T)

where Py, denotes the probability evaluated under the alternative hypothesis.

At a 95% confidence level, the threshold T is determined from the upper tail of the null
distribution, obtained via toy Monte Carlo simulations, such that 0.05 of the area of the pdf lies
beyond the threshold. The power of the test is then calculated as the fraction of MC pseudo-
experiments, or samples, generated under the alternative hypothesis for which the Wasserstein
distance exceeds T'. This approach allows us to determine the probability of correctly identifying
a model deviation when it is present, thereby characterizing the test’s discriminating ability; it
provides a quantitative measure of any mis-modeling of the data.

Earth Mover’s Distance Function

To compute the 2-Wasserstein (Earth Mover’s) distance between two empirical distributions,
we consider two samples: a source distribution and a target distribution. Each distribution
consists of a collection of events, where each event is characterized by a location and an associated
probability mass.

Let {x;}"_; C R? be the locations in the source distribution with corresponding mass vector
a € R", and {y;}7-, C R? be the locations in the target distribution with mass vector b € R™,
such that:

m

iai:l’ ijzl, ai,ijO
i=1 Jj=1



154

155

156

157

159

160

161

162

163

164

165

166

167

170

171

172

173

174

175

176

177

Each location is defined by its cs1 and cs2 values (i.e., z; = (csl;, ¢s2;)), and the mass represents
the normalized fraction of events at that location in the dataset.

To quantify the cost of transporting mass between the source and target distributions, we
define a cost matrix C' € R"*™  where each entry is the squared Euclidean distance between
locations:

Cij = |lzi — 5113

The goal is to find a transport plan v € I'(a,b) C R™™ which specifies how much mass to
move from x; to y;, that minimizes the total transport cost subject to the marginal constraints,
where I'(a, b) denotes the set of all valid transport plans with marginals a and b. In other words,
each row of 7 sums to the source mass a;, each column of v sums to the target mass b, all v;;
must be non-negative, and v must represent the least costly path, or the optimal transport plan.
The optimal plan is found using a linear programming algorithm, or more specifically the network
simplex algorithm.

Mass Constraints Non-negativity Constraint
> i =a; Vi (row sums) vi; >0 Vi, j
Yoo vij =b; Vj (column sums)
The 2-Wasserstein distance (W), used as the test statistic, is computed by summing the
product of the optimal and the corresponding cost matrix Cj; over all source and target locations.

W= > 70"
i=1 j=1

This formulation enables a rigorous computation of the distance between two empirical dis-
tributions, providing a measure of mis-modeling, which serves as a sensitive test statistic in our
analysis.

5 Methodology

5.1 Templates
The templates used to model DEC (double electron capture) events were constructed from

simulations in which the light and charge yields of the DEC events were varied. The LL and
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Figure 6: Example Template Plotted
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LM parameters define the energy deposited by events resulting from electron captures originating
from the L shell and from both the L and M shells, respectively. In total, 11 distinct LL parameter
values and 11 distinct LM parameter values were used across the simulations, yielding 121 unique
templates spanning the combined range of these two parameters. Adjusting these parameters shifts
the bulk of the simulated distribution along energy contours. Simulated events are subsequently
binned and transformed into multi-dimensional histograms for further analysis.

Varying LL Parameter - Contours of Samples Varying LM Parameter - Contours of Samples
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Figure 7: Varying LL parameter changes
energy deposition of DEC events from LL
shell.

Figure 8: Varying LM parameter changes
energy deposition of DEC events from L and
M shells.

5.2 Sampling

A total of 13 events were randomly drawn using Monte Carlo methods for each test, correspond-
ing to the expectation of 13 DEC events [7]. Each Monte Carlo sample was directly compared
to the template from which it was generated using
the Wasserstein distance. To approximate the dis-
tribution under the null hypothesis, this sampling
procedure was repeated multiple times, generating
a distribution of Wasserstein distances for each tem-
plate. The templates are binned representations of
simulated data and exhibit edges where the distri-
bution is effectively truncated, limiting their ability
to capture the full spread of the data as the un-
derlying parameters shift. However, given the small
size of each data set, the influence of edge behavior
on the computed Wasserstein distance is minimal
and does not significantly affect the results. Ad-
ditionally, excessively large reference samples were
avoided to prevent overemphasizing the discrete structure of the template. Conversely, very small
samples were also avoided, as they reduce sensitivity to differences between competing hypotheses.
For these reasons, comparisons were made directly between the test samples and their respective
templates.

Random Sample from Template (Size = 500 000)

3000

Figure 9: Large Sample (500 000) reveals
binning in template and edge.

6 Results and Discussion

Figure[10|shows the statistical power of the 2-Wasserstein distance test evaluated over a grid of
LL and LM parameter values, where the null hypothesis corresponds to the baseline DEC model

7
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Figure 10: Power Heat Map - Most powerful when (LL,LM) = (-5,-5) where power = X.

at (LL, LM) = (0,0). For each parameter combination, the power represents the probability of
correctly rejecting the null hypothesis when the alternative is true, as estimated via Monte Carlo
simulations. The heatmap indicates that the Wasserstein test is most sensitive when either the
LL or LM parameter takes on negative values, corresponding to hypotheses that deviate substan-
tially from the null model. In these regions, the test achieves near-maximal power, demonstrating
a strong ability to detect significant differences in the energy deposition characteristics of DEC
events. Conversely, the power decreases markedly as the parameters approach zero or deviate
only slightly from the null, suggesting that the test is less effective at distinguishing subtle model
variations with the available sample size. Moreover, the power distribution is asymmetric, im-
plying that deviations in certain directions in parameter space produce more detectable changes
in the underlying distribution than others. These findings indicate that while the 2-Wasserstein
distance is an effective goodness-of-fit metric for identifying pronounced mis-modeling of the DEC
background, its sensitivity diminishes for small parameter shifts. This highlights the importance
of sample size and suggests that complementary methods or additional data features may be nec-
essary to improve discrimination in cases of minor deviations. Overall, this analysis confirms the
utility of the Wasserstein distance for validating DEC background models within the XENONnT
experiment and clarifies the parameter regimes where it is most informative.

7 Summary and Conclusions

This study demonstrated the effectiveness of the 2-Wasserstein distance as a two-dimensional,
unbinned goodness-of-fit test for validating the DEC background model in the XENONnT ex-
periment. By comparing Monte Carlo random samples to simulated templates across a range of
LL and LM parameters, we evaluated the test’s statistical power in detecting deviations from
the baseline model. The results showed that the test is highly sensitive to large mis-modelings,
particularly when the energy deposition parameters deviate significantly from the null hypothe-
sis. However, sensitivity declines for small parameter shifts, limiting its ability to detect subtle
discrepancies under the current sampling conditions. These findings establish the 2-Wasserstein
distance as a powerful diagnostic tool for model validation while also revealing its limitations in
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low-contrast scenarios.

Further analysis revealed that using a two-tailed test significantly improved the ability to
detect deviations within regions of low sensitivity, particularly within the central purple band of
the power heatmap. Unlike the one-tailed test, which only captures deviations in a single direction,
the two-tailed approach accounts for bidirectional differences and was able to identify mismatches
that were previously undetectable. Future work will focus on integrating this approach more
systematically, optimizing the sensitivity across a larger parameter space, and exploring additional
test statistics or dimensional representations to enhance detection capability.
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