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Overview

Radiative QCD energy loss
Static scattering centers
Asymptotic theory

Closely related to Landau-Pomeranchuk-Migdal effect of multiple scatterings
on bremsstrahlung
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(Electromagnetic) Bremsstrahlung
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® Current from four-momenta change
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® Bremsstrahlung spectrum
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Gyulassy-Wang model

Screened potential (QED):
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Screened potential (QCD):
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Large mean free path limit: A > u~!

High energy limit: £>> u
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Scalar and non-abelian vector fields (I)
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Spin effects in interaction with external fields are neglected, bosonic vertices
are used
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Scalar and non-abelian vector fields (ll)
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® Total vertex factor: igTg 4 725(p° +p"°) 2r)*8(p —p' —k)=T3Ma 4

k2_|_1u2

BDMPS Theory of Jet Energy Loss — p.6/21



Gluon emission from one interaction ()

® Start with one potential interaction

Pi

Ana
® Add a gluon emission on each of the 3 lines, plus the static source

® Consider only the high energy behaviour
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Gluon emission from one interaction (ll)

® Resulting gluon emission graphs:
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Photon emission

iy, y’t=29% = p§ =2p—§p
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Gluon emission from one interaction (lll)
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Gluon emission from one interaction (1V)

® Inlight cone gauge:

® Chosee-k=0:
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Gluon emission from one interaction (V)

® Samefork-p:
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® Compare last two results
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® Combine My, Mj:
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Gluon emission from one interaction (VI)

® For M3, approximate q &~ —k, pr — p; K k, 3-gluon vertex:
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Gluon emission from one interaction (VII)

® M, is suppressed by k| /k¥ and neglected

® M, +M,, Ms share the common factor 2ge | [T?, 79 1M 4
® Define
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® The gluon energy spectrum
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Gluon emission from multiple interactions (l)

® Phase factor shorthand: ¢;(k) = tiky

2w

® By calculating diagrams with higher number of interactions, one realizes:
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factorization term

® [t can be also shown that the factorization term has no medium dependency,
and is going to be neglected
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Solution for Infinite Plasma ()

Introduce “by finger” the fermion survival probability:
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(normalization N = ,uz/n for Gyulassy-Wang)
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For infinite plasma, one considers N — oo, differential spectrum per unit

length:
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Solution for Infinite Plasma (ll)

® FEvaluating () gives:
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with ¢(U?) = (1 —ixU?)™]

® [tis now a purely mathematical problem to solve this integral (which in
general does not solve algebraically)

® |ntegrating over Q;:
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Solution for Infinite Plasma (ll)
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(trivial, spherically symmetric distributions do not have multipole moments)

® Define two current averages:
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Solution for Infinite Plasma (lll)

® Rewritten spectrum:

x=0
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® Resulting integral equation for f:
(1 —ixU?FU) = Fo(U) +JdZQV(QZ)f(U -Q)
® Solution for infinite plasma in the leading log approximation (LLA), x < 1
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Finite Plasma, Energy Loss

Solution for finite plasma, x < 1:
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Relation between radiation spectrum and energy loss
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Numerical Estimates, compare with GLV

T =250 MeV, /12//1 =1 GeV/fmZI as =1/3: —AE ~ 30 GeV <10%>2 (too
large)

GLV diagrams are evaluated like BDMPS

GLV generates more diagrams, equivalence at the level of two scatterings
BDMPS is a highly simplified theory with 1/u < A < L < F/u? approximation
Only angularly integrated energy distribution d//dew is available

B. G. Zaharov (2000): “LLA fails when the gluon formation length becomes of
the order of L”

Another formalism that might be of interest: B. G Zaharov, hep-ph/9607440
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