High Power Cyclotrons for the Neutrino Experiments DAEδALUS and IsoDAR

R.J. Bartow, A. Bungau, A.M. Kolano, Huddersfield University, Huddersfield, UK
F. Meot, BNL, Upton, Long Island, New York, USA,
M. Shaevitz, Columbia University, New York, USA,
L. Calabretta, INFN/LNS, Catania, Italy,
J. R. Alonso, W. Barletta, A. Calanna, D. Campo, J. A. Conrad, MIT, Cambridge, Massachusetts, USA,
A. Adelmann, PSI, Villigen, Switzerland,
H. Owen, Manchester University, Manchester, UK

Goal: measure fundamental CP violating phase δ through studying muon to electron antineutrino oscillations as function of length, with one detector and several sources.

Detect electron anti-neutrinos through inverse beta decay process: very clean

Overview

Ion source delivering 50 mA of 2H$^+$ ions at 70 keV
Injector Cyclotron (DIC) 5 mA, up to 60 MeV/amu
Primary Cyclotron (DSRC) up to 800 MeV/nucleon
Foil stripper
Target

DIC
Daeδalus Injector Cyclotron
4 sectors
70 MeV (35 MeV/n)
= 1 T field
450 tons
Extraction with electrostatic separators + magnets
(2cm separation between orbits)

RF
Four double gap cavities
49.2 MHz, Q=37,500
0.5 MW
0.5 – 1.0 MV

DSRC
Daeδalus Superconducting Ring Cyclotron
8 SC coils LHe cryostat
Strong magnetic forces (MegaNewtons)
Like Riken SRC
Extraction by thin(2 mg/cm2) pyrolitic graphite foil
Any H$^+$ extracted cleanly
Pulse length $<$ 1ms to stop overheating

IsoDAR
Physics from the injector cyclotron

60 MeV/amu (30 MeV/amu) on 9Be/7Li target
Make 8LI, source of electron antineutrinos
(10s of present data samples)
Identified by nearby reactor anomaly – small deficit which could be due to 4th sterile neutrino
See nearby poster for details