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Overview

Radiative QCD energy loss

Static scattering centers

Asymptotic theory

Closely related to Landau-Pomeranchuk-Migdal effect of multiple scatterings

on bremsstrahlung
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(Electromagnetic) Bremsstrahlung
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Gyulassy-Wang model

Screened potential (QED):

Vi (x) =
g

4π
e−µ|x−xi |

q2+µ2

A
µ
i
(q) =δ

µ
0 Vi (q) =δ

µ
0

ge−iq·xi

q2+µ2

Screened potential (QCD):

A
µa

i,A′A
(q) = Ta

A′AA
µ
i
(q) = Ta

A′Aδ
µ
0

ge−iq·xi

q2+µ2

Large mean free path limit: λ �µ−1

High energy limit: E�µ
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Scalar and non-abelian vector fields (I)

SU(3) representation: TaTb =
1

2Nc
δab +

1

2
(dabc + ifabc)Tc

Spin effects in interaction with external fields are neglected, bosonic vertices

are used
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L = [(∂ µ − gAµaTa)φ]†
�
(∂µ− gAµ

aTa)φ
�
−m2

φφ
†φ

i

k2−m2+ iη
k

gTa
A′A(pµ+p ′µ)(2π)

4δ(p−p ′−k)

p

k
p ′

A A′

µa

BDMPS Theory of Jet Energy Loss – p.5/21



Scalar and non-abelian vector fields (II)
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Total vertex factor: igTa
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Gluon emission from one interaction (I)

Start with one potential interaction

pi

q

pf
B B′

AA′A

Add a gluon emission on each of the 3 lines, plus the static source

Consider only the high energy behaviour
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Gluon emission from one interaction (II)

Resulting gluon emission graphs:
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Photon emission

{γµ ,γ ν }= 2gµν ⇒ /p/ε∗ = 2ε∗ ·p− /ε∗ /p
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Emission of a photon in QED corresponds to:
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Gluon emission from one interaction (III)
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Gluon emission from one interaction (IV)

In light cone gauge:

ε= (ε0,−ε0,ε⊥)

p = (p0, p‖,p⊥)

Chose ε ·k= 0:
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Gluon emission from one interaction (V)

Same for k ·p:
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Gluon emission from one interaction (VI)

For M3, approximate q ≈−k,pf −pi � k, 3-gluon vertex:
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Gluon emission from one interaction (VII)

M4 is suppressed by k⊥/k
0 and neglected

M1+M2, M3 share the common factor 2gε⊥[T
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Gluon emission from multiple interactions (I)

Phase factor shorthand: φi (k) =
tik⊥
2ω

By calculating diagrams with higher number of interactions, one realizes:
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︸ ︷︷ ︸

factorization term

+

It can be also shown that the factorization term has no medium dependency,

and is going to be neglected

BDMPS Theory of Jet Energy Loss – p.15/21



Solution for Infinite Plasma (I)

Introduce “by finger” the fermion survival probability:

〈·〉 →

∫ N−1∏
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λ
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(normalization N =µ2/π for Gyulassy-Wang)
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µ
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For infinite plasma, one considers N→∞, differential spectrum per unit
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Solution for Infinite Plasma (II)

Evaluating 〈·〉 gives:
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with ψ(U2) = (1− iκU2)−1

It is now a purely mathematical problem to solve this integral (which in

general does not solve algebraically)

Integrating over Q i :
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Solution for Infinite Plasma (II)

Note

∫

d2QV(Q2)
U−Q

(U−Q)2
=π

U
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∫ U2

0

dQ2V(Q2)

(trivial, spherically symmetric distributions do not have multipole moments)

Define two current averages:
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Solution for Infinite Plasma (III)

Rewritten spectrum:

ω
dI

dωdz
=

2α
πλ

Re
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π
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Resulting integral equation for f:
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Solution for infinite plasma in the leading log approximation (LLA), κ� 1
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Finite Plasma, Energy Loss

Solution for finite plasma, κ� 1:

ω
dI

dωdz
=

6αs

πL
CR ln

�
�
�

sinω0τ0

ω0τ0

�
�
� τ0 =
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2ω
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Relation between radiation spectrum and energy loss

−
dE
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=

∫

dωω
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dωdz

Energy loss
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8

µ
λg

L2 ln
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Numerical Estimates, compare with GLV

T = 250 MeV, µ2/λ = 1 GeV/fm2, αs = 1/3: −∆E ≈ 30 GeV

�
L

10 fm

�2

(too

large)

GLV diagrams are evaluated like BDMPS

GLV generates more diagrams, equivalence at the level of two scatterings

BDMPS is a highly simplified theory with 1/µ� λ � L� E/µ2 approximation

Only angularly integrated energy distribution dI/dω is available

B. G. Zaharov (2000): “LLA fails when the gluon formation length becomes of

the order of L”

Another formalism that might be of interest: B. G Zaharov, hep-ph/9607440
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