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Strong CP Problem




Stronroblem WU\ XO

THE MIRRIOR DD NOT Ssen T
BE OPERATING PROPERCY.

Part 1l
CP Violation in the SM

* Charge
conjugation-Parity

 Fundamental
symmetry

e Part of the
Standard Model
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P Problem

U\XO

/

3 forces covered by
Standard Model

{— Strong force }

Should break
CP symmetry
sometimes

— Weak force ation-Parity
— Electromagnetic e Fundamental
force symmetry

Only one that
should conserve
CP symmetry

e Part of the
Standard Model

THE MIRROR DiD RO S T
BE OPERATING PROPERCY.

Part 1l
CP Violation in the SM
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Strong C@ U\XO

™~

3 forces covered by * Neutron Electric
Standard Model Dipole Moment is
experimentally

Should break
CP symmetry

{— Strong force } cometimes
— Weak force ation-Parity not observed to
— Electromagnetic « Fundamental 10-2° precision
force symmetry without any
sk%t%ocr:)enlzcgje e Part of the known reason??
CF symmetry standard model D

EXPECTATION
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REALITY

Hook arXiv 1812.02669 (2023)



Peccei and Quinn “Clean Up” CP Problem With The Axion

Roberto, |
have an idea

that naturally

explains the
Strong Force's CP
symmetrye

There's a new field , | § l
9‘

Read my
mind

Nice sombrero
potential Helen
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R. Schude, Quanta Magazine.




QCD Axions

e Light, spinless particles that arise when PQ symmetry is broken
— Feebly interact with Standard Model particles

e Purpose: extend Standard Model to “clean up” CP problem
 Why so popular?

LLLLLLLLLLLLLLLLLLLLLLLLLLLLL

4 {’% PROMISES TO

“CLEAN UP”
YOUR STRONG , ¥
CP PROBLEM! ¥
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lllustration by Sandbox Studio,
Chicago with Steve Shanabruch



QCD Axions

e Light, spinless particles that arise when PQ symmetry is broken
— Feebly interact with Standard Model particles

e Purpose: extend Standard Model to “clean up” CP problem
« Why so popular?
— Solution to CP problem AND really good dark matter candidate

N W HYPOTHETICAL ELEMENTARY PARTICLE

&%r PROMISES TO

“CLEAN UP”
YOUR STRONG , ¥
cp PROBLEM! T
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lllustration by Sandbox Studio,
Chicago with Steve Shanabruch




Primakoff Effect: A Way To Detect Axions

« Axion couple (interact) with photons

© _ AXIONS
Y g fray,

Primakoft

Redondo JCAP 1312 008 (2013) ndbox Studio, Chicago, Symmetry
Electro mcgne’ric Magazine/Fermilab and SLAC
field

o)
al
o
eV
s
@
o™
=
>
=
>_
=z
B
(@)
+—
(@)]
£
>
=
LN
Al
(@]
«~
D)
(|
o
N2}
>
(]
pd
o)
o)
@©
wn
>
e
(%]
>
>




Primakoff Effect: A Way To Detect Axions (Variants Included!) U\XO

« Axion couple (interact) with photons

Primakoft

Redondo JCAP 1312 008 (2013) ndbox Studio, Chicago, Symmetry
Electro mogne’ric Magazine/Fermilab and SLAC
field

Why Primakoff?
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Axion-Photon Coupling Parameter Space
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Axion-Photon Coupling Parameter Space

Stronger coupling to
photons (easier to fina)

|ga':v| (ch_l)
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Axion-Photon Coupling Parameter Space

o 107
|
+ % 1077
&
Ve -_(; l()_8
@) O = (
= C 1079
an 4= z
C O 10710 7 Ain
=i N . ' ALPS-I J BabyIAXO 8
- .q_J 10 -rays IAXO # é
Cwn | . e :
O 10-12 s :
5 2 B -
S0 v 10-13 H /9'}
cC C M7/
g % 10—14 /
) ~ -15
= 10
10710 -7 Heavier axion
10~17 - : . .
10~% 10~® 10~ 107 10~ 10~* 10"° 10~* 10~* 10" 10!
mg (eV)

IAXO Collaboration, JHEP 05 (2021) 137




Axion-Photon Coupling Parameter Space
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Axion-Photon Coupling Parameter Space
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Axion-Photon Coupling Parameter Space
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Axion-Photon Coupling Parameter Space U\XO:
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Axion Helioscope Experiment Design U\XO

Strong lab
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International Axion Observatory Conceptual Design

BabylAXO

10m

2 T common-coil dipole
superconducting
magnet

1x custom optic,
1x spare XMM-

Newton optic \ V :

micromegas
detector plane

IAXO Collaboration,
JHEP 05 (2021) 137
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I BabylAXO

Bore cross
(] 077 m2
sectional area




International Axion Observatory Conceptual Design U\ XO

IAXO
Bore 2.5~3,5 T toroidal
superconducting
BabylAXO S magnet 20 i
2 T common-coil dipole
superconducting
. t. magnet 8 focusing
x custom optic, y : g
1x spare XMM- Y \J X ray optics
Newton optic \ 4 \
Y 4 micromegas
micromegas ' p 7 detector plane

detector plane

IAXO Collaboration,
JHEP 05 (2021) 137
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IAXO Collaboration, JCAP 1906 (2019) 047

e BabylAXO IAXO, IAXO+

Bore cr
OIECIOSS 77 m2 2.3m2, 3.9 m?2
sectional area




International Axion Observatory Conceptual Design U\ XO

~ 107°

Laboratory

10778

1078

|.(ln‘.- | (GeV™

BabylAXO

10m

1077
2 T common-coil dipole

superconducting 10-10
magnet | " S ALPs.
1x custom optic, )Y 4 10~ s || |
1x spare XMM- y \" .................................... 1O o 7
Newton optic \ y. 10-12 i 2
~) bi
P ~13 |
micromegas g 10 |
detector plane r
P 104 ]
10-15 n 1
IAXO Collaboration, | “xV

JHEP 05 (2021) 137 1016

10-17

10~ 10°% 107° 107" 107% 1072 107" 10° 10!
\ _ Z m, (eV)
Unique sensitivity to QCD
> axions with mg > 103 eN
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IAXO X-ray Optic

e This is what an x-ray optic has to look like:

Top view

Why?

40 cm
70 cm
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IAXO Collaboration, JHEP 05 (2021) 137




IAXO X-ray Optic

e This is what an x-ray optic has to look like:

Top view
Why?

X-rays don't ig
bounce! —
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70 cm

IAXO Collaboration, JHEP 05 (2021) 137




IAXO X-ray Optic

e This is what an x-ray optic has to look like:

Top view
Why?

Inner optic

Vyshu Sabbi | Nevis REU 2025 Irvington, NY | July 315t 2025

IAXO Collaboration, JHEP 05 (2021) 137




Optic Fabrication Process

= i

EMAAL assembly

Glass cuttingto - %
conic sections /W

A LIRS

_____

T
o e e - N Multi-layer
. : coating
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My Summer Goal

E=lllie=——— |\ \

EMAAL assembly

Glass cuttingto - %
conic sections /W

= PN e
IS RSN =
2 ;

.
Multi-layer
coating
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Thermal Slumping: How It Works U\ XO

l [

" . M
Glass i11£croshcct

&
L 3“;’ Glass microshect 3 v
< - Quartz mandrel e
> . (1) (2)
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Thermal Slumping Specifications U\XO

108-125 mm ~§

Inner 10 layers: 2

| Thmalslumpi ' Mirror dimensions (I x w x d) 112mmx[] x.2mm %
B Number of mirrors 240 g

Smallest mirror radius 54 mm 2

Biggest mirror radius 60 mm %

Mirrors per shell 12 E;

=




Laser Scanner Characterization

Laser scanner
characterization
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Characterizing Surface Error Using Laser Reflection U \XO

Good

YOU ARE

~— ddvdr
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Quantifying Surface Error: Half Power Diameter

« HPD: diameter that encircles half of total captured energy on
detector

Diameter = HPD)
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Laser Scanning Procedure U\XO

Thickens
paint

 Paint back of glass with black acrylic paint mixed with sugar
— Absorbs reflection from back glass surface

« Manually align glass so reflected laser falls on detector
e Use auto-alignment program to align glass with higher precision
e Scan! Slumped

"

Detector

Vyshu Sabbi | Nevis REU 2025 Irvington, NY | July 315t 2025
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Best Ovens For Different Temperatures U\XO
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Post-Processing Scan Plots: Good Scan vs. Bad Scan

Good Scan Bad Scan
« 44" HPD « 168" HPD
 Flat = good » More variance

e Note: scale is smaller

Vyshu Sabbi | Nevis REU 2025 Irvington, NY | July 315t 2025




Glass Cutting

Glass cutting to
conic sections

Senng! ‘
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Glass Cutting Setup

Width cutter
stencils

Diamond-
tipped
scribe

Hot wire cutter

C.L.2.926

Cutting mandrels

39V110A
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Glass Cutting Process: How It Works U\ XO
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Align rods on Align width cutter, Propagate crack
dowels, score and score width along width cut
crack lengthwise using hot wire

cutter



Problem With Cutting Mandrel: Wrong Shape U\XO

« Want trapezoids with specific dimensions,
but have a rectangular cutting mandrels
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Solution: Cutting Mandrel Modifications U\ XO

e Change rod location using shims Trapezoid

o Geometric solution coded into
spreadsheet to give best rod & shim
dimensions

shape
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IAXO Layer top/bottom? top arclength of cut glass bottom arclength of cut glass s2-s1

6P T 62.06739886 61.75847558 0.6233630423 14 60.8 168 14 0.7766369577 967.0642969 855.0642969
6P B 61.75847558 61.4495523 0.6233630423 14 60.8 168 14 07766369577  855.0642969  743.0642969
7P T 62.92610085 62.61194159 0.6339285176 14 638 168 14 0.7660714824 187.5586744 75.55867439
7P B 62.61194159 62.29778232 0.6339285176 14 638 168 1.7 1.066071482 182.5107961 70.51079614
78 T 62.29778232 61.36054051 1.891220078 14 638 168 3 1.108779922 178.9843543 66.98435433
78 B 61.36054051 60.4232987 1.891220078 14 63.8 168 2  0.1087799225  -52.51522305  -164.515223

8P T 63.78480284 63.47064358 0.6339285176 1.4 63.8 168 1 03660714824  351.0891787 239.0891787
8P B 63.47064358 63.15648431 0.6339285176 1.4 63.8 168 2 1366071482 595.5962512  483.5962512
88 T 63.15648431 62.20353454 1.922916503 1.4 63.8 168 2 0.07708349662  159.4273356  47.42733557
8S B 62.20353454 61.25058477 1.922916503 14 63.8 168 2 0.07708349662  47.42733557  -64.57266443




Cutting Glass Improves Quality

HPD: Pre-cutting vs. Post-cutting %% B
% W HPD Before Cutting
HPD After Cutting "
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Goal Achieved U\XO

e Mastered and streamlined procedure to slump, scan, and cut glasses
for inner layers of BabyIAXO optic

— Found optimal settings for slumping high quality 120 mm diameter glass
« Corresponding IAXO Layers: 6-8

— Scanned slumped glasses, quantified glass quality, and provided feedback that
improved slumping process
« Slumping yield (success rate) went from 28% - 78%!

- Established cutting procedure to accommodate |
different IAXO mirror geometries that can be
followed to produce all the inner 10 layers )
« Cutting yield = almost 100%!

— Proved glass quality only improves after cutting |

Distribution of Summer '25 Slumped Glasses by HPD

' R
10 4 Total slumped glasses: 116
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Next Steps

B=a

Laser scanner i
characterization 1 EMAAL assembly

Inner optic

Outer optic

Glass cutting to
conic sections
@

_— - = LVDT characterization
Multi-layer
coating p—_—— -

Optical and mechanical
design locked in;

Vyshu Sabbi | Nevis REU 2025 Irvington, NY | July 315t 2025

Technical improvement and Individual techniques, materials |0-layer prototype calibration;
facility preparation ongoing and facilities prepared Full layer prototype assembly
A A
1
Timeline x t ; & :
@ Jul. 2025 . Dec. 2025-Feb. 2026 @ Jun. 2027
Mandrel and spider Assemble the first 10- Build up full
purchase starts layer prototype layer prototype
Mechanical engineer Assume we will get

is urgent! funding for coating!



Thank You!!! U\ XO
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