Very Short Baseline Neutrino Oscillation Experiments using Cyclotron Decay-at-Rest Sources

Sanjib Kumar Agarwalla
(Sanjib.Agarwalla@ific.uv.es)

IFIC/CSIC, University of Valencia, Spain
Short-baseline ν oscillation

- Recent results from short-baseline neutrino experiments hint towards high $\Delta m^2 \sim 0.1-10$ eV2 oscillation.
- Are they pointing towards Sterile νs or something else?
- Short-baseline means: $L/E \sim 1$ (m/MeV or km/GeV)

LSND: $L = 30$ m, $<E_{\bar{\nu}_\mu}> = 40$ MeV

- 3.8 σ excess of $\bar{\nu}_e$ events in a beam of $\bar{\nu}_\mu$

MiniBooNE: $L = 541$ m, $<E_{\nu_\mu,\bar{\nu}_\mu}> = 700$ MeV

- A 2.8 σ excess of $\bar{\nu}_e$ events in the anti-neutrino mode above 475 MeV, consistent with LSND.
No oscillation in the ν-mode for energies above 475 MeV

An unexplained 3 σ excess of ν_e events in the ν-mode of MiniBooNE below 475 MeV

No hint of steriles in MiniBooNE $\nu_\mu/\bar{\nu}_\mu$ disappearance

Recent Reactor Anomaly

Reanalysis of reactor fluxes in Mueller et al., (arXiv:1101.2663) shows 2.5% upward shift in flux

Overall reduction in predicted flux compared to existing data can be interpreted as oscillations at baselines of order 10–100 m (arXiv:1101.2755)

Gallex-Sage reduced calibration source rate also suggesting possible ν_e disappearance
What do we need?

- We have both positive and negative hints for sterile high Δm^2 oscillation. Nothing is conclusive!!
- We need powerful new experiments to have appearance and disappearance searches at high significance involving both neutrinos and anti-neutrinos

Combine powerful new multi-kiloton liquid scintillator, argon or water detectors with a modest power decay-at-rest neutrino source at short-baseline

Observe the L/E dependence of the oscillation wave across the length scales of these detectors

SKA, Patrick Huber, arXiv:1007.3228

Sanjib K. Agarwalla, GLA2011, Jyvaskyla, Finland, 07/06/11
Stopped Pion Source

- 800 MeV protons from cyclotrons interact in a low-A target (C, H₂O) producing π^+ and, at a low level, π^-

$$p + X \rightarrow \pi^\pm + X'$$

- Low-A target is embedded in a high-A, dense material where pions are brought to rest
- π^- & daughter μ^- captured before DIF, minimizing $\bar{\nu}_e$
- π^+ decay produces mono-energetic 29.8 MeV ν_μ & μ^+

$$\pi^+ \rightarrow \mu^+ + \nu_\mu$$

- μ^+ decays at rest, providing Michel spectrum

$$\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu$$
Decay At Rest (DAR) Source

\[\pi^+ \rightarrow \mu^+ + \nu_\mu \]

\[\rightarrow e^+ + \nu_e + \bar{\nu}_\mu \]

Provides an equal, high-intensity, isotropic, DAR \(\nu_\mu, \nu_e \) and \(\bar{\nu}_\mu \) beam with tiny \(\bar{\nu}_e \) contamination \((4 \times 10^{-4})\)
Cyclotrons: ideal low-cost source for low energy protons

Bunch spacing \(\sim\) few tens of ns, continuous source

Average beam power, 10 - 100 kW, prototypes for DAE\(\delta\)ALUS

Sanjib K. Agarwalla, GLA2011, Jyvaskyla, Finland, 07/06/11
Neutrino Source Details

4×10^{21} per year, per flavor (ν_μ, $\bar{\nu}_\mu$ and ν_e),

1.6×10^{18} per year of $\bar{\nu}_e$ (4×10^{-4} compared to other flavors);

Delivered as 100 kW average power, with 200 kW instantaneous power,

(50% duty factor allowing equal beam-on and beam-off data sets);

800 MeV protons on target;

± 25 cm smearing (assumed flat) on neutrino production point;

20 m distance from average production point to face of detector fiducial region.

- p/π ratio uncertain: conservative 10% correlated normalization error on all flavors
- 20% normalization error on the π^- DIF background
- No uncertainty in the shape of the energy spectrum
DAR beam interactions

\[\bar{\nu}_\mu \rightarrow \bar{\nu}_e \text{ Appearance} \]

\[\bar{\nu}_e + p \rightarrow e^+ + n \text{ (IBD)} \]

Free protons: Liquid scintillator oil, H\(_2\)O

Low kinematic threshold: 1.81 MeV

Coincidence tag between prompt positron and the delayed neutron capture by a proton

n + p \rightarrow d + \gamma (2.2 MeV) after \(\sim 250 \mu s\)

\[\nu_e \rightarrow \nu_e \text{ Disappearance} \]

\(\nu_e + ^{12}C \rightarrow e^- + ^{12}N \text{ g.s.}\). Threshold 17.33 MeV, well measured, \(\sim 5\) to 10% uncertainty prompt \(e^-,\) followed within a 60 ms window by \(e^+\) from \(\beta\)-decay of the \(^{12}N \text{ g.s.}\), mean \(\tau\) 15.9 ms

\(\nu_e + ^{40}Ar \rightarrow e^- + ^{40}K^*\) Threshold 4.24 to 5.89 MeV depending on which \(^{40}K^*\)

It has the highest cross-section in the energy range of interest, excellent for Disappearance studies

Sanjib K. Agarwalla, GLA2011, Jyvaskyla, Finland, 07/06/11
Add one sterile ν with three active ones at the eV scale

SBL approximation: $\Delta m_{21}^2 \approx \Delta m_{31}^2 \approx 0$ and $x_{ij} \equiv \Delta m_{ij}^2 L/4E$

$$P(\bar{\nu}_\mu \rightarrow \bar{\nu}_e) = 4|U_{e4}|^2|U_{\mu4}|^2 \sin^2 x_{41} \equiv \sin^2 2\theta_{\mu e} \sin^2 x_{41}$$

Example Fit: $\Delta m_{41}^2 = 0.57$ eV2 and $\sin^2 2\theta_{\mu e} = 0.0097$ using LSND, MB-$\bar{\nu}$, KARMEN (Karagiorgi et al., arXiv:0906.1997)

$$P(\nu_e \rightarrow \nu_e) = 1 - 4|U_{e4}|^2(1 - |U_{e4}|^2) \sin^2 x_{41} \equiv 1 - \sin^2 2\theta_{ee} \sin^2 x_{41}$$

Example Fit: $\Delta m_{41}^2 = 1.78$ eV2 and $\sin^2 2\theta_{ee} = 0.089$ using all reactor data with new fluxes (J. Kopp et al., arXiv:1103.4570)

No CPV: can’t reconcile $\bar{\nu}$ (LSND, MB) and ν (MB) data
Add two sterile neutrinos with three active ones at the eV scale

SBL approximation: \(\Delta m_{21}^2 \approx \Delta m_{31}^2 \approx 0 \) and \(x_{ij} \equiv \frac{\Delta m_{ij}^2 L}{4E} \)

\[
P(\bar{\nu}_\mu \rightarrow \bar{\nu}_e) = 4|U_{e4}|^2|U_{\mu4}|^2 \sin^2 x_{41} + 4|U_{e5}|^2|U_{\mu5}|^2 \sin^2 x_{51}
+ 8|U_{e4}U_{\mu4}U_{e5}U_{\mu5}| \sin x_{41} \sin x_{51} \cos(x_{54} + \delta)
\]

\(\delta \equiv \arg(U_{e4}^*U_{\mu4}U_{e5}U_{\mu5}^*) \) is the CP-phase

\[
P(\nu_e \rightarrow \nu_e) = 1 - 4(1 - |U_{e4}|^2 - |U_{e5}|^2)(|U_{e4}|^2 \sin^2 x_{41} + |U_{e5}|^2 \sin^2 x_{51})
- 4|U_{e4}|^2|U_{e5}|^2 \sin^2 x_{54}
\]

| | \(\Delta m_{41}^2 \) | \(|U_{e4}| \) | \(|U_{\mu4}| \) | \(\Delta m_{51}^2 \) | \(|U_{e5}| \) | \(|U_{\mu5}| \) | \(\delta / \pi \) |
|-------|----------------------|------------------|------------------|----------------------|------------------|------------------|------------------|
| A : arXiv:1103.4570 | 0.47 | 0.128 | 0.165 | 0.87 | 0.138 | 0.148 | 1.64 |
| B : arXiv:0906.1997 | 0.39 | 0.40 | 0.20 | 1.10 | 0.21 | 0.14 | 1.1 |

Global best-fit points for (3+2) model. Mass splittings are shown in eV^2

Sanjib K. Agarwalla, GLA2011, Jyvaskyla, Finland, 07/06/11
LENA Scintillation Detector

50 kt Fiducial (Unsegmented)

100 m tall by 30 m diameter

Source-to-detector-face = 20 m

Low detection threshold

Excellent Vertex and Energy Resolution

Clear coincidence signal for $\bar{\nu}_e$ IBD events

Deep underground location (4000 mwe)

Negligible cosmic muon backgrounds

Neutrino Energy threshold

For appearance : $E_\nu > 20 \text{ MeV}$

For disappearance : $E_\nu > 33 \text{ MeV}$
Appearance wave in LENA

50 kt LENA (Appearance mode)

Bin and fit IBD data with reconstructed L/E

(3+1) fit : Karagiorgi et al., arXiv:0906.1997

$\Delta m^2_{41} = 0.57 \text{ eV}^2$ & $\sin^2 2\theta_{\mu e} = 0.0097$

(3+2) fit : J. Kopp et al., arXiv:1103.4570

Accessible L range : 20–120 m

DAR energy range : 20–52.8 MeV

Oscillation wave is dramatic in the long LENA detector and can provide a powerful handle to discriminate between (3+1) and (3+2) schemes

Sanjib K. Agarwalla, GLA2011, Jyvaskyla, Finland, 07/06/11
Appearance Event Rates

| | Δm^2_{41} | $|U_{e4}|$ | $|U_{\mu4}|$ | Δm^2_{51} | $|U_{e5}|$ | $|U_{\mu5}|$ | δ/π |
|------------|-------------------|-----------|---------------|-------------------|-----------|-----------|-------------|
| A : arXiv:1103.4570 | 0.47 | 0.128 | 0.165 | 0.87 | 0.138 | 0.148 | 1.64 |
| B : arXiv:0906.1997 | 0.39 | 0.40 | 0.20 | 1.10 | 0.21 | 0.14 | 1.1 |

<table>
<thead>
<tr>
<th>Fiducial Mass</th>
<th>Radius</th>
<th>Length</th>
<th>Signal (A : 1103.4570)</th>
<th>Signal (B : 0906.1997)</th>
<th>Intrinsic $\bar{\nu}_e$ Background</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 kt</td>
<td>13.58 m</td>
<td>100 m</td>
<td>12985</td>
<td>32646</td>
<td>1450</td>
</tr>
<tr>
<td>25 kt</td>
<td>10.78 m</td>
<td>79.37 m</td>
<td>7787</td>
<td>18356</td>
<td>875</td>
</tr>
<tr>
<td>10 kt</td>
<td>7.94 m</td>
<td>58.48 m</td>
<td>3753</td>
<td>7964</td>
<td>443</td>
</tr>
<tr>
<td>5 kt</td>
<td>6.3 m</td>
<td>46.42 m</td>
<td>2080</td>
<td>4044</td>
<td>261</td>
</tr>
</tbody>
</table>

- Signal and beam background events in 5 to 50 kt LENA
- Total $4 \times 10^{21} \bar{\nu}_\mu$ (100 kW source), efficiency 90%
- The intrinsic $\bar{\nu}_e$ beam contamination is 4×10^{-4}

Sanjib K. Agarwalla, GLA2011, Jyvaskyla, Finland, 07/06/11
5 kt LENA combined with a small 10 kW DAR source can test the LSND/MiniBooNE anti-neutrino signal at 5σ CL in 3+1 model in 1 yr
Bin and fit ν_e scattering data with L/E

(3+1) fit : J. Kopp et al., arXiv:1103.4570

$\Delta m^2_{41} = 1.78 \text{ eV}^2$ and $\sin^2 2\theta_{ee} = 0.089$

(3+2) fit : J. Kopp et al., arXiv:1103.4570

Accessible L range : 20–120 m

DAR energy range : 33–52.8 MeV

Different shape for (3+1) and (3+2) waves.
Comparison between the amplitudes of the wave in various L/E bins cancels flux uncertainties
Disappearance Event Rates

| | Δm_{41}^2 | $|U_{e4}|$ | $|U_{\mu4}|$ | Δm_{51}^2 | $|U_{e5}|$ | $|U_{\mu5}|$ | δ/π |
|----------|-------------------|-----------|-------------|-------------------|-----------|-------------|-------------|
| A : arXiv:1103.4570 | 0.47 | 0.128 | 0.165 | 0.87 | 0.138 | 0.148 | 1.64 |
| B : arXiv:0906.1997 | 0.39 | 0.40 | 0.20 | 1.10 | 0.21 | 0.14 | 1.1 |

<table>
<thead>
<tr>
<th>Fiducial Mass</th>
<th>Radius</th>
<th>Length</th>
<th>Evts w/ Osc (A : 1103.4570)</th>
<th>Evts w/ Osc (B : 0906.1997)</th>
<th>Evts, No Osc</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 kt</td>
<td>13.58 m</td>
<td>100 m</td>
<td>170191</td>
<td>139119</td>
<td>181672</td>
</tr>
<tr>
<td>25 kt</td>
<td>10.78 m</td>
<td>79.37 m</td>
<td>102726</td>
<td>85271</td>
<td>109590</td>
</tr>
<tr>
<td>10 kt</td>
<td>7.94 m</td>
<td>58.48 m</td>
<td>52105</td>
<td>43940</td>
<td>55439</td>
</tr>
<tr>
<td>5 kt</td>
<td>6.3 m</td>
<td>46.42 m</td>
<td>30874</td>
<td>26321</td>
<td>32735</td>
</tr>
</tbody>
</table>

- **CC ν_e scattering events on 12C in 5 to 50 kt LENA**
- **Total $4 \times 10^{21} \nu_e$ (100 kW source), efficiency 80%**
- **E_ν threshold of 33 MeV and resolution $10\%/\sqrt{E_e/\text{MeV}}$**

Sanjib K. Agarwalla, GLA2011, Jyvaskyla, Finland, 07/06/11
DAR-LENA $\nu_e \rightarrow \nu_e$ Sensitivity

100 kW source ($4 \times 10^{21} \nu_e$), 5 - 50 kt fiducial

(3+1) model with simple 2-ν approximation

Triangle & Bullet: (3+1) best-fit values for all reactor data with old & new fluxes

Dashed green curve: 99% CL (2 dof) limit from reactor data with new reactor fluxes

10 kt LENA with a flux of $4 \times 10^{21} \nu_e$ can provide stringent test of the recent reactor anomaly at 3 σ CL (2 dof)

Sanjib K. Agarwalla, GLA2011, Jyvaskyla, Finland, 07/06/11
NOνA : Coming Soon

Segmented Scintillator Detector

- Detector mass 14 kt
- CH$_2$ Scintillator Target, 30% PVC
- Dimensions : $15.7 \m m \times 15.7 \m m \times 67 \m m$
- NOνA not made for low energy signal
- It can only perform ν_e disappearance
- Cannot see the 2.2 MeV γ from n capture
- Very little shielding – 3 m of Earth

Largest background : 10^{10} Michel electrons/year produced by stopped cosmic muon decay

Michel electron events identified and vetoed by tracking the parent muon

For this study, we consider 10,000 to 50,000 un-vetoed Michel background events

Sanjib K. Agarwalla, GLA2011, Jyvaskyla, Finland, 07/06/11
NOνA Event Rates

| | Δm^2_{41} | $|U_{e4}|$ | $|U_{\mu4}|$ | Δm^2_{51} | $|U_{e5}|$ | $|U_{\mu5}|$ | δ/π |
|----------------------|-------------------|------------|-------------|-------------------|----------|------------|-------------|
| A : arXiv:1103.4570 | 0.47 | 0.128 | 0.165 | 0.87 | 0.138 | 0.148 | 1.64 |
| B : arXiv:0906.1997 | 0.39 | 0.40 | 0.20 | 1.10 | 0.21 | 0.14 | 1.1 |

<table>
<thead>
<tr>
<th>Fiducial Mass</th>
<th>Length</th>
<th>Breadth</th>
<th>Height</th>
<th>Evts w/ Osc</th>
<th>Evts w/ Osc</th>
<th>Evts, No Osc</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 kt</td>
<td>67 m</td>
<td>15.7 m</td>
<td>15.7 m</td>
<td>32388</td>
<td>27407</td>
<td>34415</td>
</tr>
</tbody>
</table>

- **CC ν_e scattering events on 12C in 14 kt NOνA far detector**
- **Total** $4 \times 10^{21} \nu_e$ (100 kW source), efficiency **50%**
- **ν energy threshold** of 38 MeV and resolution $100%/\sqrt{E_e/\text{MeV}}$
DAR-NOνA ν_e → ν_e Sensitivity

100 kW & 1 MW average source power

25k & 50k effective Michel e^- Backgrounds

(3+1) model with simple 2-ν approximation

Triangle & Bullet : (3+1) best-fit values for all reactor data with old & new fluxes

Dashed green curve : 99% CL (2 dof) limit from reactor data with new reactor fluxes

100 kW machine is marginal in covering the test points and a higher-power, full DAEδALUS type machine, is needed

Sanjib K. Agarwalla, GLA2011, Jyvaskyla, Finland, 07/06/11
Possible detector for ν_e disappearance search with DAR beam

| | Δm^2_{41} | $|U_{e4}|$ | $|U_{\mu 4}|$ | Δm^2_{51} | $|U_{e5}|$ | $|U_{\mu 5}|$ | δ/π |
|----------------|------------------|----------|--------------|------------------|----------|----------|-------------|
| A: arXiv:1103.4570 | 0.47 | 0.128 | 0.165 | 0.87 | 0.138 | 0.148 | 1.64 |
| B: arXiv:0906.1997 | 0.39 | 0.40 | 0.20 | 1.10 | 0.21 | 0.14 | 1.1 |

<table>
<thead>
<tr>
<th>Fiducial Mass</th>
<th>Length</th>
<th>Breadth</th>
<th>Height</th>
<th>Evts w/ Osc</th>
<th>Evts w/ Osc</th>
<th>Evts, No Osc</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 kt</td>
<td>50 m</td>
<td>10 m</td>
<td>7 m</td>
<td>345601</td>
<td>288061</td>
<td>368812</td>
</tr>
<tr>
<td>3 kt</td>
<td>30 m</td>
<td>10 m</td>
<td>7 m</td>
<td>292671</td>
<td>250392</td>
<td>309799</td>
</tr>
<tr>
<td>1.5 kt</td>
<td>15 m</td>
<td>10 m</td>
<td>7 m</td>
<td>211445</td>
<td>186585</td>
<td>221281</td>
</tr>
</tbody>
</table>

- CC ν_e scattering events on 40Ar in 1.5 to 5 kt LAr detector
- Total 4×10^{21} ν_e (100 kW source), efficiency 90%
- ν energy threshold of 20 MeV and resolution $11%/\sqrt{E_e}+2.5\%$

Sanjib K. Agarwalla, GLA2011, Jyvaskyla, Finland, 07/06/11
DAR-LAr $\nu_e \rightarrow \nu_e$ Sensitivity

- 100 kW average source power
- Negligible background from cosmic muons (under 4000 mwe of shielding)
- (3+1) model with simple 2-ν approximation
- Triangle & Bullet: (3+1) best-fit values for all reactor data with old & new fluxes
- Dashed green curve: 99% CL (2 dof) limit from reactor data with new reactor fluxes

1.5 kt LAr detector and 100 kW source is enough to test the reactor anomaly at high significance

Sanjib K. Agarwalla, GLA2011, Jyvaskyla, Finland, 07/06/11
Can we use DAR beam with ICARUS or LarLAr?

- Use photo detectors to determine the t_0 for the ν_e events
- Determining t_0 is compromised if a muon comes through within 5 μs before the event
- Assume 20 kHz muon rate through the detector. One puts a 99.9% scintillator veto on top of the detector and vetos any events with a muon within 5 μs of the event. This produces a deadtime of $20,000\text{Hz} \times 5\text{ μs} = 10\%$
- 0.1% of the through-going muons will not be vetoed at a rate of 20 Hz. The random coincidence of these with a real ν_e event within 5 μs will be 10^{-4} fraction of the real events which is negligible
- Use LAr detector itself to veto muons with light detectors
Large neutrino detectors using liquid scintillator and liquid argon will come on-line within the next decade

These detectors combined with high intensity 10–100 kW cyclotron DAR neutrino sources would have unprecedented sensitivity to sterile ν oscillations in the high $\Delta m^2 \sim 0.5\text{–}10 \text{ eV}^2$ region

These experiments are an important option as a next major step to search for sterile neutrino oscillations

Thank you