XENON1T Cryogenics and Vacuum

Cameo Lance

REU via Columbia University
Located in LNGS, Italy
Summer 2015
Overview

- Dark Matter
- XENON1T
- Cryogenics
- Leak Test
- Portable Pumping Station (PPS)
- Other
Astronomical evidence

Step one in the search for dark matter: observe indirectly

Gravitational Lensing

Cameo Lance

M33 rotation curve

Merging Galaxy Clusters

Dark Matter Project

Dark Matter 27%
Visible Matter 5%
Dark Energy 68%
The predicted sensitivity of XENON1T will be 100x lower than the current limit published for XENON100.
Located under 1,400m of rock to shield from
- Gamma Rays
- Cosmic Rays
- ~Muons
- ~Neutrons

Cameo Lance
Detection Method

- Dual phase time projection chamber
- Measures Ionization and Scintillation
- Filled with liquid and gaseous xenon at ~ 170 K
A Leak Exists!

- Xenon was detected in the outer vessel with a residual gas analyzer (RGA)
Recuperation

- In order to reduce the loss of xenon
- Transferred xenon from cryostat into bottles on ground floor
- Used LN2 to create pressure differential to induce a flow of xenon
Characterize the Leak

- Leak monodirectional
- Leak began at a pressure of ~400mbar
- Cause: not enough torque on inner vessel bolts in cryostat

Cameo Lance

\[
\begin{align*}
\text{Outer Pressure (bar)} & = 5.55 	imes 10^{-6} \\
\text{Inner Pressure (bar)} & = 0.1
ightarrow 0.8
\end{align*}
\]
Solution

Tighten the 54 bolts
From 65 Nm to 120 Nm
in increments

Access inner vessel
- maintain N2 purge
- remove floor
- lower outer vessel
- undress mylar

Cameo Lance
Leak Rate Reduces

Inner Vessel Pressurization

Inner Vessel Bolt Torque
- $\tau = 120$ Nm
- $\tau = 65$ Nm
Tighten Again

- Performed load cell test
 - 30% less than torque wrench reads
- tightened in one motion
- Tightened via the head of the bolt
No More Leak!

Outer Pressure VS Inner Pressure

Outer Pressure [mbar]

8.05 x 10^-6

8.0

8.95

7.9

7.85

7.8

7.75

7.7

7.65

7.6

Inner Pressure [bar]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Cameo Lance
PPS motivation

- PPS: Portable Pumping Station
- Needed for porcupine and leak testing
- Usable for other subsystems
Design

Convenient to store
Easy to maneuver

Designed using SolidWorks

Cameo Lance
Other Tasks

- Constructed stainless steel pipes for Krypton Column
 - Orbital Welder
- Calculated Volume in Purification System
- Assembled and installed LN2 line to LN2 tower
- Simulated branching ratios of Be using geant4
Purification Volume

- Calculated volume in the inner vessel of the purification system

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Component</td>
<td>Diameter (mm)</td>
<td>Radius (mm)</td>
<td>Length (mm)</td>
<td>Area (mm^2)</td>
<td>Volume (L)</td>
<td>Pressure (bar)</td>
<td>Temperature (K)</td>
<td>Molar Mass (g/mol)</td>
<td>Gas Constant</td>
</tr>
<tr>
<td>2</td>
<td>Line from Bottles 2</td>
<td>10.2</td>
<td>5.1</td>
<td>2578.1</td>
<td>81.71282492</td>
<td>2.106646511</td>
<td>1</td>
<td>293.15</td>
<td>131.3</td>
<td>0.083144621</td>
</tr>
<tr>
<td>3</td>
<td>Line from Bottles 3</td>
<td>10.2</td>
<td>5.1</td>
<td>2216.58</td>
<td>81.71282492</td>
<td>1.811293871</td>
<td>2</td>
<td>293.15</td>
<td>131.3</td>
<td>0.083144621</td>
</tr>
<tr>
<td>4</td>
<td>Line from Restox</td>
<td>10.2</td>
<td>5.1</td>
<td>1527.81</td>
<td>81.71282492</td>
<td>1.24841671</td>
<td>1</td>
<td>293.15</td>
<td>131.3</td>
<td>0.083144621</td>
</tr>
<tr>
<td>5</td>
<td>Line from Heat Exchanger</td>
<td>10.2</td>
<td>5.1</td>
<td>6985</td>
<td>81.71282492</td>
<td>0.5707640821</td>
<td>1</td>
<td>293.15</td>
<td>131.3</td>
<td>0.083144621</td>
</tr>
<tr>
<td>6</td>
<td>PV201-PV211</td>
<td>10.2</td>
<td>5.1</td>
<td>1498.6</td>
<td>81.71282492</td>
<td>0.1224548394</td>
<td>0.45</td>
<td>293.15</td>
<td>131.3</td>
<td>0.083144621</td>
</tr>
<tr>
<td>7</td>
<td>PV233-PV219</td>
<td>10.2</td>
<td>5.1</td>
<td>2311.4</td>
<td>81.71282492</td>
<td>0.1888710235</td>
<td>0.45</td>
<td>293.15</td>
<td>131.3</td>
<td>0.083144621</td>
</tr>
<tr>
<td>8</td>
<td>PV211-PV221/14</td>
<td>10.2</td>
<td>5.1</td>
<td>3429</td>
<td>81.71282492</td>
<td>0.2901932767</td>
<td>0.45</td>
<td>293.15</td>
<td>131.3</td>
<td>0.083144621</td>
</tr>
<tr>
<td>9</td>
<td>PV221-PV225/26/27</td>
<td>10.2</td>
<td>5.1</td>
<td>4445</td>
<td>81.71282492</td>
<td>0.3632135068</td>
<td>0.07</td>
<td>293.15</td>
<td>131.3</td>
<td>0.083144621</td>
</tr>
<tr>
<td>10</td>
<td>PV214-PV217/18/19</td>
<td>10.2</td>
<td>5.1</td>
<td>4445</td>
<td>81.71282492</td>
<td>0.3562135068</td>
<td>0.07</td>
<td>293.15</td>
<td>131.3</td>
<td>0.083144621</td>
</tr>
<tr>
<td>11</td>
<td>Qdrive 1</td>
<td>127</td>
<td>63.5</td>
<td>355.6</td>
<td>12667.68698</td>
<td>4.504629489</td>
<td>0.07</td>
<td>293.15</td>
<td>131.3</td>
<td>0.083144621</td>
</tr>
<tr>
<td>12</td>
<td>Qdrive 2</td>
<td>127</td>
<td>63.5</td>
<td>355.6</td>
<td>12667.68698</td>
<td>4.504629489</td>
<td>0.07</td>
<td>293.15</td>
<td>131.3</td>
<td>0.083144621</td>
</tr>
<tr>
<td>13</td>
<td>Buffer 1</td>
<td>170</td>
<td>85</td>
<td>250</td>
<td>22698.00692</td>
<td>5.675401731</td>
<td>0.07</td>
<td>293.15</td>
<td>131.3</td>
<td>0.083144621</td>
</tr>
<tr>
<td>14</td>
<td>Buffer 2</td>
<td>170</td>
<td>85</td>
<td>250</td>
<td>22698.00692</td>
<td>5.675401731</td>
<td>0.07</td>
<td>293.15</td>
<td>131.3</td>
<td>0.083144621</td>
</tr>
<tr>
<td>15</td>
<td>Total Vol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27.41332977</td>
</tr>
<tr>
<td>16</td>
<td>Total Mass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50.04734182</td>
</tr>
</tbody>
</table>

Cameo Lance
Installation of valves
Cameo Lance

Changed cabling for Q-Drive

Anti-Bouyancy System
Learned

- Hardware
 - About cryogenics
 - Leak testing vacuum systems
 - How to use various tools (e.g. Orbital Welder, RGA, Load Cell)
- Software
 - SolidWorks
 - Programming (e.g. C++, Python)
 - ROOT
 - LaTeX
 - Spreadsheets
- Concepts
 - How photons work
 - What sound really is
- E un poco di Italiano
Conclusion

This summer let me

• In on the secret life of scientist
• Apply the information I have been learning for many years
• And appreciate that information
• Look forward to my life, as a scientist.
Thank You!

- NSF REU program
- Columbia University & Nevis Labs
- Elena Aprile
- John Parsons
- Guillaume Plante
- Patrick de Perio
- Everyone in XENON
Questions?