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GAMMA-RAY ASTRONOMY

Cosmic Rays
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High-level motivation: to understand the highest-
energy objects/events in the universe

In particular, understand where high-energy cosmic SO oo ‘
rays come from ’ (1 particle per m? - year)
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We cannot use cosmic rays to study these, need to
look at charge-neutral messengers like photons and
neutrinos
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THE TEV SKY

Image via TeVCat
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CTAO

The next generation IACT
Currently under construction

Small, medium, and large-sized telescopes
with varied energy ranges

Two arrays for full-sky coverage

Factor of 10 higher sensitivity than last-
generation instruments

Images from CTAO
Artistic Renderings




BLAZARS: COMMON SOURCES OF TEV
GAMMA-RAYS

Active Galactic Nuclei (AGN) are black holes at the
center of galaxies that are actively accreting matter

Depending on the viewing angle, presence of jets, and
accretion rate, we see variety of different objects

When the relativistic jet is pointed directly at an
observer, the observer sees a blazar

https://www.eso.org/public/images/eso0903a
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BLAZAR GAMMA RAY EMISSION

Mrk421 SSC Mrkd21 Lepto-Hadronic
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BLAZAR GAMMA RAY EMISSION
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BLAZAR GAMMA RAY EMISSION

Non-thermal emission from AGNs comes from processes

in the relativistic jets

Spherical emission “blob” moving at relativistic speeds

Leads to Doppler boosting

Quantified by a doppler factor &
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SOURCES OF PARTICLE ACCELERATION
(AND VARIABILITY)

Shocks: Magnetic Reconnection:
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SHORT-TIMESCALE VARIABILITY

We have observed minute-scale variability from a
variety of blazars

We still do not know what exactly causes variability on
such short timescales

Motivation: we want to maximize our opportunities to
observe these flares and understand them better

Understanding the short-timescale flaring activity of
blazars can help us to understand VHE emission
mechanisms/regions

For example, flare timescales put limits on the doppler
factor, § and size, R, of the emitting region.
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CTAO SCIENCE DATA CHALLENGE AND MY DATA

While CTAO is being built, collaboration released the
SDC

Develop analysis methods using Gammapy
My Dataset:
Simulated CTAO LTM data from Markarian 421
Stored as DL3 FITS files

Half-hour observing runs (divided into 4 7.5-minute
segments)

Once a week for a year

https://en.wikipedia.org/wiki/Markarian_42 |




MARKARIAN 421

Nearby (z = 0.031) BL Lac

First Extragalactic TeV source detected

History of very short-timescale variability

y-rays per min
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Reflected Regions background method
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|D ANALYSIS — BACKGROUND VALIDATION
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|D ANALYSIS - SPECTRUM

Markarian 421 Spectrum
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After ensuring that the background was
appropriately accounted for, | continued with
my analysis

Generated a spectrum between 10 GeV and
10 TeV

Fit with a Power law with an exponential cutoff,
also accounting for the EBL

£\ T
P(E) = ¢ - (E) - exp(—(1E)9)

Fit parameters:
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a =1 (frozen)




ID ANALYSIS — I-YEAR LIGHT CURVE

Markarian 421, VHE Gamma-Rays, 2/15/28 We can clearly see there’s some
1 + 1.00e-02 TeV - 1.00e+02 Tev ‘ variability
Variability analysis goals: test for
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TESTING FOR VARIABILITY

17.59 -~ Null Hypothesis (No Variability)
Determining Variability Probability: + Light Curve *
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Flux >10 GeV (1072 Tev~! cm~2 s~1)

Flux >10 GeV (1072 Tev-! cm~2 s-1)

MONTH-SCALE VARIABILITY
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30-MIN OR LESS SCALE

On a short timescale, decreasing the bin size
increases the variability probability on average

Smaller bin sizes can reveal shorter-timescale
variability

Bins also have less counts, so smaller significances

Optimal bin size is then the smallest bin size than
also fits a significance criteria

Done for all time intervals with <| full observing
run (30 mins, four observations)

Time intervals tested: 30 mins, |5 mins, 7.5 mins
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OPTIMAL BINNING

Optimal bin size is the smallest bin size than also
fits a significance criteria

At least 80% of points must be over 5 sigma

Bin Sizes: Full observations (7.5 mins), half-
observations (3:15), third-observations (2:10),
fourth-observations (1:37.5), and sixth-
observations (1:05)

Method:
Smallest bin size tested for significance criteria
If it passes, the probability is calculated

If it fails, the next largest bin size is tested
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RESULTS

For large time intervals, the variability
probability was very high (~1I)

For shorter time intervals, the average
probability dropped below 95% the threshold
for significance

Unfortunately, this dataset is too sparse to
determine an accurate threshold for
significance

Therefore, if CTAO wants to observe short-
timescale variability for Markarian 421, they
should observe for more than for 30 minutes
a week
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SPECIAL CASES

Despite the average variability probability for single observing runs being
below the significance threshold, there are a few runs with significant variability

Of those, a couple indicated possible flaring activity
Flaring activity is indicated by:
Variability Probability >95%

Rise and fall behavior, or one of the two




01/19/2028

Flux >100 GeV (10~ cm~2s71)
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Function for double rise and fall:
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CONCLUSIONS:
VARIABILITY STUDY

Conducted a variability analysis of | year of
simulated CTAO data

On average, the probability that a light curve
displays variability decreases over smaller time
intervals

For small intervals, the variability probability
increases on average with decreasing bin size

If CTAO wants to observe short-timescale
variability in Markarian 421, they should observe
more than 30 mins per week
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DISCUSSION:
FAST FLARES

For some observing runs with significant variability, light curves

were fit with exponential functions
Timescales are short and the
Small emission regions,
Associated with the jet
Longer cooling timescale
Exponential fall
Radiative losses, Inverse Compton Scattering
Leptonic model
Double peaked light curve
First peak, longer rise than fall

Injection of high-energy particles

Second peak, shorter rise than fall

In situ acceleration, longer cooling timescale than dynamical timescale

Steep particle-energy distribution
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CTAO PERFORMANCE
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WHAT WE CAN LEARN FROM
VARIABILITY

Timescale: tells us about the size of the emission region and doppler factor.

Smaller emission regions and shorter timescales favor magnetic reconnections
in plasmoids, as passing through a shock multiple times takes too long

Flare profile: slow rise and quick fall suggests particle injection, while quick rise
and short fall suggests in situ acceleration

In the plasmoid MR model, a slower fall than rise can also mean that the
plasmoid has reached its peak velocity

Flare decay timescales can tell us about particle cooling mechanisms




Declination

2D ANALYSIS

Ring Background, Counts Map
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