Implementation of a Time Dependent Analysis Technique for Use in Gamma Ray Astronomy

Garrett Mathews
August 7 2015

VERITAS
Columbia University
Overview

- Gamma ray astronomy
- VERITAS
- Statistical analysis techniques
- Swift J164449.3+573451
- Results
Overview

- Gamma ray astronomy
- VERITAS
- Statistical analysis techniques
- Swift J164449.3+573451
- Results
Cosmic Rays

- High energy charged particles
- Scattered by magnetic fields in space
Cosmic Ray and Gamma Ray Sources

- **Non-thermal sources:**
 - Supernova remnants (SNR)
 - Active galactic nuclei (AGN)
 - Gamma ray bursts (GRB)
 - Dark matter searches
 - Unidentified sources

- **Production techniques:**
 - Hadronic collisions
 - Inverse Compton scattering
 - Synchrotron
Tidal Disruption Event

- Star orbiting black hole pulled apart by gravity
- Accretion disk forms from stellar matter
- Relativistic jet might produce gamma rays
Orbital Observation

- Detects gamma rays using pair production
- Detect sources in High Energy range (HE), 30MeV-100GeV
- Wide field of view, small effective area (1m²)

Fermi Large Area Telescope (LAT)
Ground Observation: Particle Showers

- Gamma rays interact in upper atmosphere
- Causes more interactions and decays
- Charged particles emit Cherenkov light
- Light pool ~250m diameter on ground
Ground Observation

- Imaging Air Cherenkov Telescopes (IACT)
- 3.5° field of view
- Large effective area (100,000 m²)
- Detects in very high energy range (VHE), >100GeV

VERITAS
Overview

• Gamma ray astronomy
• VERITAS
• Statistical analysis techniques
• Swift J164449.3+573451
• Results
VERITAS Telescopes

- 3rd generation IACT
- Array of 4 telescopes- stereo imaging
- 350 hexagonal mirrors- array of 499 circular PMTs
- Sensitive from 100 GeV to >30TeV (complementing Fermi LAT)
Muon Ring

Cosmic Ray

Gamma Ray
Overview

- Gamma ray astronomy
- VERITAS
- Statistical analysis techniques
- Swift J164449.3+573451
- Results
Signal Significance

• Large background flux in observations
• Increases as energy threshold is lowered (increase sensitivity)
• Take data in source and background (on and off) regions
Li & Ma

- Method published in 1983
- Maximum likelihood ratio (hypotheses test)
 - Null hypothesis- conditional maximized parameters
 - Alternative hypothesis- maximized parameters
- Wilks theorem

\[\lambda = \frac{L(X|E_0, \hat{T}_c)}{L(X|\hat{E}, \hat{T})} \]

\[-2 \ln \lambda \sim \chi^2(r) \]
Li & Ma – Likelihood Ratio

• Background and source counts have Poisson distribution
• Null hypothesis: no source exists ($\bar{s} = 0$)
• Alternative hypothesis: source exists ($\bar{s} \neq 0$)

$$P(N) = \frac{\mu^N}{N!} e^{-\mu}$$

$$\lambda = \frac{\bar{b}_0^{(N_{on}+N_{off})}}{\bar{b}^{N_{off}} (\bar{b} + \bar{s})^{N_{on}}}$$

$$-2 \ln \lambda \sim \chi^2(1)$$

$$S = \sqrt{-2 \ln \lambda}$$
Time Dependent Significance

- Same hypotheses as Li & Ma
- Change signal rate to be time dependent \((s = s(t))\)
- New parameter in alternative hypothesis
 - Must have unknown parameter in Wilks theorem solution- amplitude
Interpolation Methods

Linear Method
• Save time by not searching
• Apply constant Δt time bins to all data
• Vectors became 3 orders of magnitude larger
• 45s initialization
• .13s interpolation (106 points)

Binary search method
• Recursive search algorithm
• Splits data each iteration
• $O(\log n)$
• .15s initialization
• .45s interpolation (106 points)
Tests of New Analysis

- Program to insert one count into analysis file
- Create fake light curve with spike in flux
- Should show large increase in significance at that point
Overview

- Gamma ray astronomy
- VERITAS
- Statistical analysis techniques
- Swift J164449.3+573451
- Results
Swift J164449.3+573451

- Detected by radio, optical, and X-ray observations
- Could cause VHE emission- no detection so far
- Highly energetic signal- unlike other signals
 - Signal doesn’t fade like typical GRB
 - Signal too variable for typical AGN
 - Signal too luminous for typical supernova
- Tidal disruption event
- High signal variability- good candidate for time dependent analysis
Swift J164449.3+573451: Swift XRT Count Rate and VERITAS Temporal Coverage

VERITAS coverage indicated by blue and red dashes.
VERITAS Observation of Swift J1644+57

- VERTIAS observed swift for several days
- Only had observations during low X-ray signal times
Overview

- Gamma ray astronomy
- VERITAS
- Statistical analysis techniques
- Swift J164449.3+573451
- Results
Previous VERITAS Results

Significance Map (smoothed)

1.34σ
Results

- Hard cuts analysis:
 - No detection at source
 - Low number of counts
 - Error in analysis
 - Large data set
 - Source significance: 3.75σ
Results

- **Medium cuts analysis:**
 - No detection at source
 - Slightly above expected significance values
 - Similar to hard cuts error
 - Source significance: 1.57σ
Results

- **Soft cuts analysis:**
 - No detection at source
 - Pronounced hole at star location
 - Good mean significance
 - Source significance: 0.063σ
Conclusion

• No detection in Swift J1644+57
• Large data set errors
• VEGAS is operational with time dependent analysis
• New sources with transient VERITAS signal
Acknowledgements

- Ori Weiner
- Brian Humensky
- Reshmi Mukherjee
- John Parsons
- REU Students

Questions?
Image Credits

- Inverse Compton: Cogan, P. University College Dublin (doctoral thesis): 2006
- Fermi LAT Detector: https://www-glast.stanford.edu/instrument.html
- VERITAS Telescopes: http://veritas.sao.arizona.edu/images/stories/veritas_and_building.jpg
- TeV Sky Map: http://tevcat.uchicago.edu/
- VERITAS Mirrors: https://www.cfa.harvard.edu/facilities/flwo/about.html
- VERITAS PMT Array: Cogan, P. University College Dublin (doctoral thesis): 2006
- Particle Shower Simulations: https://www.youtube.com/watch?v=j-BBzWIOai0
- Ring Background Model: Cogan, P. University College Dublin (doctoral thesis): 2006
- Swift J164449.3+573451 Light Curves: http://www.swift.ac.uk/xrt_curves/00450158/