Search for Exotic Higgs Boson Decay

By Sophie Haight, Ines Ochoa, John Parsons
Standard Model

- **Fundamental, subatomic particles**
- **Fermions**: bind to make matter
 - Leptons
 - Quarks
 - Color Charge
 - 3 Generations
Standard Model – Gauge Bosons

- Gauge Bosons
 - Photon – EM force
 - W and Z – Weak force
 - Gluons – Strong force
- Gravity - unknown

Four Fundamental Forces

- Weakest
 - Gravitational
- Strongest
 - Weak nuclear
 - Electromagnetic
 - Strong nuclear
Higgs Boson

• Origin of Mass
• Higgs Field
• Brout-Englert-Higgs mechanism (1980s)
• Standard Model
• Detected in 2012 by CERN
• Two Z boson, two photon
Beyond standard model

• Standard Model Questions:
 • Neutrino oscillations
 • Dark Matter
 • GR

• Supersymmetry
 • Unseen ‘super’ particle for every elementary particle
 • More massive
 • Less spin
 • Dark Matter?
 • Ties together inconsistencies
Exotic Higgs Decay

• Associated production of Higgs + Z
• Z → 2 leptons
• Higgs → χ1, χ2 → G, γ
 • Supersymmetric particles
 • Neutralino (NLSP)
 • Gravitino (LSP)
 • Photon (detectable)
• Non-pointing, delayed photon
 • NLSP decay = free parameter
 • β = 0.9
 • Angle of Decay
(more) Exotic Higgs Decay

- Possible Results (post NLSP decay)
 - 2 photons detected
 - 1 photon detected
 - No photons detected

- Occurrence rate
 - < 1% from Higgs + Z
Distinguishing the Exotic Decay

- Data: $Z \rightarrow e^+, e^-, \gamma$
 - Prompt photon
- Differs from delayed photon
- ‘Tail’ between background and signal
- Photon timing accuracy important
 - 100-200 ps
Timing calibration: Data vs. MC

• When samples are simulated in MC, some factors are not accounted for
• Timing uncertainty in data, not in MC yet
Examining Exotic Higgs Decay

✔ Look closely at photon decays from background data compared to simulated signal
✔ Assess timing uncertainty in MC
✔ Calibrate uncertainty in MC with what we see in data
✔ Check that event timing in MC is now ‘correlated’
CERN

- Founded 1954
- Collaboration
 - Over 17,000 scientists across the globe
- Advancing science
 - Particle physics: Higgs, etc.
- Advancing technology
 - World wide web
Large Hadron Collider

- Most powerful particle accelerator in the world
- 4 points of collision
- Successive acceleration by LHC machines
- Bending via magnets
- Goals:
 - Developing and supporting the Standard Model
ATLAS Nevis Team

John Parsons

Ines Ochoa

Daniel Williams

Gustaaf Brooijmans

Julia Gonski

Elena Busch

Juan Varela
ATLAS Experiment

- Detector
 - Inner Detector
 - Calorimeter
 - Muon Spectrometer
 - Magnet System
 - Trigger and Data Acquisition System
 - Computing System
Liquid Argon Calorimeter

- Front End Boards
- Energy and Time deposition
- Resolution
- Calibration
 - 9 corrective steps
 - Machine Related Uncertainty
- Beamspread
Beamspreading

- Beamspreading
 - Proton beams travel in bunches
 - Bunches are finite length
 - Effect on collision time
 - Correlation between position in bunch and collision time
 - Account for beamspreading

Credit: Sergio Bertolucci, CERN
Data Used

• Data with unhelpful preselection
• Signal
 • WH, ZH, ttH samples
 • Various values of mchi1, mchi2, tau

<table>
<thead>
<tr>
<th>Run</th>
<th>Mass χ^{20}</th>
<th>Mass χ^{10}</th>
<th>τ (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>449650</td>
<td>40</td>
<td>30</td>
<td>2</td>
</tr>
<tr>
<td>449724</td>
<td>30</td>
<td>0.5</td>
<td>10</td>
</tr>
<tr>
<td>449727</td>
<td>30</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>449728</td>
<td>40</td>
<td>0.5</td>
<td>10</td>
</tr>
<tr>
<td>449737</td>
<td>50</td>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>449739</td>
<td>60</td>
<td>0.5</td>
<td>10</td>
</tr>
</tbody>
</table>

ZH Samples
Cuts

- **Electrons**
 - 2 required
 - Di-electron trigger:
 - $\text{Pt} > 20 \text{ GeV}$ for both
 - Single electron trigger
 - Leading $\text{pt} > 27 \text{ GeV}$
 - Sub leading $\text{pt} > 9 \text{ GeV}$

- **Photons**
 - One required
 - $\text{Pt} > 10 \text{ GeV}$

- **Eta (for photons):**
 - Cutoff at 2.47 m
 - Gap between 1.52 m and 1.37 m for detector electronics
Prompt background over ZH decay

![Graph showing number of events (normalized) over time (ns) with different scenarios labeled as ZH, t = 2ns, ZH, t = 10ns, etc., with background and ATLAS internal labels.](image)
Beamspread not Incorporated in MC?

- Calorimeter measures photon time
- Lacking background knowledge about rest of objects in that event

Do we see in MC
- Objects not ‘correlated’
- Evidence: electron timing plots
Electrons in same event uncorrelated
Then sum and difference of leading and sub leading electron times

Times are uncorrelated

Sigma ~ 407 ps

Sigma ~ 420 ps
MC is uncorrelated

- Correlated = move in same direction
 - t_1 change yields t_2 change
- Timing of objects in the same event appear unrelated
 - Not accounting for beam spread
- Uncertainty of timing same whether you add subleading electron or subtract
 - Adding the other electron event doesn’t affect the uncertainty that beam spread should produce
‘Smearing’ MC with Gaussian

• Apply distribution in a correlated way
• Draw from Gaussian
 • Shape bunch densities along beamline
 • Mean = 0
 • Sigma = 200 ps
 • Random
• Add the SAME draw to ALL objects in each event => correlated at the event level

Electron time plot indicates ~200 ps beamspread for correlated data
Effects on Data

- Timing distribution widened
- Increased sigma
- Objects associated with one and other (and their position in a bunch) at the event level
Photon (delayed), background, and electron (prompt) decays

ATLAS Internal

Pre-Smearing

ATLAS Internal

Post-Smearing
Before and After Smearing for ZH samples

- **Before Smearing**:
 - Tau = 2 ns, $\chi^2_{20} = 40$, $\chi^2_{10} = 30$

- **After Smearing**:
 - Tau = 10 ns, $\chi^2_{20} = 30$, $\chi^2_{10} = 0.5$
 - Tau = 10 ns, $\chi^2_{20} = 30$, $\chi^2_{10} = 2.5$
Tau = 10 ns, $\chi_{20} = 40, \chi_{10} = 0.5$

$\tau = 10 \text{ ns}, \chi = 20 = 50, \chi_{10} = 40$

$\tau = 10 \text{ ns}, \chi = 20 = 60, \chi_{10} = 0.5$
ATLAS Internal

- **el_t_addition_smeared**
 - Constant: 46.21
 - Mean: -0.0543
 - Sigma: 0.5683

Sigma ~ 580 ps

- **el_t_difference_smeared**
 - Constant: 63.08
 - Mean: 0.01316
 - Sigma: 0.4214

Sigma ~ 420 ps
Correlation between leading and sub leading electrons

Pre Smearing

Post Smearing
Smearing Successful!

- Uncertainty from beam spread added to MC
- Events are correlated to each other and their position in the bunch
Thank you to everyone who helped make this project possible!

Specifically I’d like to thank John Parsons and Ines Ochoa for instructing and helping me on the project, Amy Garwood for managing the REU students.

This material is based upon work supported by the National Science Foundation under Grant No. NSF PHY-1659528
Questions?
Another important relationship: Mean Energy vs. Time Resolution (sigma) follows trend $1/E$
Data Samples

Background

sample1: 2ns
sample2: 2ns
sample3: 2ns
sample4: 2ns
sample5: 10ns
sample6: 10ns
sample7: 10ns
sample8: 10ns
sample9: 10ns
sample10: 10ns
sample11: 10ns
sample12: 10ns
Selecting Cuts
Electron timing by energy bin

```
<table>
<thead>
<tr>
<th>Energy Bin</th>
<th>Entries</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Prob</th>
<th>Constant</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-50 GeV</td>
<td>426</td>
<td>0.01544</td>
<td>0.5705</td>
<td>0.1478</td>
<td>2.31 ± 30.09</td>
<td>0.02094</td>
<td>0.03368</td>
<td>0.4039</td>
</tr>
<tr>
<td>50-100 GeV</td>
<td>632</td>
<td>0.005353</td>
<td>0.2894</td>
<td>0.05158</td>
<td>3.75 ± 74.56</td>
<td>0.01085</td>
<td>0.02387</td>
<td>0.2556</td>
</tr>
<tr>
<td>100-200 GeV</td>
<td>475</td>
<td>0.001971</td>
<td>0.2408</td>
<td>0.5176</td>
<td>3.88 ± 64.88</td>
<td>0.010545</td>
<td>0.003362</td>
<td>2.253</td>
</tr>
<tr>
<td>200-1000 GeV</td>
<td>238</td>
<td>0.009676</td>
<td>0.2188</td>
<td>0.3389</td>
<td>3.03 ± 35.97</td>
<td>0.01376</td>
<td>0.02108</td>
<td>0.2007</td>
</tr>
</tbody>
</table>
```