Investigating the Nature of Flat-Spectrum Radio Quasars
3C 279 and PKS 1222+216

Meg Houck
Davidson College
Outline

I. High Energy Astronomy
 A. Types
 B. Detection

II. Sources
 A. Active Galactic Nuclei
 B. Flat-Spectrum Radio
 Quasars
 1. Leptonic Model
 2. Hadronic Model

III. Scientific Motivation
 A. Extragalactic Background Light
 B. Previous Investigation

IV. My Research
 A. Data Collection
 B. Analysis
 C. Results
High-Very High Energy Astronomy

- Opacity problem
- Detection:
 - Direct methods
 - Indirect methods

Image: NASA
Direct: The Neil Gehrels Swift Observatory and Fermi-LAT

- **X-Ray Telescope**: 0.2-10 keV
- **Burst Alert Telescope**: 15-150 keV
- **UV/Optical Telescope**: 170 - 650 nm
Direct: Fermi Large Area Telescope

- Detects energies of pair produced particles

20 MeV - 300 GeV
Indirect: VERITAS

- Cherenkov Light
- Optical PMT detectors
- Telescope array for direction

Images: CTA, VERITAS
Sources: Active Galactic Nuclei

- Composition
 - SMBH
 - Accretion Disk
 - Astrophysical Jet
- Variable
- Subclassification

Image: NASA
Blazars

- Small angle
- FSRQs
 - Qualities
 - Problems
Blazars

- Small angle
- FSRQs
 - Qualities
 - Problems
FSRQ Modelling

Image: Bottacini et. al.
Leptonic Model

Electron Synchrotron Radiation

Image: physics.byu.edu
Leptonic Model

Inverse Compton Scattering: External Compton and Synchrotron Self Compton

Electron Synchrotron Radiation
Lepto-hadronic Model

Electron Synchrotron Radiation
Lepto-hadronic Model

Electron Synchrotron Radiation

Hadronic Processes
Extragalactic Background Light

- Cosmic Optical BG + Cosmic Infrared BG
- Light from galaxies and star forming systems
- Interaction with gamma rays

\[\gamma + \gamma = e^- + e^+ \]

Image: Dole et. al.
Extragalactic Background Light

- FSRQs as tools to constrain EBL

Image: Dole et. al.
3C 279
\[z = 0.536 \]

PKS 1222+216
\[Z = 0.434 \]

(Simbad images)
3C 279

PKS 1222+216

VERITAS: VHE upper limits (TeV range) ; Fermi-LAT: VHE (GeV range)
3C 279

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Energy Range</th>
<th>Date Range</th>
<th>Exposure (ks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swift UVOT</td>
<td>170-650 nm</td>
<td>30 Dec 2013 - 10 Jan 2014</td>
<td>23.01904</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 Mar 2014 - 07 Apr 2014</td>
<td>12.324889</td>
</tr>
<tr>
<td>Swift XRT</td>
<td>0.3-10.0 keV</td>
<td>30 Dec 2013 - 10 Jan 2014</td>
<td>23.414524</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 Mar 2014 - 07 Apr 2014</td>
<td>12.360945</td>
</tr>
<tr>
<td>Fermi-LAT</td>
<td>20 MeV - 300 GeV</td>
<td>30 Dec 2013 - 10 Jan 2014</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 Mar 2014 - 07 Apr 2014</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16 Jun 2015 - 19 Jun 2015</td>
<td></td>
</tr>
<tr>
<td>VERITAS</td>
<td>100 GeV - 10 TeV</td>
<td>30 Dec 2013 - 10 Jan 2014</td>
<td>19.512</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 Mar 2014 - 07 Apr 2014</td>
<td>58.446</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16 Jun 2015 - 19 Jun 2015</td>
<td>5.784</td>
</tr>
</tbody>
</table>

PKS 1222+216

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Energy Range</th>
<th>Exposure (ks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swift UVOT</td>
<td>170 - 650 nm</td>
<td>17.822</td>
</tr>
<tr>
<td>Swift XRT</td>
<td>0.3-10.0 keV</td>
<td>18.296</td>
</tr>
<tr>
<td>Fermi-LAT</td>
<td>20 MeV - 300 GeV</td>
<td></td>
</tr>
<tr>
<td>VERITAS</td>
<td>100 GeV - 10 TeV</td>
<td>21.726</td>
</tr>
</tbody>
</table>
Swift-XRT

- XSelect and XSpec
- Deabsorb neutral hydrogen
- Modelling
 - 3C 279
 - PKS 1222+216
Swift-XRT

3C 279 Power Law

- XSelect and XSpec
- Deabsorb neutral hydrogen
- Modeling
 - 3C 279
 - PKS 1222+216
Swift-XRT

3C 279 Power Law

- XSelect and XSpec
- Deabsorb neutral hydrogen
- Modelling
 - 3C 279
 - PKS 1222+216

\[
\frac{dN}{dE} = K \left(\frac{E}{1 \text{ keV}} \right)^{-\alpha}
\]

K : normalization
E : energy
\(\alpha\) : photon index
Swift-XRT

PKS 1222+216 Broken Power Law

- XSelect and XSpec
- Deabsorb neutral hydrogen
- Modelling
 - 3C 279
 - PKS 1222+216
Swift-XRT

PKS 1222+216 Broken Power Law

\[
\frac{dN}{dE} = \begin{cases}
KE^{-\alpha_1} & \text{if } E \leq E_{\text{break}} \\
K(E_{\text{break}})^{\alpha_2-\alpha_1}(\frac{E}{1 \text{ keV}})^{-\alpha_2} & \text{if } E > E_{\text{break}}
\end{cases}
\]

- XSelect and XSpec
- Deabsorb neutral hydrogen
- Modelling
 - 3C 279
 - PKS 1222+216

K : normalization

\(E_{\text{break}}\) : breaking energy

\(E\) : energy

\(\alpha_1\) : photon index for \(E \leq E_{\text{break}}\)

\(\alpha_2\) : photon index for \(E > E_{\text{break}}\)
Swift-UVOT

- Analysis tools from VERITAS collaborator (Karlen Shahinyan, University of Minnesota)
 - Combined observations by filter
- Dust Absorption
Archival Data

3C 279

PKS 1222+216

- Important to remember: unconstrained
3C279 Broadband SEDs with Archival Data (Jan 2014, Apr 2014, Jun 2015)
PKS 1222+216 SED and Modeling

Modeling: Qi Feng
Summary and Outlook

● Benefits of building broadband SEDs for FSRQs
 ○ Learning about the characteristics of the source
 ○ Constraining the EBL model

● Broadband SEDs disfavor one zone SSC model

● Next Steps:
 ○ Modeling using external Compton