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Abstract

Neutrino physics is a field with many open questions and mysteries. Among these is the Mini-
BooNE Low Energy Excess where a 4.8σ excess of low energy, single electromagnetic shower
events was reported. To address this anomaly, another detector, MicroBooNE, was constructed
in the same beam line that could distinguish between electron-induced and photon-induced elec-
tromagnetic showers. Under a single photon-induced interpretation of the MiniBooNE anomaly,
NCπ0 events with a missed or mis-reconstructed shower create a near irreducible background to
true single-photon events. This paper presents a new method to identify single showers caused
by NCπ0 decay with one Out-of-TPC shower in MicroBooNE using scintillation light measured
by the photomultiplier tubes. Here we show that light variables, including PMT-by-PMT photo-
electron counts and nanosecond timing, can improve selection of NCπ0s decay with photons that
pair convert outside of the TPC beyond deposited charge and reconstructed vertex information.
This directly supports adding light-based information into second shower identification programs
and the potential application of scintillation light measurements in downstream analyses in Liquid
Argon Time Projection Chambers.
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1 Introduction

1.1 Neutrinos

Neutrinos are fundamental particles that only interact via the weak force and gravity. This
makes neutrino interactions incredibly rare, and, as such, they typically move through matter
undetected and unimpeded. There are three neutrino flavors, named based on the corresponding
charged lepton with which they interact: the electron neutrino, muon neutrino, and tau neutrino.
Though they were long believed to be massless, observations of neutrino oscillation between flavor
states in the Super-Kamiokande experiment in 1998 demonstrated that they must have a nonzero
mass [10]. Despite their rare interactions, neutrinos are the most abundant massive particles in
the universe [1]. The observed energy of neutrinos spans many orders of magnitude, from solar
neutrinos with energies around 100 keV to a recent observation of a 220 PeV neutrino by the
KM3NeT observatory [15].

There remain many open questions in neutrino physics, and numerous active experiments are
working to resolve them. One such question arises from an unexplained excess of electron-like
events observed in the MiniBooNE experiment, which may hint at physics Beyond the Stan-
dard Model (BSM). To investigate this anomaly, the Micro Booster Neutrino Experiment (Mi-
croBooNE) was constructed, leveraging a different detection technology to improve event recon-
struction and particle identification. This report focuses on a novel method developed within
the MicroBooNE framework to reject single photon background events by analyzing patterns in
photomultiplier tube (PMT) light signals.

1.2 MiniBooNE Low Energy Excess

MiniBooNE was a Cherenkov detector in the Booster Neutrino Beam (BNB) at Fermilab
National Laboratory. The collaboration reported a 4.8σ excess of "electron-like" events in the
neutrino energy range between 200 and 475 MeV [14] (Figure 1). This anomalous observation
is commonly referred to as the MiniBooNE Low Energy Excess (LEE). The term "electron-like"
refers to the topology of events that produce a single Cherenkov ring; however, the detector was
not capable of distinguishing electrons from single photons, which can pair-produce into e+/e−

pairs. Due to its high significance, the LEE has prompted numerous theoretical interpretations,
ranging from Standard Model (SM) explanations to those involving Beyond the Standard Model
(BSM) physics. Experimental improvements were necessary to determine whether the observed
electromagnetic showers were initiated by photons or electrons.

2 MicroBooNE

The MicroBooNE experiment is a Liquid Argon Time Projection Chamber (LArTPC) with an
active volume of 2.6 × 2.3 × 10.4 m3, located at Fermilab National Laboratory. Since beginning
data collection in October 2015, one of its primary physics goals has been to investigate the
4.8σ LEE observed in MiniBooNE. LArTPC technology was selected for its superior ability to
distinguish between electrons and photons—an important limitation of MiniBooNE. A photo of
the MicroBooNE detector setup is shown in Figure 2.

The BNB provides the neutrino flux used by both MiniBooNE and MicroBooNE, with both
detectors located on-axis at a baseline of approximately 500 m. At this location, the beam is
primarily composed of νµ neutrinos, with a peak energy around 700 MeV.
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Figure 1: Distribution of EQE
ν in MiniBooNE with expected SM processes (colored histograms)

and data. This represents an excess with overall significance 4.8σ in both neutrino and antineu-
trino mode [7].

Figure 2: The MicroBooNE LArTPC housed within cylindrical cryostat [2].

2.1 Liquid Argon Time Projection Chambers

Many experiments use liquid noble gases to reconstruct the paths of weakly interacting parti-
cles, as these media are dense and interact minimally with drifting electrons [11]. Liquid argon is
particularly well-suited for neutrino detection because: (1) it is abundant in Earth’s atmosphere,
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(2) it scintillates more brightly and at longer wavelengths than other noble gases, and (3) it has
a relatively high boiling point [6].

Figure 3 shows a schematic of how LArTPCs record the three-dimensional paths of particles.
As charged particles travel through the detector, they ionize argon atoms along their path. An
applied electric field causes the resulting free electrons to drift toward three wire planes. By
measuring the timing and induced voltages across the wires, a full 3D reconstruction of the
event’s spatial and calorimetric information can be obtained.

To convincingly address the MiniBooNE LEE, MicroBooNE must distinguish between electron-
induced and photon-induced electromagnetic showers. LArTPCs enable this distinction because
photons are invisible until they convert into e+e− pairs after traveling an average of 25 cm. This
creates a visible gap between the interaction vertex and the start of the shower, which is not
present for primary electrons. Additionally, photons typically deposit energy at a rate (dE/dX)
corresponding to two minimum ionizing particles at the shower start, in contrast to one for
electrons [11].

Figure 3: Demonstration of LArTPC technology [13]. An incoming neutrino interacts within the
detector and releases energetic charged particles whose paths are reconstructed by the three wire
plane waveforms.

2.2 Scintillation Light

As argon atoms are ionized, they form excited dimers that decay by emitting vacuum ultra-
violet (VUV) scintillation light [6]. This light is produced isotropically and travels at the speed
of light in the medium (∼134,000,000 m/s), which is significantly faster than the drift speed of
the ionized electrons (∼1,140 m/s) [8] [18]. The 32-PMT system in MicroBooNE (see Figure 5)
detects this light and provides a signal (or “flash”) that is used to timestamp the event relative
to the beam spill. These flashes can also provide spatial constraints and are valuable for event
reconstruction and background rejection. MicroBooNE’s LArTPC contains 90 tonnes of liquid
argon in its active volume and is housed in a cryostat filled with 170 tonnes of liquid argon in
total [6]. Though interactions occurring in the inactive volume do not yield any charge informa-
tion, they do emit detectable scintillation light. Notably, since they are not subject to the electric
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field, there is 100% recombination of the ions and scintillation light is even more intense. (see
Figure 4).

Figure 4: Integrated light map across all PMTs in the MicroBooNE detector [11]. The field cage
is notably transparent, allowing visibility light from both active and inactive volumes.

Figure 5: Schematic of the MicroBooNE light detection system, consisting of 32 8-inch Hama-
matsu 5912-02MOD PMTs mounted behind the anode to collect VUV scintillation light [6].

2.3 Event Simulation and Reconstruction

The entirety of the analysis presented here is performed on simulated data. This simulation
reflects the final product of a detailed and well-established chain of tools that model the Micro-
BooNE detector response to neutrino interactions. The goal of this pipeline is to produce synthetic
detector output that is as realistic as possible, such that it can be processed and analyzed in the
same way as real detector data.

The simulation begins with the Booster Neutrino Beam (BNB), whose flux is modeled based on
proton interactions with a beryllium target and subsequent meson decays. Neutrino interactions
within the LArTPC and surrounding dirt are then generated using GENIE, a widely-used Monte
Carlo generator for neutrino-nucleus interactions. GENIE simulates a broad variety of interac-
tion modes including quasi-elastic scattering, resonance production, and deep inelastic scattering,
each governed by underlying nuclear models and cross-section data [11]. Once the neutrino in-
teraction has been generated, the resulting particles are propagated through the detector volume
using GEANT4. GEANT4 models the particle transport through liquid argon, simulating all
relevant physical processes such as energy loss, scattering, secondary particle production, and
photon generation (both ionization and scintillation). This step includes detailed modeling of the
detector geometry and materials to faithfully reproduce how particles would interact with the
actual MicroBooNE detector.

The detector response is then simulated, including the generation and drift of ionization elec-
trons, the readout of wire signals, and the collection of scintillation light at photomultiplier tubes
(PMTs). At this stage, the synthetic data is ideally indistinguishable from raw data taken in the
detector, allowing for identical downstream processing. Reconstruction is then performed using
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the same algorithms applied to real data, with the addition that truth-level information (MC
truth) is retained for validation and training purposes. MicroBooNE utilizes multiple reconstruc-
tion paradigms, most notably Pandora and Wire-Cell.

Pandora is a modular pattern recognition framework that operates primarily on 2D wire plane
data, building up 3D objects such as tracks and showers through hierarchical algorithms. It is
well-suited to reconstructing complex topologies, especially those with high spatial separation
between particles [17].

Wire-Cell is a tomographic 3D reconstruction algorithm that uses signal timing and deconvo-
lution techniques to directly reconstruct charge distributions in three dimensions. It emphasizes
a physically motivated picture of charge deposition and is particularly useful for imaging dense
or overlapping topologies [19].

While both reconstruction approaches aim to interpret the same physical event, they often
yield complementary results. Their outputs include overlapping and unique sets of variables,
offering diverse metrics for evaluating event topology and classification. This analysis draws from
both frameworks.

3 Photon Interpretation of LEE

As previously discussed, the excess of electron-like events observed in MiniBooNE can be in-
terpreted as either true electrons or photons, as well as more exotic final states predicted by BSM
theories. This ambiguity arises from the detector’s inability to distinguish between electromag-
netic showers initiated by electrons and those initiated by photons. Understanding the nature
of these events is essential to determining whether the excess originates from a SM process or
something more novel.

Neutrino interactions are broadly categorized as either Charged Current (CC) or Neutral Cur-
rent (NC). CC interactions are mediated by the charged W± bosons and result in the production
of charged leptons in the final state [16]. In contrast, NC interactions are mediated by the neu-
tral Z0 boson and leave the neutrino flavor unchanged; they only transfer energy, momentum, or
angular momentum to the target nucleus or outgoing particles [16].

Final-state photons, as visible by MiniBooNE, can be produced in both CC and NC interac-
tions. For example, a νµ CC interaction producing one photon and a muon with kinetic energy <
100 MeV appears as a single photon within a Cherenkov detector [4]. In NC interactions, photon
production can be a result of coherent photon emission or decay of excited nuclear states [4].
While true single-photon production is relatively rare in SM neutrino interactions, these pro-
cesses must be accurately modeled to distinguish between expectations and possible BSM signals
in single-photon searches.

3.1 Past MicroBooNE Searches

MicroBooNE has performed several dedicated searches to test whether the MiniBooNE excess
could be due to a true single-photon signal.

One such hypothesis is that the excess originates from an enhanced rate of radiative ∆ res-
onance decays, a known SM process in which a neutrino induces an NC interaction producing a
∆ baryon that subsequently decays to a nucleon and a photon. A rate increase of approximately
3.18x in this process would account for the MiniBooNE anomaly. However, this interpretation
was excluded at the 94.4% confidence level using MicroBooNE data [3]. Notably, this analysis
focused on final states with a photon and a visible proton; topologies that produced only a single
photon and no proton were less constrained and therefore not fully excluded.

In addition, MicroBooNE conducted a targeted search for neutral-current coherent production
of a single photon. In this process, a neutrino coherently scatters off the entire argon nucleus and

6



emits a single photon with no accompanying vertex activity. A dedicated selection was developed
to isolate events with a single photon-like shower and no other visible particles. This search
also failed to find a statistically significant excess, but its sensitivity was limited due to the low
expected cross-section of such interactions [5].

Finally, an inclusive search was conducted to identify all single-photon candidate events,
regardless of their underlying production mechanism. This analysis aimed to be as model-
independent as possible, capturing both SM and potential BSM sources of single-photon signals.
The study focused on events with no detectable protons and electromagnetic shower energies be-
low 600 MeV—a region of phase space where an excess was observed with a local significance of
2.2σ relative to the constrained GENIE prediction [4]. Despite this excess, no single process was
found to account for the data, and no simple or complete explanation has yet been identified.

3.2 π0 Background

All of the single-photon analyses described above share the same dominant background: NC
π0 → γγ. This process is a well-understood source of photon final state neutrino interactions,
but they occur several hundred times as often as known SM single-photon producers. Depending
on kinematics and detector performance, the two photon decay products may instead appear as
a single electromagnetic shower or be misreconstructed entirely. This makes NCπ0 production a
major background to any single-photon or electron-like signal. There are four primary reasons
why one of the two photons from π0 decay may go undetected (see Figure 6):

1. A π0 decays within the active volume but one photon fails to pair convert before exiting.

2. A π0 decays outside of the active volume and only one photon enters and pair converts.

3. One photon converts too close to the other and the two showers are approximately collinear,
resulting in the reconstruction of a single merged shower.

4. One photon has too little energy to produce a detectable shower.

Because these π0 events are much more common than true single-photon events, they represent
a very challenging background in many analyses. Events with only one reconstructed shower can
be indistinguishable from genuine single-photon events, particularly in the absence of a proton
track indicating vertex activity. In some cases, overlapping Cherenkov rings led to a π0 appearing
as a single ring, mimicking an electron-like event. This reinforces the importance of rejecting or
properly modeling NCπ0 backgrounds in any explanation of the LEE.

4 Using Light to Identify Out-of-TPC Activity

The scintillation light produced as ionizing particles traverse the liquid argon in a LArTPC
provides a compelling supplementary signal to traditional charge-based reconstruction. PMTs
placed behind the anode wire planes are sensitive to this scintillation light and offer several
advantages for identifying complex event topologies:

1. Sensitivity to activity outside the TPC: PMTs can detect scintillation light from
particles that interact or propagate outside the active charge collection region, including
photons converting in the inactive liquid argon volume. See Fig. 4 for modeled visibility in
MicroBooNE.

2. High-resolution timing and spatial correlation: Individual photoelectron (PE) counts
and nanosecond-scale timing from each PMT can both corroborate charge-based reconstruc-
tion but also provide independent and high-precision information about energy deposition
patterns and event timing.

7



Figure 6: Common scenarios in which a NCπ0 event is reconstructed as a single photon [12].

In this study, we explore the use of PMT information to identify activity occurring outside the
TPC that may not be captured in the charge-based reconstruction alone, particularly focusing on
the challenge of neutral current π0 backgrounds in single-photon searches.

4.1 Signal and Background Definition

The most interesting subset of π0 events for a light-based rejection study are those in which one
photon pair converts within the active volume and one photon pair converts outside of the active
volume. These backgrounds are particularly challenging because they mimic a single-photon signal
in the TPC. However, since the second photon still travels through liquid argon, it can potentially
pair produce in the inactive volume and emit scintillation light even if no corresponding ionization
trail is recorded. This provides an opportunity to use PMT light information to tag otherwise
invisible activity.

To focus on this case, we restrict our sample to events that are reconstructed as fully contained,
meaning Wire-Cell reconstructed no particle track near detector boundaries. This further biases
the background to appear signal-like and makes the challenge of rejecting it more realistic.

Background Definition: In our study, we define the background as NC π0 events where
the event is reconstructed as fully contained in the TPC, and, based on truth-level information,
one photon from the π0 pair converts outside of the TPC volume and one pair converts within
the TPC volume. These are labeled as FC Missed Shower events (see Figure 7b). In most cases
examined here, the missed photon is the one that exits the TPC after a π0 decays inside.

Signal Definition: For comparison, we define signal-like events as π0 interactions where both
photon-induced showers are contained and reconstructed within the TPC. These are labeled as
FC No Missed Shower events (see Figure 7a). While not true single photons, these are used here
as a proxy because they are similar in energy and kinematics to the missed-photon background
but lack the out-of-TPC component we aim to tag. This strategy allows us to develop and test
light-based rejection methods using available data, with the longer-term goal of applying similar
methods to genuine single-photon candidate samples once the appropriate simulation processing
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is complete.

(a) FC No Missed Shower (signal-like) (b) FC Missed Shower (background)

Figure 7: Event topology diagrams illustrating the signal-like and background definitions used in
this study. (a) A fully contained π0 event where both photons are reconstructed in the TPC. (b)
A π0 event where one photon is missed due to converting outside the TPC, mimicking a single-
photon signal. Images adapted from [12].

4.2 Flash Viewer

To separate signal from background in an efficient and understandable way, we desire one-
dimensional values assigned to each event that will hopefully lead to separation between signal
and background. To identify such values among lots of event-wide and per-PMT light-based
variables (Appendix A), we create a light-informed event display, or Flash Viewer. The PMTs
lie in the ZY plane which is parallel to the beam direction (positive Z) and perpendicular to the
drift direction (negative X). These viewers have 7 main features visible in Figure 8:

1. Measured PMT-by-PMT PE for Wire-Cell (orange circles in top panel) and Pandora (red
circles in top panel). Wire-Cell only stores per-PMT information above some threshold.
Total PE for each reconstruction is in the plot title.

2. Wire-Cell per-PMT time away from event median (small blue text within PMTs). This is
how event time is decided, so this value is essentially tmeasured− texpected using simple models
of particle propagation times and scintillation light travel times.

3. Predicted PMT-by-PMT PE based on TPC-visible charge for Pandora (blue circles in top
panel). Wire-Cell predicted per-PMT information is not stored for this sample set. Total
PE for each reconstruction is in the plot title.

4. Relative difference between Pandora measured and predicted light on a PMT-by-PMT basis
according to

si =
measi
meastot

− predi

predtot

(1)

where s = circle radius. Yellow indicates a positive radius (more measured than predicted
light) and purple indicates a ‘negative’ radius. Total difference between measured and
prediction is in the plot title.
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5. True information about the neutrino interaction including true location and direction of
each primary photon and vertex.

6. Reconstructed Wire-Cell reconstructed 3D spacepoints and neutrino interaction vertex.

7. A ZX view of the event with associated neutrino interaction information and TPC bound-
aries.

Figure 8: Light variables compiled into a handscanning framework.

4.3 Using Per-PMT Information to Make One-Dimensional Cuts

Per-PMT variables of interest contain as many as 32 values per event, however we aim to
have one numerical value to apply a one-dimensional cut between signal and background. The
most simple way to reduce the dimensionality of these variables is to simply sum the number or
value of positive and negative values in a variable such as the net difference (purple and yellow in
Figure 8). Since we are interested in the spatial resolution capacity of the PMT array, weighted
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sums by Y and Z location of the PMTs also give some indication of the average location of the
event and an independent measure of the interaction vertex.

To push this concept to a slightly higher level, we can look at not only the average location of
a light observation, but also the spatial separation or dipole

p⃗ =
∑
i

qir⃗i

where p⃗ is the dipole moment vector, qi is a value associated with PMTi, and r⃗i is the position
vector between PMTi and the mean PMT position. Because the PMTs are almost perfectly
coplanar in ZY, the x dimension was not considered in any dipole-based variables.

From this dipole vector, two useful quantities can be extracted: its magnitude and its angle
relative to a reference direction (typically the vertical or horizontal axis of the detector). The
magnitude |p⃗| encodes how strongly asymmetric the light distribution is around the mean PMT
location. The angle θ = tan−1(pz/py) describes the orientation of this asymmetry and can help
distinguish events that preferentially emit light along certain directions.

See the complete list of defined variables in Appendix B.

5 Boosted Decision Trees

To compile light-based information and efficiently distinguish signal from background, we
trained a machine learning model using XGBoost (Extreme Gradient Boosting), a high-performance
implementation of gradient-boosted decision trees (BDTs). BDTs are robust classification algo-
rithms that combine many weak learners—in this case, shallow decision trees—to form a strong
ensemble classifier. These weak learners are individually simple models, but when combined
through the boosting process, they produce highly accurate predictions. Each decision tree clas-
sifies events as signal or background by applying a sequence of cuts in the input variable space,
effectively partitioning the feature space into regions associated with different classes.

After training each tree, the algorithm focuses on misclassified events by increasing their
weights and fitting the next tree to the residuals—the difference between predicted and true
labels. This sequential boosting process continues iteratively, with each tree learning from the
mistakes of the previous ones. The result is an ensemble of trees, each contributing to a refined
and more accurate model. XGBoost is especially effective due to its efficiency, scalability, and
ability to handle missing data and complex feature interactions, making it well-suited for event
classification in neutrino physics with such large measurement datasets with low overall event
count.

5.1 Hyperparameter Tuning

This method is particularly effective for learning from high-dimensional, correlated variables,
such as those derived from light-based observables in the detector. In practice, the performance of
a BDT depends critically on the choice of hyperparameters, which govern how the model learns.
These include the depth and number of trees, the learning rate, the regularization terms, and
how the training data is sampled. Tuning these values properly ensures a balance between model
expressiveness and generalization power, preventing both underfitting and overfitting.

The hyperparameters used in this analysis were selected to optimize performance while main-
taining model stability. Values were determined through Bayesian optimization using subsets of
the training sample for both parameter selection and validation. This method explores the hyper-
parameter domain space to probabilistically determine the values that yield minimum loss, taking
into account previous iterations in each selection [9]. The final configuration, listed in Table 1,
reflects a model capable of capturing subtle signal-background differences without overtraining to
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statistical noise. In this way, hyperparameter tuning plays a crucial role in tailoring the BDT to
the specific characteristics of light-based features in the data.

Table 1: XGBoost hyperparameters used in this study.

Parameter Value Description

colsample_bytree 0.905 Fraction of features sampled for each tree to prevent over-
fitting

gamma 7.72 Minimum loss reduction required to make a further parti-
tion on a leaf node

learning_rate 0.052 Shrinks the contribution of each tree (learning rate)
max_depth 4 Maximum depth of trees to control model complexity
min_child_weight 3 Minimum sum of instance weights needed in a child node

to reduce overfitting
n_estimators 200 Total number of boosting rounds (trees in the ensemble)
reg_alpha 42 L1 regularization term to encourage sparsity in weights
reg_lambda 0.47 L2 regularization term to reduce model complexity

6 Results

The light-based BDT demonstrates strong discrimination between signal (FC No Missed Shower)
and background (FC Missed Shower) events, surpassing any hand-tuned cuts applied to individ-
ual input variables. The final BDT score distribution is shown in Figure 9, with a threshold of
0.5 yielding signal efficiency of 64.1% and background rejection: 78.17%.

Figure 9: BDT score distributions for signal (FC No Missed Shower) and background (FC
Missed Shower) events in the light-based model. A threshold of 0.5 results in a signal efficiency
of 64.10% and a background rejection of 78.17%.

To evaluate whether the light-based model merely learns features of the charge activity in the
TPC, such as proximity to the TPC edge or energy deposition, we compare it to a BDT trained
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on reconstructed neutrino vertex and deposited energy variables. These background events, even
without any explicit modeling of missed light, tend to deposit less energy and are more likely to
originate near detector edges.

Figure 10 shows the performance of three BDTs trained on (1) vertex and energy only
(Vtx/Enu), (2) light-based variables (Light), and (3) a joined model combining both (Joined). All
three models show similar trends across BDT score thresholds, but the joined model consistently
achieves higher background rejection and signal retention.

Figure 10: Signal efficiency versus background rejection rate for three different BDTs: one
trained on reconstructed vertex and energy, one trained on light-based variables, and one trained on
both. The joined model consistently outperforms the others in both signal retention and background
rejection.

To reject 80% of background events using each model, the corresponding BDT score cuts and
resulting signal efficiencies are:

• Vtx/Enu: Cut = 0.5423, Signal efficiency = 62.76%

• Light: Cut = 0.5197, Signal efficiency = 60.37%

• Joined: Cut = 0.5322, Signal efficiency = 67.32%

This demonstrates an improvement of nearly 5% in signal efficiency when incorporating light-
based variables to traditional vertex and energy-based separation. Thus, the light information
includes some information that discriminating signal from background beyond our current best
guess of neutrino interaction point and deposited energy.

6.1 Variable Importance

Figure 11 shows the top ten variables used in the light-based BDT, evaluated according to
two importance metrics: gain and weight. In the context of gradient boosted decision trees,
gain measures how much a given variable improves the model’s accuracy when it is used to split
a decision node—effectively quantifying the contribution to the model’s predictive power. In

13



contrast, weight counts how often a variable is used in any split across all trees in the ensemble,
regardless of how much it improves performance each time.

Variables with high weight but low gain may not offer large improvements individually but
are robust and broadly useful across the forest. This is observed with several Wire-Cell variables,
which appear frequently in splits (high weight) but tend to offer smaller incremental improve-
ments (lower gain), partly due to incomplete coverage; Wire-Cell reconstruction does not provide
information for all variables in all events, reducing their impact on gain-based measures. On the
other hand, several flash matching variables rise to the top by both metrics, favoring defining
upstream light observables to capture out-of-TPC activity.

(a) Feature importance by gain. (b) Feature importance by weight.

Figure 11: Top 10 features ranked by gain and weight for the light-based BDT. Gain emphasizes
performance contribution, while weight reflects frequency of usage in tree splits.

To better understand how reconstruction-based inputs improve classification, it is also nec-
essary to examine the importances in the Joined BDT, shown below. In this hybrid BDT, the
reconstructed x-position of the vertex (reco_nuvtxX) dominates weight rankings. This is physi-
cally well-motivated: PMT visibility is highly dependent on x. The model could plausibly learn to
exploit this dependency, making reco_x a crucial discriminator in separating signal-like topologies
from background.

(a) Feature importance by gain (light + vtx/enu).
(b) Feature importance by weight (light +
vtx/enu).

Figure 12: Top 10 features in the BDT trained with both light and reconstructed vertex/energy
information.
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7 Summary and Conclusions

While this improvement may appear modest, a 5% increase in contained π0 selection efficiency
corresponds to approximately 400 additional selected events in the test sample, which included
only 621 missed shower events in total. These results must be interpreted in the context of two
key limitations:

1. The available sample included only 1160, 1450, and 621 FC Missed Shower for hyperpa-
rameter tuning, BDT training, and testing, respectively. These represent extremely limited
statistics. It is likely that a larger dataset would result in more stable training and further
improve the separation power observed here.

2. Fully contained π0 events with two showers will deposit significantly more energy in the
TPC compared to π0 events with one shower leaving the detector. This asymmetry gives
the vertex and energy-based BDT an artificial advantage. In a more realistic study, where
true single-photon events are the desired signal, this separation would be less effective.
Consequently, the relative benefit of light-based variables would be expected to be more
pronounced.

Given these limitations, the most immediate next step is to apply these methods to a larger
Monte Carlo sample that includes true single-photon production processes. If light-based variables
are shown to effectively reject π0 backgrounds in such a sample, it would motivate the development
of a dedicated out-of-TPC π0 veto BDT for use in future photon-based searches.

In summary, the inclusion of light-based variables improves π0 selection efficiency by up to
5% over traditional methods using only reconstructed vertex and energy. While this gain may
seem modest, it translates to a significant increase in selected events and is expected to be even
more impactful in more realistic single-photon studies. These results highlight the potential of
PMT data as an analysis tool in LArTPC experiments, especially in low-statistics or edge-case
topologies.

This represents preliminary work leveragine PMT data as a powerful analysis tool. All code
used in this study is located at https://github.com/kpulido444/REU_uboone_photon_rejection.
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A Reconstructed Light Variables

Variable Description

flash_pe_flash_matching Pandora total measured light
flash_time_flash_matching Pandora flash time used in flash matching
flash_y_flash_matching Flash Y position used in flash matching
flash_z_flash_matching Flash Z position used in flash matching
flash_timewidth_flash_matching Pandora flash time width used in flash matching
flash_ywidth_flash_matching Flash Y width used in flash matching
flash_zwidth_flash_matching Flash Z width used in flash matching
Ph_Tot WC measured light directly from the waveform
flash_measPe Wire-Cell event-wide measured light
flash_predPe Wire-Cell event-wide predicted light

Table 2: Measured or reconstructed light-related variables used in flash matching and waveform
analysis. Pandora total predicted light (sum of slice_pe_flash_matching_v) was accidentally
omitted here here, but it is suggested for future studies.
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B Derived from Reconstructed Light Variables

Variable Description

net_diff_neg_sum Sum of negative net difference with 4 outliers excluded
net_diff_pos_sum Sum of positive net difference with 4 outliers excluded
net_diff_num_pos Number of PMTs with positive net difference
net_diff_num_neg Number of PMTs with negative net difference
net_diff_vector_length Length of net difference dipole vector
net_diff_vector_angle Angle of net difference dipole vector with respect to posi-

tive Z
net_diff_largest_neg Most negative net difference value
net_diff_largest_pos Most positive net difference value
actually_meas_minus_pred_pandora Event-wide measured - predicted PE (Pandora)
meas_minus_pred_pandora Event-wide (measured - predicted) / predicted light (Pan-

dora)
actually_meas_minus_pred_wc Event-wide measured - predicted PE (Wire-Cell)
meas_minus_pred_wc Event-wide (measured - predicted) / predicted PE (Wire-

Cell)
wc_pmt_pe_vector_length Length of WC measured PE dipole vector
wc_pmt_pe_vector_angle Angle of WC measured PE dipole vector with respect to Z

axis
pmt_latest_minus_earliest Time difference between latest and earliest PMT pulse

(within ±5 ns)
pmts_within_ns_std_dev Standard deviation of timing of PMTs within 5 ns
meas_mean_z_minus_pred Measured (PE-weighted) average Z location minus pre-

dicted Z location
meas_mean_y_minus_pred Measured (PE-weighted) average Y location minus pre-

dicted Y location
meas_minus_pred_distance Distance between measured and predicted (PE-weighted)

positions
pmts_within_ns Number of PMTs within ±5 ns
pmt_ns_vector_length Length of timing dipole vector for PMTs within 5 ns
pmt_ns_vector_angle Angle of timing dipole vector with respect to Z axis

Table 3: Variables constructed from predicted and measured light quantities, capturing differences
in timing, spatial distribution, and net light imbalance. Variable definition as well as all code used
in this study available here: https://github.com/kpulido444/REU_uboone_photon_rejection
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