Analyzing the unprecedented gamma-ray flare from the blazar VER J0521+211

Leela Chari

Columbia Nevis Labs REU Program, Summer 2022
Outline

Background
- Why study gamma rays?
- What is VERITAS?
 - IACTs, Physics of Air Showers
- Gamma-ray sources: AGNs/Blazars

Motivation
- The Blazar VER J0521+211
- Project goal

Methods
- Stages of VERITAS analysis (VEGAS)

Results
- Analysis of VER J0521+211

Summary & Next Steps
Background
● Why study gamma rays?
● What is VERITAS?
 ○ IACTs, Physics of Air Showers
● Gamma-ray sources: AGNs/Blazars

Motivation
● The Blazar VER J0521+211
● Project goal

Methods
● Stages of VERITAS analysis (VEGAS)

Results
● Analysis of VER J0521+211

Summary & Next Steps
Why study gamma rays?

- Allows us to study the most energetic events in the universe
 - Strong gravitational & magnetic fields
- Indirectly aids search for cosmic ray sources

HE (~30 MeV - 300 GeV)
VHE (~30 GeV - 300 TeV)

Image credits: “The electromagnetic spectrum and its transmittance through Earth’s atmosphere”, NASA
IACTs, Air Showers

- Gamma rays cannot fully penetrate atmosphere
 - Air showers
 - Pair production and bremsstrahlung radiation
- Imaging atmospheric Cherenkov telescopes (IACTs)
 - Can image the Cherenkov light produced by the relativistic particles
- Can trace origin of incident gamma rays
- Cosmic rays also induce air showers

Image credits: “Atmospheric Cherenkov telescopes for high-energy γ-ray astronomy”, VERITAS Collaboration
What is VERITAS?

- Very Energetic Radiation Imaging Telescope Array System
- Array of four ground-based telescopes
- Observes VHE gamma rays from ~85 GeV - 30 TeV
- Located at Fred Whipple Observatory in Arizona
Gamma-ray sources: AGN/Blazars

- **Active Galactic Nuclei (AGN):** Central SMBH outshines rest of galaxy
 - High energy emission originates from plasma jets
- **Blazars:** Class of jetted AGN directed towards us
 - Majority of sources detected by VERITAS
 - Relativistic beaming
 - Superluminal motion
 - High luminosity
 - Fast variability
 - BL Lac vs. FSRQ
Superluminal motion

Image credits: Hubble image of M87 jet (left); "Superluminal motions in astronomical sources", Michael Richmond (right)
Superluminal motion

\[D = \text{distance from observer at point A} \]

\[v = \beta c = \text{actual velocity of blob} \]

\[\Delta \tau = \text{time to move from point A to B} \]

\[\Delta x = \text{transverse motion (what we observe)} \]

\[= v \Delta \tau \sin \theta \]

\[= \beta c \Delta \tau \sin \theta \]

\[\Delta y = \text{motion towards observer} \]

\[= \beta c \Delta \tau \cos \theta \]

Superluminal motion

Apparent time measured by the observer:
\[\Delta\tau_{\text{apparent}} = \Delta\tau(1 - \beta \cos\theta)\]

Apparent velocity measured by the observer:
\[
\beta_{\text{apparent}} = \frac{\Delta x}{c \Delta\tau_{\text{apparent}}} = \frac{\beta \sin\theta}{1 - \beta \cos\theta}
\]

Maximized when: \[\cos\theta = \beta \text{ or } \theta = 1/\Gamma\]

(Small angles and actual velocity close to speed of light)
Outline

Background
- Why study gamma rays?
- What is VERITAS?
 - IACTs, Physics of Air Showers
- Gamma-ray sources: AGNs/Blazars

Motivation
- The Blazar VER J0521+211
- Project goal

Methods
- Stages of VERITAS analysis (VEGAS)

Results
- Analysis of VER J0521+211

Summary & Next Steps
The Blazar VER J0521+211

- Blazar discovered by VERITAS in 2009
- BL Lac (IBL)
- Highly variable on daily timescales
- Redshift lower limit: $z > 0.18$
- Recent gamma-ray flare in February 2020

Image credits: http://tevcat.uchicago.edu/
Project goal

- Analyzing gamma-ray flare from the blazar VER J0521+21
 - Generate sky maps, spectra, light curves
 - Characterize brightness and speed of flare
 - Calculate size of emission region
 - Additionally, plot light curves in years after the flare
Outline

Background
- Why study gamma rays?
- What is VERITAS?
 - IACTs, Physics of Air Showers
- Gamma-ray sources: AGNs/Blazars

Motivation
- The Blazar VER J0521+211
- Project goal

Methods
- Stages of VERITAS analysis (VEGAS)

Results
- Analysis of VER J0521+211

Summary & Next Steps
Stages of VERITAS analysis (VEGAS)

Stages: [1]

1. **Calibration calculation**: Raw data → Calibration data
2. **Calibration application**: Raw + calibration data → Calibrated events
3. **Image parameterization**: Calibrated events → Parameterized events
4. **Shower reconstruction**: Parameterized events → Reconstructed showers
5. **Event selection**: Reconstructed showers → Selected events
6. **Results**: Selected events → Stats and figures
Outline

Background
- Why study gamma rays?
- What is VERITAS?
 - IACTs, Physics of Air Showers
- Gamma-ray sources: AGNs/Blazars

Motivation
- The Blazar VER J0521+211
- Project goal

Methods
- Stages of VERITAS analysis (VEGAS)

Results
- Analysis of VER J0521+211

Summary & Next Steps
Strong statistical significance of VER J0521+211
Spectrum of VER J0521+211

Spectrum

\[\frac{dN}{dE} \text{ (TeV}\ ^{-1}\ \text{m}^2\ \text{s}^{-1}) \]

\[
\begin{align*}
\chi^2 / \text{ndf} & : 4.97 / 4 \\
\text{Prob} & : 0.2904 \\
\text{Norm} & : 1.764e-07 \pm 8.462e-09 \\
\text{Alpha} & : 3.368 \pm 0.104 \\
\text{Beta} & : 0.4455 \pm 0.06399 \\
E_0 & : 1 \pm 0
\end{align*}
\]
Fast variability of VER J0521+211

2019-2020 Season

Flux > 350 GeV (m$^{-2}$s$^{-1}$)

Time (MJD)
Variability timescale & characterizing rise/fall time

\[F(t) = F_0 e^{-(t-t_{\text{peak}})/t_{\text{decay}}} + F_{\text{const}} \]

\[F(t) = \begin{cases}
F_0 e^{(t-t_{\text{peak}})/t_{\text{rise}}} + F_{\text{const}}, & t \leq t_{\text{peak}} \\
F_0 e^{-(t-t_{\text{peak}})/t_{\text{decay}}} + F_{\text{const}}, & t > t_{\text{peak}}, \end{cases} \]
Constraining size of emission region

- Studying variability can help limit size of emission region
- Calculating size of emission region:
 \[R < c \Delta t_{\text{min}} \frac{\delta}{1 + z} \]
 - Upper limit for radius of region: \(1.44 \cdot 10^{17} \text{ cm} \approx 0.05 \text{ pc} \)
 - Results help with modeling the jet
Outline

Background
● Why study gamma rays?
● What is VERITAS?
 ○ IACTs, Physics of Air Showers
● Gamma-ray sources: AGNs/Blazars

Motivation
● The Blazar VER J0521+211
● Project goal

Methods
● Stages of VERITAS analysis (VEGAS)

Results
● Analysis of VER J0521+211

Summary & Next Steps
Summary & Next Steps

- From analysis:
 - Strong significance detection of source
 - Variability on daily timescale
 - Constrain emission region size
- More refined analysis of 2020-2022 light curves needed
 - Different binning method?
 - This would also provide insight into connection with ejection of superluminal knots
Acknowledgements

Thanks to:

- Professor Mukherjee, Qi Feng, Massimo Capasso, and the rest of the VERITAS/CTA team at Nevis
- Professor Karagiorgi, Professor Parsons, Amy Garwood for running the REU Program

This material is based upon work supported by the National Science Foundation under Grant No. PHY/1950431.
Thank you!
References
