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Neutrinos in the Standard Model
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‘Little Neutral Ones’

3 flavors - electron, muon, and tau
Very weakly interacting

Very small mass

Very hard to detect!
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Lots of Mysteries in Neutrino Physics!
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https://arxiv.org/pdf/2006.16882
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Lots of Mysteries in Neutrino Physics!
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The MiniBooNE Low Energy Excess (LEE)

Observed a 4.80 events excess caused by
single electromagnetic showers at low

energies

Cherenkov detector could not

distinguish between showers caused by
photons or those caused by electrons

Standard Model Explanations and other
more exotic explanations involving new
physics Beyond the Standard Model

(BSM)

Needs to be explained!

Events/MeV

Mostly photons

MiniBooNE Data and Simulation
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Neutrino Events with an EM Shower in a Cherenkov Detector

o Neutrino interacts with an

atom, creates high energy .
particles o e ® ¥
€ R AR
o Electrons and photons that % o5 5
pair produce to an e+/e- pair R . . Ridises XL
create signature rings of | SN/ ANV
Cherenkov light as they move \ e '
through the detector ¢ 0 -
5@ &>
o Photons and electrons look ~ %
almost identical in - ‘:ﬁ '

MiniBooNE - we need to
separate these to understand
the anomaly!

https://www.nytimes.com/2007/04/12/science/i12neutrino.html
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Enter MicroBooNE!

o ‘Micro Booster Neutrino
Experiment’

o New detector technology in
the same beam line

o Explicit goal of addressing ;
the MiniBooNE LEE o

SB NEAR
DETECTOR
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MicroBooNE Liquid Argon Time Projection Chamber

o After a neutrino interacts, the released
charged particles ionize Argon atoms

o Because of the strong electric field, charged
ionized particles immediately drift toward
planes of wires where they are detected as

voltage spikes

o Traces the 3D path of charged particles
proportional to their energy

Liquid Argon TPC

Charged Particles
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MicroBooNE Liquid Argon Time Projection Chamber

After a neutrino interacts, the released
charged particles ionize Argon atoms

Because of the strong electric field, charged
ionized particles immediately drift toward
planes of wires where they are detected as
voltage spikes

Traces the 3D path of charged particles
proportional to their energy

o Can create these beautiful event displays!

Argon is also a scintillator - more on this
later!

Time

MicroBooNE Data
Run 15318 Subrun 159 Event 7958

v

Wire Number
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MicroBooNE Can Distinguish Between Photons and Electrons!

MicroBooNE Data MicroBooNE Data

This gap

’ indicates a
photon

Event with a single photon Event with a single electron
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Single-Photon Interpretation of the LEE

o Standard mOdEI 1y1p topology, primarily targeting A—py
explanations
P G More than 3
o An increase in known . gt e neutrinos?
processes fits the M

anomalous data very well . Distinet gap

o Beyond the Standard —
Model? :
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o All single photon searches
share one difficult
background: NC r° 0
production resulting in two
photons
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7r¥ Background in a Single-Photon Search

Single Photon NC 7° (~0(250)x as common)

MicroBooNE Data
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7r¥ Background in a Single-Photon Search

Single Photon NC 7° (~0(250)x as common)

MicroBooNE Data
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7r¥ Background in a Single-Photon Search

Yy/z-
Single Photon NC 7° (~0(250)x as common)

one exiting photon

. . _
)’ W“‘ collinear
- &*ﬂ. photons

one entering photon
<
MicroBooNE Data X&\
N https://indico.fnal.gov/event/67154/
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My Project Goal (Ideally): Reject NC 7z° Events with One Out-of-TPC
(OTPC) Shower

True Single Photons:

NC 70 with a missed shower 7
(‘Missed Shower’):
one exiting photon
7%

one entering photon
=
N\
N\

single photon event '

Images adapted from https://indico.fnal.gov/event/67154/
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My Project Goal (Actually): Reject NC 7z° Events with One Dut-of-TPC
(OTPC) Shower

NC n° with no missed
shower (‘Contained Shower’):

NC 70 with a missed shower 7
(‘Missed Shower’):
one exiting photon

two photons inside N '

Images adapted from https://indico.fnal.gov/event/67154/

. one entering photon
~<
N
N\
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Light in a LArTPC

_— - Cryostat

Time Projection Chamber (TPC)
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Light in a LArTPC

Scintillation light _— - Cryostat

produced by
ionized particles

Time Projection Chamber (TPC)

Photomultiplier
Tubes
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Light in a LArTPC

Scintillation light _— - Cryostat

produced by

ionized particles Time Projection Chamber (TPC)

Top View

Time Projection Chamber (TPC)
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Most sensitive to measured
light around here
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Light Predictions Rely on Charge Inside TP

_—— —~_ Cryostat

Time Projection Chamber (TPC)
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Light Predictions Rely on Charge Inside TPCG
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Light Predictions Rely on Charge Inside TPCG
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Light Predictions Rely on Charge Inside TPCG

Time Projection Chamber (TPC)

_—— —~_ Cryostat
-
)

I'he difference between measured

ﬁtlght and predicted light could be
_<ey to 1dent1fy1ng OTPC act1v1ty'
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Charge and
light in TPC

Charge that will
not be measured
by TPC, light that

will be measured
by PMTs
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Array of Photomultiplier Tubes (PMTs)

32 extremely sensitive light
detectors

Used to trigger data collection when
a neutrino is detected and to get
accurate timing information

Also used in analyses to match
deposited charge to the light flash

Allows us to use the entire cryostat
as a detector!

https://microboone.fnal.gov/wp-content/uploads/MICROBOONE-
NOTE-1064-TECH.pdf

https://mod.fnal.gov/mod/wi/Lectures/

WC/presentations/211001Ross-
Lonergan.pdf
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Turn Simulated Data into Something Recognizable

o Measured PMT-by-PMT light

o Predicted PMT-by-PMT light

o Nanosecond timing

o Truth shower location + direction
o Truth + Reco Vertex

o Spacepoints

o Some metric to see difference
between measured and predicted

2025 Nevis Laboratories REU



Turn Simulated Data into Something Recognizable: ‘Flash Viewer’

Measured Flash PE — Pandora: 288.5 PE, WireCell: 31.8 PE

100 * Outside TPC Shower: 267.3, 63.8, 23.2
Inside TPC Shower: 250.1, 68.9, 12.4

o Measured PMTby PMTlight — 7@ o ee i
0 ‘ ‘ ® ® () ®

o Predicted PMT-by-PMT light

200 400 600 800 1000
Predicted Flash PE — Pandora: 372.7 PE, WireCell: 94.4

Outside TPC Shower: 1267.3,63.8,23.2
Inside TPC Shower: 250.1, 68.9, 12.4

o Nanosecond timing

Y% Truth Vertex

o Truth shower location + direction oo ° O Srepores MicroBooNE
O ® - . . S Simulation
o Truth + Reco Vertex ° .
-100
0 200 460 600 800 1000
O Spacepoints Measured Flash Minus Predicted Flash — Pandora. Net Difference: -84.2 PE
0 Outside TPC Shower: 267.3, 63.8, 23.2

Inside TPC Shower: 250.1, 68.9, 12.4

s 8
o Some metric to see difference & ® ‘ ® .
between measured and predicted

-50

—100

0 200 400 600 800 1000
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Lots of Interesting Things to Look At - Measured and Predicted light

o Simulated, reconstructed
neutrino events

o Look at PMT behavior by
hand to identify patterns
associated with missed
photon showers

o Measured light and predicted
light, 2 separate ways

o Some disagreement
between the two

Index: 21572, Type: new file

Measured Flash PE — Pandora: 328.4 PE, WC given: 185.2, WC calc: 109.8

100 - Inside TPC Shower: 190.0, -56.0, 845.3
Outside TPC Shower: 262.8, -50.0, 841.4
504 Y% Truth Vertex :
O Reco Vertex
Spacepoints
01 w - e O ‘
-50 PY o . ‘
-100 - MicroBooNE
200 400 600 800 1000 Simulation
Predicted Flash PE — Pandora: 108.9 PE, WC given: 142.4, WC calc: 87.9
100 - Inside TPC Shower: 190.0, -56.0, 845.3
Outside TPC Shower: 262.8, -50.0, 841.4
504 Y Truth Vertex @
O Reco Vertex ’
Spacepoints
o - : CYE
—-50 ¢ . o T “
-100 A N
200 400 600 800 1000
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Difference between Measured and Predicted Light

MicroBooNE
Simulation
Measured Flash Minus Predicted Flash — Pandora. Net Difference: 3174.8 PE
: M 100 A Outside TPC Shower: -1.4, 23.1, 395.3
o Predicted hght depends on Inside TPC Shower: 11.1, 11.0, 392.0
1 1 v Truth Vertex ™ .
deposited charge 01 K e
0 Spacepoints
o The difference between . . Separation between sign of
measured and predicted . relative (measured - predlcted)
. . . . ~100 -
light might help identify 0 e 0 %0
mlssed Charge XZ View of Event with TPC Boundaries
300 4 Outside TPC Shower: -1.4, 23.1, 395.3
. 250 INside TPC SHOWET11-T,11:07 3920 (=== ====== === e e e e e e e e e e e eeeecece—e——————— .
o Can look at this on a total 200 % Truth Vertex |
. O Reco Vertex . .
event basis or PMT-by-PMT 150{ . spacepoints This shower was right i
. 100 - | in front of PMTs |
basis ol | i
0 L e e == el I
-50 . , , . . '
0 200 400 600 800 1000
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Nanosecond Flash Timing

Index: 21572, Type: new file

Measured Flash PE — Pandora: 328.4 PE, WC given: 185.2, WC calc: 109.8

100 + Inside TPC Shower: 190.0, -56.0, 845.3
Outside TPC Shower: 262.8, -50.0, 841.4
so | Y Truth Vertex ‘ . - .
O Reco Vertex O Time in ns away from
Spacepoints h d
0- v - o O the median
@
=t e . e ¢
-100 . ’
200 400 600 800 1000
Predicted Flash PE — Pandora: 108.9 PE, WC given: 142.4, WC calc: 87.9 Lish I p
100 ~ Inside TPC Shower: 190.0, -56.0, 845.3 O 18 t travels 1 foot / s
Outside TPC Shower: 262.8, -50.0, 841.4
1 Y Truth Vertex [ @ @ .« .
% O Reco Vertex . o OTPC aCtIVItY may have
of ° Spacepoints . e O ‘ O some characteristic timing
O pattern
- . o9
-100 A . ’
200 400 600 800 1000
MicroBooNE

Simulation

2025 Nevis Laboratories REU
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Example - Difference Between Measured and Predicted

Based on
Simulated Data

WC (meas-pred)/pred for Missed Showers and Contained Showers

Histogram based on truth level C— Missed Shower
. . 1.4 - 1 Contained Showers
information '

1.2 1
No clear place to make a cut

=
o

Slightly different distribution

Normalized Count
o
(00]

o
o

0.2 1

0.0 T T T T T T T T
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

meas_minus_pred_wc
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Clear Separation Between Missed Showers and Contained Showers?

This is just a subset of the light-
based variables looked at, but
none of them can singlehandedly
separate signal from background
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0.01 4

0.00
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0.0005 -

0.0004

0.0003 -

0.0002 +

0.0001 4

0.0000

0.025 4

0.020 1

0.015 4

0.010 4

0.005 +

0.000

net_diff_vector_length

[ Missed Shower 1 Contained Showers

meas_minus_pred_pandora

Based on Simulated Data

meas_minus_pred_wc

144
0.4 1
124
031 1.0 A
0.8 1
0.2 1 0.6
0.41
0.1 4
0.21
T T T T T 1 0.0 T T T T T T 1 0.0 T T T T T
5 10 15 20 25 30 -2 0 2 4 6 8 10 1 2 3 4 5
wc_pmt_pe_vector_length pmt_latest_minus_earliest pmts_within_ns_std_dev
0.200 0.6 1
0.175 4
0.5 1
0.150 +
0.125 041
0.100 4 0.3 1
0.075 1 024
0.050
0.025 - 011
T T T T t 0.000 t T T T T t 0.0 T T T T t
2000 4000 6000 8000 10000 0 2 4 6 8 10 1 2 3 4 5
meas_mean_z_minus_pred meas_mean_y_minus_pred meas_minus_pred_distance
0.10 0.05 -
0.08 0.04
0.06 0.03
0.04 0.02
0.02 0.01 -
T T T 0.00 T T T 0.00 T T T T T
—-40 -20 0 20 40 -20 =15 -10 -5 0 5 10 15 20 10 20 30 40 50
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Boosted Decision Trees (BDTs)

o 2 < o Simple and robust machine learning algorithm that
% + / & .. B \ classify events into signal/background based on known
\ parameters

https://medium.com/@ruchi.awasthi63/gradient-boosted-decision-tree-clearly-explained-bdid8c7d9923 ©) ASSignS a score tO eaCh event that is analogous tO d
probability that it is ‘signal’

Iteration 1 Iteration 2 Iteration 3

o Decision trees

o Uses a series of cuts to find patterns in many
numerical parameters

o Boosting

o Puts extra weight on previously failed
Final Classifier/Strong classification attemp S
classifier

Packts o Hyperparameter tuning and reweighting

https://www.packtpub.com/en-us/learning/how-to-tutorials/iterative-machine-learning-step-towards-model-accuracy/
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Results - BOT separates much better than individual variables

Light BDT Score Distribution

[ Missed Shower 1 Contained Showers 3.5
net_diff_vector_length meas_minus_pred_pandora meas_minus_pred_wc
0.08 s 14
007 : 12
0.06 03 10 3 . 0 1
005 08
0.04 02 06
003
04
002 01
001 02 wn
o 2.5
o 00 00 c
o 5 10 15 20 25 30 -2 o 2 4 6 8 10 o 1 2 3 4 H o
we_pmt_pe_vector_length pmt_latest_minus_earliest pmts_within_ns_std_dev >
0.0006 0.200 06 o
0175 o5 S
0.0005 g
0.150 I 2 . 0 4
Boost! N
00003 0.100 03 v %
0,075
0.0002 02 E
0,050 =
0.0001 o1
0,025 o 1 . 5 4
0.0000 0.000 00 =2
o 2000 4000 6000 8000 10000 0 2 4 6 8 10 o 1 2 3 4 5
meas_mean_z_minus_pred meas_mean_y_minus_pred meas_minus_pred_distance
0025 010 005
0.020 0.08 004 1.0 1
0015 0,06 0.03
0,010 004 0.02
0,005 002 0.01 0.5
0.000 0.00 0.00
-20 -20 o 20 ) 20 -15 -0 -5 o H 0 15 20 o 10 20 30 ) 50 |_

0.0 0.2 0.4 0.6 0.8 1.0
BDT Score

Based on Simulated Data
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How do we know BDT is effective?

Top View

Time Projection Chamber (TPC)
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How do we know BDT is effective?

Top View

Time Projection Chamber (TPC)

We know that we are more likely
to lose showers in this region
and that 7° with missed showers

will deposit less energy
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How do we know BDT is effective?

Top View

Time Projection Chamber (TPC)

We know that we are more likely
to lose showers in this region
and that 7° with missed showers
will deposit less energy

Compare light BDT with a
BDT based on reconstructed

vertex and energy
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Results - light variables assist in selecting missed shower events

Contained Shower Efficiency vs. Missed Shower Background Rejection

o Comparing light variables with BDT
trained on reconstructed vertex and
energy

---- Vertex/Energy Variables
---- Light Variables
-~ - —— Light Variables and Vertex/Energy Variables

=
o

_________
-~

S———
““““
~~a

o
(3

o Efficiency:

o
o

Correctly Labelled Contained Showers

All True Contained Showers

o©
»

o Background Rejection:

o
N

Correctly Rejected Missed Showers

All True Missed Showers

Missed Shower Background Rejection (1 - One-out-TPC Efficiency)

o
o

o Higher efficiency and higher background | | | | | |
0.0 0.2 0.4 0.6 0.8 1.0
Ivejection With light! Contained Shower Efficiency
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Summary + Next Steps

Created pipeline to view, evaluate, and
analyze PMT data from new SURPRISE files

Trained a BDT to separate NC ¥ events with
a missed shower from those without missed
showers

Light variables within a BDT can help identify
out-of-TPC activity

Eventual goal is to separate NC ° events with
a missed second shower from true single
photon events

Measured Flash PE — Pandora: 14332.1 PE, WireCell: 3602.6 PE
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Non-Normalized BDT Score

o There were 2072 missed shower events
and 25451 contained shower events

o Needed to tune hyperparameters, train
BDT, and test with so few events

Events
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Sensitivity to Light in MicroBooNE

8 inch Hamamatsu
5912-02MOD PMTs

10

Average Visibiity (summed ove

Average Visbity (summed over

:::::

Figure 5.11: PMT photon libraries. Panels (a), (b), and (c) show the nominal light maps,

integrated across all PMTs. Panels (e), (e), and (f) show the modified light maps, with 50%

increased light yield outside of the TPC. In these maps, we can clearly see the positions of
Lee Hagaman Thesis: the PMTs and the transparency of the field cage. Small differences are visible between these
https://arxiv.org/pdf/2506.18956 two light maps in certain locations.

2025 Nevis Laboratories REU 42


https://arxiv.org/pdf/2506.18956

Difference Between WireCell and Pandora Measured
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Difference Between WireCell and Pandora Measured

Difference ratio for Pandora and WC variables for measured and predicted light (all piO events)

. fIash_m;zzl:\e_pr:I:::_predPe (WC)
fIash_pe_flash_sr:'i\ca:I'F:;n_gf;/s;jll':zttac_::\_;ish_match|ng_v (Pandora)
0.8 1
More charge than light,
§ over-clustering
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% Good charge/light match
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More light than charge,
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PMTs Used for Flash-Matching
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=
o
o
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Slice Hypothesis 3
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Flash x%: 74, Az: -223.2cm

Figure 6.17: Flash-matching example for a simulated v. CC event with a true neutrino energy of
2.5GeV. The reconstructed optical flash (blue) is compared to the flash hypothesis of
four neutrino candidates (coloured lines). Az is Charge z - Flash z. Slice 2 (red) has
the lowest x2-value and is selected. Note that the selected slice also is the closest to the
flash — smallest |Az| and has the highest topological score. The purity and completeness
serve as a truth-level based indication of the reconstruction quality as introduced in
Section 6.2.2. The horizontal axis shows the PMT number.

Wouter Van De Pontseele thesis:
https://ora.ox.ac.uk/objects/uuid:3a626a2c-fe7a-4a13-9f80-0fc090d6913a
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