Angular and Energy Distributions of H$_3^+$ in an Ion Trap

Aalayah Spencer1,2

1Department of Physics and Astronomy
Michigan State University
2Savin Group
Columbia University

REU Final Presentation, 2018
Overview

1. Scientific Background
2. The Apparatus
3. My Work
4. Conclusions
5. Acknowledgments
Cosmic Cycle of Gas

Diffuse Cloud → Dense Molecular Cloud → Protostellar Core → Protoplanetary disks → Stars and Planets
What are Dense Molecular Clouds?
What are Dense Molecular Clouds?

- \(n = 10^4 \text{ cm}^{-3} \)
What are Dense Molecular Clouds?

- 10-20 K
What are Dense Molecular Clouds?

- Ion-neutral reaction driven chemistry
What are Dense Molecular Clouds?

- Cosmic rays initiate the chemistry in DMCs instead of UV photons.
H_3^+ formation

$$H_2 + \text{cosmic ray} \rightarrow H_2^+ + e^- + \text{cosmic ray}'$$

$$H_2^+ + H_2 \rightarrow H_3^+ + H$$
H_3^+ Chemistry

- H_3^+ is major driver in the chemistry of DMCs
 - Reacts as a proton donor

- Participates in many ion-neutral reactions which tend to be barrierless and exoergic
 - Favored due to the low temperatures characteristic of DMCs
H$_3^+$ Observations

- H$_3^+$ has no dipole moment:
 - No pure rotational spectrum
 - Not excited at DMC temperatures

- Observation of H$_2$D$^+$ and D$_2$H$^+$:
 - Has dipole moment
 - Can be excited at these low temperatures
 - Enables the H$_3^+$ abundance to be inferred
 - Formed from two possible reactions
\[\text{H}_3^+ \text{ Deuteration} \]

- \[\text{H}_3^+ + \text{HD} \rightarrow \text{H}_2\text{D}^+ + \text{H}_2 \]
 - Rate coefficient calculations are beyond quantum mechanical capabilities
 - Reaction rates known experimentally up to 15\% uncertainty

- \[\text{H}_3^+ + \text{D} \rightarrow \text{H}_2\text{D}^+ + \text{H} \]
 - Rate coefficient calculations are beyond quantum mechanical capabilities
 - Classical and semi-classical calculations differ by almost an entire order of magnitude
 - No experiments have been done
Merged Fast-Beams Apparatus
Measuring the Cross Section

\[\sigma = \left(\frac{S}{T_a T_g \eta} \right) \left(\frac{e^2 v_D v_{H_3^+}}{I_D I_{H_3^+}} \right) \left(\frac{1}{\Omega} \right) \] \hspace{1cm} (1)

- \(\sigma \) = absolute cross section
- \(S \) = Count rate
- \(e \) = elementary charge
- \(v_D, v_{H_3^+} \) = D and H_3^+ velocity
- \(I_D, I_{H_3^+} \) = D and H_3^+ current
- \(\Omega \) = Overlap factor
Cross Section Measurement

- $\text{H}_3^+ + \text{D} \rightarrow \text{H}_2\text{D}^+ + \text{H}$
Internal Energy Problem

- Beam production leads to unknown internal excitation of H_3^+
Ion Source Issues

- Gives hot \(\text{H}_3^+ \)
- Continuous source
- Duty Cycle = 100%
- \(S = 10 \text{ s}^{-1} \)

- Gives cold \(\text{H}_3^+ \)
- Pulsed
- Duty Cycle \(10^{-4}\% \)
- \(S = 10^{-3} \text{ s}^{-1} \)
Solution for Higher Beam Current

- Simulate H_3^+ ion trajectories
- Determine trapping voltage for H_3^+ ions
- Determine angular distribution
- Determine energy distribution
Ion Trap Trajectory Simulations

- Modeling performed using SIMION, an ion optics simulation program

- Trap Characteristics:
 - 2D cylindrically symmetric potential array

- Beam Characteristics:
 - 2500 particles
 - Energy = 18.02 keV
 - Conical Distribution of 1 mrad
 - Simulations used either 5 mm or 10 mm diameter beam
 - Required a trapping voltage of 28.71 kV
Angular Distribution Measurements

- Angular distributions from the center of the trap for a 5mm beam after 50 cycles:

![Angular Distributions](image)
Trapping Efficiency

- Measurements taken at the center of the trap after 5, 10, and 50 cycles:

![Graph showing percentage of particles with angular distributions that fall between -0.006 to 0.006 radians in 5mm beam as a function of time.](image)

- The graph plots the percentage of particles as a function of cycles.
Angular Distribution Measurements

- Angular distributions from the center of the trap for a 10mm beam after 50 cycles:
Trapping Efficiency

- Measurements taken at the center of the trap after 5, 10, and 50 cycles:

![Graph showing percentage of particles with angular distributions that fall between -0.006 to 0.006 radians in a 10mm beam as a function of time.](image)
Measuring the angular distributions allows us then measure the relative energy distributions of this reaction. For mono-energetic beams:

\[E_r = \mu \left(\frac{E_n}{M_n} + \frac{E_i}{M_i} - 2\sqrt{\frac{E_n E_i}{M_n M_i}} \cos \theta \right) \]

- \(\mu \) = reduced mass
- \(E_n \) = Energy of neutrals (12 keV - D)
- \(E_i \) = Energy of ions (18.02 keV - \(\text{H}_3^+ \))
- \(M_n \) = Neutral Mass (1.88 GeV/c^2 - D)
- \(M_i \) = Ion Mass (2.81 GeV/c^2 - \(\text{H}_3^+ \))
- \(\theta \) = Intersection angle
Energy Distribution Measurements
Conclusions

- The angular distributions over time were kept minimal
- We can keep the majority of the beam in a defined range.
- Enables us maximize the beam current from the pulsed gas jet while minimizing beam loss from the trap
Acknowledgments

- Mentors
 - Dr. Kyle Bowen
 - Dr. Pierre Hillenbrand
 - Dr. Daniel Savin

- Program Coordinators
 - Amy Garwood
 - Professor Georgia Karagiorgi
 - Professor John Parsons