Comparing 2-Level and Time Next Neighbor Cleaning Protocols for Optimizing CTA Image Cleaning

Samantha Gilbert
Univ. of Chicago, Chicago, IL
Columbia Univ., Nevis Laboratories REU
August 4, 2016
Cherenkov Telescope Array (CTA)

- Applications of studying VHE gamma rays

Artist’s concept of active galactic nuclei (AGN): http://www2.le.ac.uk/departments/physics/research/xroa/images/black-hole.jpg/image_preview

Artist’s concept of a binary black hole merger, like the one that generated the first GW transient detection in fall 2015: http://www.nasa.gov/sites/default/files/thumbnails/image/ns_gw_art.jpg
Cherenkov Telescope Array (CTA)

• Why ground-based telescopes?

This image shows that most wavelengths of radiation do not penetrate Earth’s atmosphere: https://www.e-education.psu.edu/astro801/files/astro801/image/atmos_windows_KL.jpg
Cherenkov Telescope Array (CTA)

• Next generation of ground-based gamma-ray telescopes

• Improving upon its predecessors

 • **Factor of 10** greater telescope sensitivity

 • **50-100 telescopes** in the array offers wider range of energies
Schwarzschild-Couder Telescopes (SCTs)

• 3 different sized-telescopes
 • ~4 LSTs (~24 m) → lower energies <100 GeV
 • ~30 MSTs (~12 m) → core energies 0.1-10 TeV
 • ~50 SSTs (~4 m) → higher energies >10 TeV

• SCT concept
 • Large field-of-view
 • reduced plate scale focal surface with a highly pixelated (11328) Silicon photomultiplier camera
 • compact camera close to the secondary mirror

• SCT design planned for MSTs

• prototype SCT (pSCT) under construction
Gamma-Ray Showers

Artist’s rendering of the gamma-ray interactions with atmospheric nuclei that produce Cherenkov light: http://imagine.gsfc.nasa.gov/Images/science/atmosphere_cerenkov_full.png
Gamma-Ray Showers and Imaging Atmospheric Cherenkov Technique

Comparison of gamma-ray and cosmic ray particle tracks [4].

Production of Cherenkov light and the stereoscopic reconstruction method [3].
Method

• Calibration
 • Quantify the NSB
 • Classifying pixels during image cleaning

• Trace Integration
 • Double-pass method calculates charge in each pixel
 • Direct impact on image cleaning
 • Default trace integration: 6-sample windows

A typical trace integration window, with samples on the x-axis and charge in d.c. units on the y-axis [2].
Image Cleaning

• Gamma-ray sources against backgrounds: cosmic rays, night sky background (NSB)

• Remove noisy pixels

• Variety of methods
 • 2LC, TNN
 • Cluster, time cluster, time 2LC

• Avg. pedestal value = 25 d.c.
Two-Level Cleaning (2LC)

• Double-pass system to classify pixels based on pulse charge threshold
 • Image? Border? Noise?
 • What makes a “neighboring” pixel?
 • Vary the upper/lower thresholds
 • Default = 300/150 d.c.
 • Notation system: factor multiplied by avg pedestal
 • 8.4, 10.4, 10.6, 12.4, 12.6, 12.8, 14.6, 14.8, 16.6, 16.8

Moving clockwise: image of simulated CTA camera from eventdisplay; image of VERITAS camera from McGill’s DQM viewer; what makes a “neighboring” pixel for square pixels?
Time Next Neighbor (TNN) Cleaning

• Considers charge in the pixel AND arrival time differences

• Looks for next neighbor (NN) groups in a time coincidence window

• Three NN groups
 • 2NN, 3NN, 4NN
 • Wider range of conditions

 • *Preserve as many events as possible, especially in the lower energies!*

• Vary fake probability
 • 0.03%, 0.04%, 0.05%, 0.06%, 0.07%
MC Simulations/Software Packages

• Simulations vs. Real data

• What are MC sims?
 • CORSIKA = air showers/cosmic ray background
 • sim_telarray = telescope response
 • eventdisplay = analyze sims

• Simulation Conditions
 • 1 p-SCT (MST) in the center of the array
 • Assume all showers arrive in the center of the camera

https://www.mpi-hd.mpg.de/hfm/CTA/CTA_arrays.html
Copy sim_tel files

Convert to ROOT files

eventdisplay with 15 different parameter files*

Process 147 GB proton

Process 86 GB gamma

Histo comparing cleanings for all proton

Histo comparing cleanings for all gamma

*2LC 8.4, 10.4, 10.6, 12.4, 12.6, 12.8, 14.6, 14.8, 16.6, 16.8
TNN 0.03%, 0.04%, 0.05%, 0.06%, 0.07%
Quantifying the Comparison

• No. of events that pass the cleaning (10^-2-10^2 TeV on log scale)

• Compare to no. of events that trigger telescopes

\[r = \frac{n_c}{n_t} \]

• Uncertainty

\[\delta n = \sqrt{n} \]

\[\delta r = \sqrt{\left(\frac{\delta n_c}{n_t}\right)^2 + \left(\frac{-n_c \times \delta n_t}{n_t^2}\right)^2 + \frac{-2n_c \times \delta n_c n_t}{n_t^3}} \]
Comparing Default 2LC, TNN

Gamma simulations

Proton simulations
Comparing ALL 2LC, TNN

Gamma simulations

Proton simulations
Gamma simulations
Proton simulations
Quantifying Efficiency Ratio Comparison

<table>
<thead>
<tr>
<th>log10(E (TeV))</th>
<th>Cleaning</th>
<th>Efficiency ($\frac{n_{\text{events}}}{n_{\text{predicted}}}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-2}−10^{-1.8}</td>
<td>2LC 8.4</td>
<td>1 ± 0</td>
</tr>
<tr>
<td>10^{-2}−10^{-1.8}</td>
<td>2LC 12.4</td>
<td>1 ± 0</td>
</tr>
<tr>
<td>10^{-2}−10^{-1.8}</td>
<td>2LC 12.6</td>
<td>0.951 ± 0.003</td>
</tr>
<tr>
<td>10^{-2}−10^{-1.8}</td>
<td>2LC 12.8</td>
<td>0.82 ± 0.01</td>
</tr>
<tr>
<td>10^{-2}−10^{-1.8}</td>
<td>2LC 14.6</td>
<td>0.66 ± 0.02</td>
</tr>
<tr>
<td>10^{-2}−10^{-1.8}</td>
<td>2LC 14.8</td>
<td>0.62 ± 0.02</td>
</tr>
<tr>
<td>10^{-2}−10^{-1.8}</td>
<td>2LC 16.8</td>
<td>0.54 ± 0.02</td>
</tr>
<tr>
<td>10^{-2}−10^{-1.8}</td>
<td>TNN 0.0005</td>
<td>0.951 ± 0.003</td>
</tr>
<tr>
<td>10^{-1.8}−10^{-1.6}</td>
<td>2LC 8.4</td>
<td>1 ± 0</td>
</tr>
<tr>
<td>10^{-1.8}−10^{-1.6}</td>
<td>2LC 12.4</td>
<td>0.9802 ± 0.0005</td>
</tr>
<tr>
<td>10^{-1.8}−10^{-1.6}</td>
<td>2LC 12.6</td>
<td>0.918 ± 0.002</td>
</tr>
<tr>
<td>10^{-1.8}−10^{-1.6}</td>
<td>2LC 12.8</td>
<td>0.847 ± 0.004</td>
</tr>
<tr>
<td>10^{-1.8}−10^{-1.6}</td>
<td>2LC 14.6</td>
<td>0.772 ± 0.0005</td>
</tr>
<tr>
<td>10^{-1.8}−10^{-1.6}</td>
<td>2LC 14.8</td>
<td>0.728 ± 0.0006</td>
</tr>
<tr>
<td>10^{-1.8}−10^{-1.6}</td>
<td>2LC 16.8</td>
<td>0.564 ± 0.009</td>
</tr>
<tr>
<td>10^{-1.8}−10^{-1.6}</td>
<td>TNN 0.0005</td>
<td>0.9678 ± 0.0008</td>
</tr>
</tbody>
</table>

Gamma table snippet

<table>
<thead>
<tr>
<th>log10(E (TeV))</th>
<th>Cleaning</th>
<th>Efficiency ($\frac{n_{\text{events}}}{n_{\text{predicted}}}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-2}−10^{-1.8}</td>
<td>2LC 8.4</td>
<td>1 ± 0</td>
</tr>
<tr>
<td>10^{-2}−10^{-1.8}</td>
<td>2LC 12.4</td>
<td>0.959 ± 0.003</td>
</tr>
<tr>
<td>10^{-2}−10^{-1.8}</td>
<td>2LC 12.6</td>
<td>0.878 ± 0.008</td>
</tr>
<tr>
<td>10^{-2}−10^{-1.8}</td>
<td>2LC 12.8</td>
<td>0.84 ± 0.01</td>
</tr>
<tr>
<td>10^{-2}−10^{-1.8}</td>
<td>2LC 14.6</td>
<td>0.73 ± 0.02</td>
</tr>
<tr>
<td>10^{-2}−10^{-1.8}</td>
<td>2LC 14.8</td>
<td>0.67 ± 0.02</td>
</tr>
<tr>
<td>10^{-2}−10^{-1.8}</td>
<td>2LC 16.8</td>
<td>0.55 ± 0.03</td>
</tr>
<tr>
<td>10^{-2}−10^{-1.8}</td>
<td>TNN 0.0005</td>
<td>0.980 ± 0.001</td>
</tr>
<tr>
<td>10^{-1.8}−10^{-1.6}</td>
<td>2LC 8.4</td>
<td>1 ± 0</td>
</tr>
<tr>
<td>10^{-1.8}−10^{-1.6}</td>
<td>2LC 12.4</td>
<td>0.9888 ± 0.0003</td>
</tr>
<tr>
<td>10^{-1.8}−10^{-1.6}</td>
<td>2LC 12.6</td>
<td>0.964 ± 0.001</td>
</tr>
<tr>
<td>10^{-1.8}−10^{-1.6}</td>
<td>2LC 12.8</td>
<td>0.922 ± 0.002</td>
</tr>
<tr>
<td>10^{-1.8}−10^{-1.6}</td>
<td>2LC 14.6</td>
<td>0.897 ± 0.003</td>
</tr>
<tr>
<td>10^{-1.8}−10^{-1.6}</td>
<td>2LC 14.8</td>
<td>0.863 ± 0.003</td>
</tr>
<tr>
<td>10^{-1.8}−10^{-1.6}</td>
<td>2LC 16.8</td>
<td>0.791 ± 0.005</td>
</tr>
<tr>
<td>10^{-1.8}−10^{-1.6}</td>
<td>TNN 0.0005</td>
<td>0.99721 ± 0.00007</td>
</tr>
</tbody>
</table>

Proton table snippet
Comparing Event Images: Run 2222, Event 227801

Event image generated using 2LC 8.4

Event image generated using TNN 0.05% cleaning
Conclusion and Outlook

• TNN 0.05% poses no loss of information compared to default 2LC

• Always performs better than the default 2LC but also generates less noisy images → most efficient at keeping TRUE events

• Potential problems
 • Keep more low energy showers → harder to classify the shower primary
 • Generate instrument response functions (IRFs) —→ TNN’s impact on telescope sensitivity
References

Acknowledgments

- NSF
- John Parsons
- Amy Garwood
- From VERITAS: Reshmi Mukherjee, Marcos Santander
- From CTA: *Brian Humensky, Daniel Nieto, Abhineet Agarwal*