

# Section I. Arria GX Transceiver User Guide

This section provides information on the configuration modes for  $Arria^{TM}$  GX devices. It also includes information on testing, Arria GX port and parameter information, and pin constraint information.

This section includes the following chapters:

- Chapter 1, Arria GX Transceiver Architecture
- Chapter 2, Arria GX Transceiver Protocol Support and Additional Features
- Chapter 3, Arria GX ALT2GXB Megafunction User Guide
- Chapter 4, Specifications and Additional Information

# **Revision History**

Refer to each chapter for its own specific revision history. For information on when each chapter was updated, refer to the Chapter Revision Dates section, which appears in the full handbook.

Altera Corporation Section I–1

Section I–2 Altera Corporation



# 1. Arria GX Transceiver Architecture

AGX52001-1.2

# Introduction

The Arria<sup>TM</sup> GX is a protocol-optimized FPGA family that leverages Altera<sup>®</sup>'s advanced multi-gigabit transceivers. The Arria GX transceiver blocks build on the success of the Stratix<sup>®</sup> II GX family and are optimally designed to support the following serial connectivity protocols (functional modes):

- PCI Express (PIPE)
- Gigabit Ethernet (GIGE)
- Serial RapidIO

# **Building Blocks**

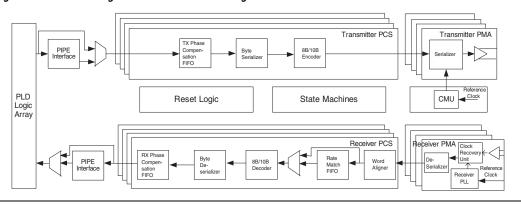
Arria GX transceivers are structured into full duplex (transmitter and receiver) four-channel groups called transceiver blocks. The Arria GX device family offers up to 12 transceiver channels (three transceiver blocks) per device. You can configure each transceiver block to one of the three supported functional modes; for example, four GIGE ports or one four-lane (×4) PCI Express (PIPE) port. In Arria GX devices that offer more than one transceiver block, you can configure each transceiver block to a different functional mode; for example, one transceiver block configured as a four-lane (×4) PCI Express (PIPE) port and the other transceiver block can be configured as four GIGE ports.

In addition to providing the physical coding sublayer (PCS) and physical media attachment (PMA) circuitry for each functional mode, Arria GX transceivers support the following protocol specific features:

- PCI Express (PIPE)
  - 2.5 Gbps (PCI Express Generation 1) line rate
  - ×1 (Individual single-lane) and ×4 (Bonded four-lane) link widths
  - Synchronous PCI Express (rate matching FIFO bypass capability)
  - PCI Express synchronization state machine
  - Receiver detection
  - Electrical Idle generation/detection
  - Polarity inversion
  - Power state management

#### GIGI

- 1.25 Gbps line rate
- Synchronization state machine
- Idle sequence (/I1/, /I2/) generation


- Serial RapidIO
  - 1.25 Gbps and 2.5 Gbps line rate
  - Synchronization state machine



For a complete set of features supported in each protocol, refer to the *Arria GX Transceiver Protocol Support and Additional Features* chapter in volume 2 of the *Arria GX Device Handbook*.

Figure 1–1 shows the Arria GX transceiver block diagram divided into Transmitter and Receiver Digital Circuits (PCS) and Analog Circuits (PMA).

Figure 1-1. Arria GX Gigabit Transceiver Block Diagram



# **Port List**

You instantiate the Arria GX transceivers using the ALT2GXB megacore instance provided in the Quartus® II MegaWizard® Plug-In Manager. The ALT2GXB instance allows you to configure the transceivers for your intended protocol and select optional control and status ports to and from the instantiated transceiver channels.

Figure 1–2 shows the port diagram of all available ports in an ALT2GXB transceiver instance.

Figure 1-2. Arria GX Transceiver Port Diagram

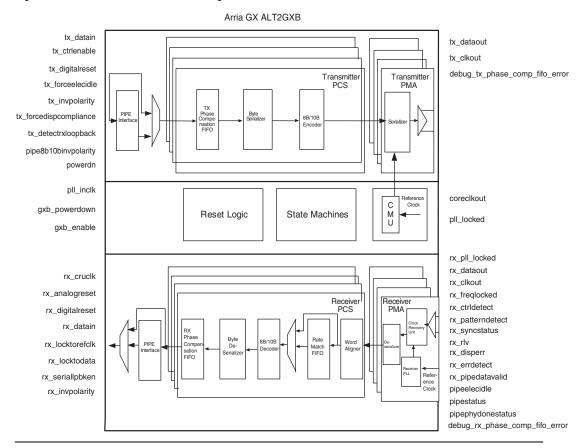



Table 1–1 provides a brief description for all available ALT2GXB ports shown in Figure 1-2.

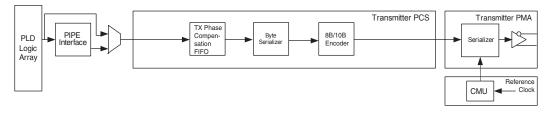
| Port Name                    | Input/Output                                                                                                                                                         | Description                                                                                                                                                                                                                                                                                                                                                                      | Scope   |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Receiver Physical Coding Sub | layer (PCS) Ports                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                  |         |
| rx_dataout                   | Output Receiver parallel data output. The bus width depends on the channel width for the selected functional mode multiplied by the number of channels per instance. |                                                                                                                                                                                                                                                                                                                                                                                  |         |
| rx_clkout                    | Output                                                                                                                                                               | Recovered clock from the receiver channel.                                                                                                                                                                                                                                                                                                                                       | Channel |
| rx_coreclk                   | Input                                                                                                                                                                | Optional read clock port for the receiver phase compensation FIFO. If not selected, Quartus II automatically selects rx_clkout/tx_clkout/coreclkout as the read clock for receiver phase compensation FIFO. If selected, you must drive this port with a clock that is frequency locked to rx_clkout/tx_clkout/coreclkout                                                        | Channel |
| rx_rlv                       | Output                                                                                                                                                               | Run-length violation indicator. A high signal is driven when the run length (consecutive '1's or '0's) of the received data exceeds the configured limit.                                                                                                                                                                                                                        |         |
| pipe8b10binvpolarity         | Input                                                                                                                                                                | PCI Express (PIPE) polarity inversion at the 8B/10B decoder input. This port inverts the data at the input of the 8B/10B decoder.                                                                                                                                                                                                                                                | Channel |
| pipestatus                   | Output                                                                                                                                                               | PCI Express (PIPE) receiver status port. In the case of multiple status signals, the lower number signal takes precedence.  000 – Received data OK  001 – 1 skip added (not supported)  010 – 1 skip removed (not supported)  011 – Receiver detected  100 – 8B/10B decoder error  101 – Elastic buffer overflow  110 – Elastic buffer underflow  111 – Received disparity error | Channel |
| pipephydonestatus            | Output                                                                                                                                                               | Indicates a mode transition completion in PCI Express (PIPE) mode. On completion of a power state transition or receiver detection, a pulse is driven on this port.                                                                                                                                                                                                              | Channel |
| rx_pipedatavalid             | Output                                                                                                                                                               | PCI Express (PIPE) valid data indicator on the rx_dataout port.                                                                                                                                                                                                                                                                                                                  | Channel |
| pipeelecidle                 | Output                                                                                                                                                               | PCI Express (PIPE) signal detect.                                                                                                                                                                                                                                                                                                                                                | Channel |

| Port Name Input/Output Description |             | Description                                                                                                                                                                                                                                     | Scope   |
|------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| rx_digitalreset                    | Input       | Reset port for the receiver PCS block. This port resets all the digital logic in the receiver channel. The minimum pulse width is two parallel clock cycles.                                                                                    | Channel |
| rx_ctrldetect                      | Output      | Receiver control code group indicator port. Indicates whether the data at the output of rx_dataout is a control or data word.                                                                                                                   | Channel |
| rx_errdetect                       | Output      | 8B/10B code group violation signal. Indicates that the data at the output of rx_dataout has a code group violation or a disparity error. Used with disparity error signal to differentiate between a code group error and/or a disparity error. | Channel |
| rx_syncstatus                      | Output      | Indicates the lane synchronization status in all functional modes. A HIGH signal is driven continuously when the synchronization state machine for the selected functional mode detects that all lane synchronization conditions are satisfied. | Channel |
| rx_disperr                         | Output      | 8B/10B disparity error indicator port. Indicates that the data at the output of rx_dataout has a disparity error.                                                                                                                               |         |
| rx_patterndetect                   | Output      | Indicates when the word aligner detects the alignment pattern in the current word boundary.                                                                                                                                                     | Channel |
| rx_invpolarity                     | Input       | Inverts the polarity of the received data at the input of the word aligner                                                                                                                                                                      |         |
| debug_rx_phase_comp_<br>fifo_error | Output      | Indicates receiver phase compensation FIFO overrun or underrun situation                                                                                                                                                                        | Channel |
| Receiver Physical Media Attac      | hment (PMA) |                                                                                                                                                                                                                                                 |         |
| rx_pll_locked                      | Output      | Receiver PLL locked signal. Indicates if the receiver PLL is phase locked to the CRU reference clock.                                                                                                                                           |         |
| rx_analogreset                     | Input       | Receiver analog reset. Resets all analog circuits in the receiver PMA.                                                                                                                                                                          |         |
| rx_freqlocked                      | Output      | CRU mode indicator port. Indicates if the CRU is locked to data mode or locked to the reference clock mode.  0 – Receiver CRU is in lock-to-reference clock mode  1 – Receiver CRU is in lock-to-data mode                                      | Channel |

| Port Name       | Input/Output | Description                                                                                                                                                                                                                                                                                                    | Scope                |
|-----------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| rx_signaldetect | Output       | Signal detect port. In PCI Express (PIPE) mode, indicates if a signal that meets the specified range is present at the input of the receiver buffer. In all other modes, rx_signaldetect is forced high and must not be used as an indication of a valid signal at receiver input.                             | Channel              |
| rx_seriallpbken | Input        | Serial loopback control port.  0 – normal data path, no serial loopback  1 – serial loopback                                                                                                                                                                                                                   | Channel              |
| rx_locktodata   | Input        | Lock-to-data control for the CRU. Use with rx_locktorefclk.                                                                                                                                                                                                                                                    | Channel              |
| rx_locktorefclk | Input        | Lock-to-reference lock mode for the CRU. Use with rx_locktodata. rx_locktodata/rx_locktorefclk 0/0 - CRU is in automatic mode 0/1 - CRU is in lock-to-reference clock 1/0 - CRU is in lock-to-data mode 1/1 - CRU is in lock-to-data mode                                                                      | Channel              |
| rx_cruclk       | Input        | Receiver PLL/CRU reference clock.                                                                                                                                                                                                                                                                              | Channel              |
| Transmitter PCS | •            |                                                                                                                                                                                                                                                                                                                | •                    |
| tx_datain       | Input        | Transmitter parallel data input. The bus width depends on the channel width for the selected functional mode multiplied by the number of channels per instance.                                                                                                                                                | Channel              |
| tx_clkout       | Output       | PLD logic array clock from the transceiver to the PLD. In an individual-channel mode (for example, GIGE, PCI Express [PIPE] ×1), there is one tx_clkout per channel.                                                                                                                                           | Channel              |
| coreclkout      | Output       | PLD logic array clock from the transceiver block to the PLD. In bonded-channel mode (x4 PCI Express [PIPE]), there is one coreclkout per transceiver block.                                                                                                                                                    | Transceiver<br>block |
| tx_coreclk      | Input        | Optional write clock port for the transmitter phase compensation FIFO. If not selected, Quartus II automatically selects tx_clkout/coreclkout as the write clock for transmitter phase compensation FIFO. If selected, you must drive this port with a clock that is frequency locked to tx_clkout/coreclkout. | Channel              |

| Port Name                          | Input/Output | Description                                                                                                                                                                                                                                                                                                                           | Scope   |
|------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| tx_detectrxloopback                | Input        | PCI Express (PIPE) receiver detect / loopback pin. Depending on the power state (P0 or P1), the signal either activates receiver detect or loopback.                                                                                                                                                                                  | Channel |
| tx_forceelecidle                   | Input        | PCI Express (PIPE) Force Electrical Idle.<br>When asserted, it tristates the transmitter<br>buffer in PCI Express (PIPE) mode.                                                                                                                                                                                                        | Channel |
| tx_forcedispcompliance             | Input        | PCI Express (PIPE) force negative disparity for compliance pattern. The compliance pattern requires beginning with a negative disparity. Assertion of this port while transmitting the first byte ensures that the first byte is encoded with a negative disparity. This port must be de-asserted after the first byte.               | Channel |
| powerdn                            | Input        | PCI Express (PIPE) power mode port. This port sets the power mode of the associated PCI Express channel. The power modes are as follows: 2'b00: P0 – Normal operation 2'b01: P0s – Low recover time latency, power saving state 2'b10: P1 – Longer recovery time (64us max) latency, lower power state 2'b11: P2 – Lowest power state | Channel |
| tx_digitalreset                    | Input        | Reset port for the transmitter PCS block. This port resets all the digital logic in the transmit channel. The minimum pulse width is two parallel clock cycles.                                                                                                                                                                       | Channel |
| tx_ctrlenable                      | Input        | Transmitter control code group indicator port. Indicates whether the data at the tx_datain port is a control or data word. When high, the 8-bit character is encoded as data code group (Dx.y). When low, the 8-bit character is encoded as control code group (Kx.y)                                                                 | Channel |
| tx_invpolarity                     | Input        | Inverts the polarity of the data to be transmitted at the transmitter PCS-PMA interface (input to the serializer).                                                                                                                                                                                                                    | Channel |
| debug_tx_phase_comp_<br>fifo_error | Output       | Indicates transmitter phase compensation FIFO overrun or underrun situation.                                                                                                                                                                                                                                                          | Channel |
| Transmitter PMA                    |              |                                                                                                                                                                                                                                                                                                                                       |         |
| fixedclk                           | Input        | 125-MHz clock for receiver detect circuitry in PCI Express (PIPE) mode.                                                                                                                                                                                                                                                               | Channel |

| Port Name                      | Input/Output | Description                                                                                                                                                                                                                      | Scope                |
|--------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| CMU PMA                        | •            |                                                                                                                                                                                                                                  | •                    |
| gxb_powerdown                  | Input        | Transceiver block reset and power down. This resets and powers down all circuits in the transceiver block. It does not power down the REFCLK buffers and reference clock lines.                                                  | Transceiver<br>block |
| gxb_enable                     | Input        | Dedicated transceiver block enable pin. If instantiated, this port must be tied to the dedicated gigabit transceiver block enable input pin.                                                                                     | Transceiver<br>block |
| pll_locked                     | Output       | PLL locked indicator for the transmitter PLLs.                                                                                                                                                                                   | Transceiver block    |
| pll_inclk                      | Input        | Reference clocks for the transmitter PLLs.                                                                                                                                                                                       | Transceiver block    |
| Calibration Block              |              |                                                                                                                                                                                                                                  |                      |
| cal_blk_clk                    | Input        | Calibration clock for the transceiver termination blocks. This clock supports frequencies from 10 MHz to 125 MHz.                                                                                                                | Device               |
| cal_blk_powerdown (active low) | Input        | Power-down signal for the calibration block. Assertion of this signal may interrupt data transmission and reception. Use this signal to re-calibrate the termination resistors if temperature and/or voltage changes warrant it. | Device               |
| External Signals               |              |                                                                                                                                                                                                                                  |                      |
| tx_dataout                     | Output       | Transmitter serial output port.                                                                                                                                                                                                  | Channel              |
| rx_datain                      | Input        | Receiver serial input port.                                                                                                                                                                                                      | Channel              |
| rrefb (1)                      | Output       | Reference resistor port. This port is always used and must be tied to a 2K-Ω resistor to ground. This port is highly sensitive to noise. There must be no noise coupled to this port.                                            |                      |
| refclk (1)                     | Input        | Dedicated reference clock inputs (two per transceiver block) for the transceiver. The buffer circuitry is similar to the receiver buffer, but the termination is not calibrated.                                                 | Transceiver<br>block |


### Note to Table 1–1:

 $(1) \quad \text{These are dedicated pins for the transceiver and do not appear in the MegaWizard Plug-In Manager.}$ 

# Transmitter Channel Architecture

This section provides a brief description about sub-blocks within the transmitter channel (Figure 1–3). The sub-blocks are described in order from the PLD-transmitter parallel interface to the serial transmitter buffer.

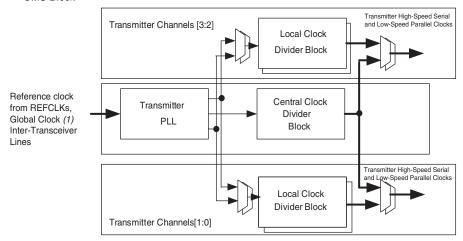
Figure 1-3. Arria GX Transmitter Channel Block Diagram



# **Clock Multiplier Unit**

Each transceiver block has a clock multiplier unit (CMU) that takes in a reference clock and synthesizes two clocks: a high-speed serial clock to serialize the data and a low-speed parallel clock used to clock the transmitter digital logic (PCS) and the PLD-transceiver interface.

The CMU is further divided into three sub-blocks


- Transmitter PLL
- Central clock divider block
- Local clock divider block

Each transceiver block has one transmitter PLL, one central clock divider and four local clock dividers. One local clock divider is located in each transmitter channel of the transceiver block.

Figure 1–4 shows a block diagram of the CMU block within each transceiver block.

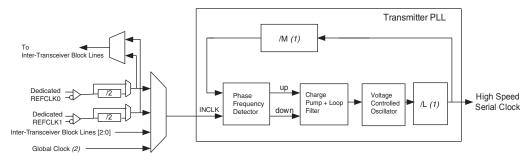
Figure 1–4. Clock Multiplier Unit Block Diagram

CMU Block



*Note to Figure 1–4:* 

(1) The global clock line must be driven from an input pin only.


#### Transmitter PLL

The transmitter PLL multiplies the input reference clock to generate the high-speed serial clock required to support the intended protocol. It synthesizes a half-rate high-speed serial clock that runs at half the frequency of the serial data rate for which it is configured; for example, the transmitter PLL runs at 625 MHz when configured in 1.25 Gbps GIGE functional mode.

The transmitter PLL output feeds the central clock divider block and the local clock divider blocks. These clock divider blocks divide the high-speed serial clock to generate the low-speed parallel clock for the transceiver PCS logic and the PLD-transceiver interface clock. Depending on the functional mode for which the transceiver block is configured, either the central clock divider block or the local clock divider block is used to generate the low-speed parallel clock.

Figure 1–5 shows a block diagram of the transmitter PLL.

Figure 1-5. Transmitter PLL



#### Notes to Figure 1-5:

- (1) You only need to select the protocol and the available input reference clock frequency in the Quartus II MegaWizard Plug-In Manager. Based on your selections, the Plug-In Manager automatically selects the necessary /M and /L dividers (clock multiplication factors).
- (2) The global clock line must be driven from an input pin only.

The reference clock input to the transmitter PLL can be derived from:

- One of the two available dedicated reference clock input pins (REFCLK0 or REFCLK1) of the associated transceiver block
- PLD global clock network (must be driven directly from an input clock pin and cannot be driven by user logic or enhanced PLL)
- Inter-transceiver block lines driven by reference clock input pins of other transceiver blocks



Altera recommends using the dedicated reference clock input pins (REFCLK0 or REFCLK1) to provide the reference clock for the transmitter PLL.

#### **Dedicated Reference Clock Input Pins**

Each transceiver block has two dedicated reference clock input pins (REFCLK0 and REFCLK1). The clock route from REFCLK0 and REFCLK1 pins in each transceiver block has an optional pre-divider that divides the reference clock by two before feeding it to the transmitter PLL (Figure 1–5).



The Quartus II software automatically selects the divide-by-two pre-divider for the reference clock input in PCI Express (PIPE) mode only. In GIGE and Serial Rapid IO modes, the pre-divider is not used.

#### Reference Clock From PLD Global Clock Network

You can drive the reference clock to the transmitter PLL from a PLD global clock network. If you choose this option, you must drive the global PLD reference clock line from a non-REFCLK FPGA input pin. You cannot use a clock generated by PLD logic or an enhanced PLL to drive the reference clock input to the transmitter PLL.

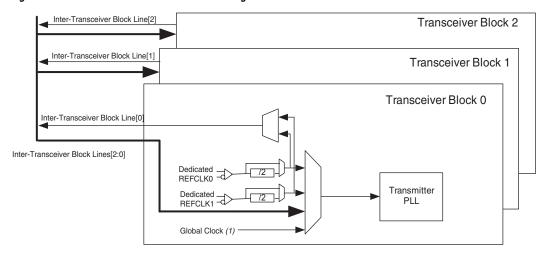


The Quartus II software requires the following setting for the non-REFCLK FPGA input pin used to drive the reference clock input:

Assignment name: Stratix II GX/Arria GX REFCLK coupling and termination setting

Value: Use as regular IO.

### **Inter-Transceiver Block Line Routing**


The inter-transceiver block lines allow the dedicated reference clock input pins of one transceiver block to drive the transmitter and receiver PLL of other transceiver blocks. There are a maximum of three inter-transceiver block routing lines available in the Arria GX device family. Each transceiver block can drive one inter-transceiver block line from either one of its associated reference clock pins. The inter-transceiver block lines can drive any or all of the transmitter and receiver PLLs in the device. The inter-transceiver block lines offer flexibility when multiple channels in separate transceiver blocks share a common reference clock frequency.

The inter-transceiver block lines also drive the reference clock from the REFCLK pins into the PLD fabric, which reduces the need to drive multiple clocks of the same frequency into the device. If a divide-by-two reference clock pre-divider is used, the inter-transceiver block line driven by the corresponding REFCLK pin cannot be used to clock PLD logic.

The Quartus II software automatically uses the appropriate inter-transceiver line if the transceiver block is being clocked by the dedicated reference clock (REFCLK) pin of another transceiver block.

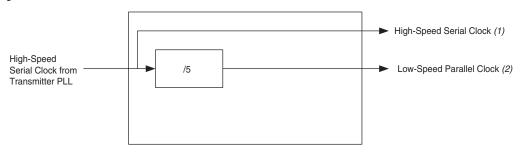
Figure 1–6 shows the inter-transceiver block line interface to the transceivers in the gigabit transceiver blocks and to the PLD.

Figure 1-6. Inter-Transceiver Block Line Routing



*Note to Figure 1–6:* 

(1) The global clock line must be driven from and input pin only.

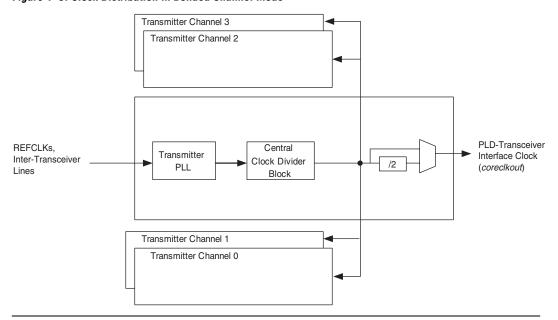



Depending on the functional mode, the Quartus II software automatically selects the appropriate transmitter PLL bandwidth.

#### Central Clock Divider Block

One central clock divider block is available per transceiver block. It takes in the high-speed transmitter PLL clock and divides it to generate the low-speed parallel clock for transceiver PCS logic in ×4 PCI Express (PIPE) bonded-channel mode. The Quartus II software automatically selects /5 as the division factor for all supported functional modes. The central clock divider block also forwards the high-speed serial clock from the transmitter PLL to the serializer, as shown in Figure 1–7.

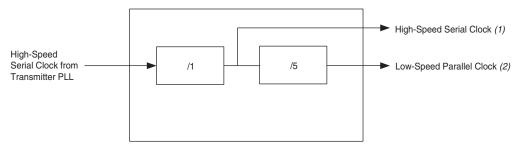
Figure 1-7. Central Clock Divider Block




#### *Notes to Figure 1–7:*

- (1) High-speed serial clock from the central clock divider block feeds the serializer in all channels within a transceiver block in bonded-channel mode (×4 PCI Express [PIPE]).
- (2) Low-speed parallel clock from the central clock divider block feeds the transceiver PCS logic in all channels within a transceiver block in bonded-channel mode (x4 PCI Express [PIPE]).

The central clock divider block feeds the high-speed and low-speed clock to all the channels in the transceiver block, as shown in Figure 1–8. This ensures that the serializer in each channel outputs the same bit number at any time to minimize the channel-to-channel skew.


Figure 1-8. Clock Distribution in Bonded Channel Mode



#### Local Clock Divider Block

A local clock divider block is located in each of the four transmitter channels of a transceiver block. It takes in the high-speed transmitter PLL clock and divides it to generate the low-speed parallel clock for transceiver PCS logic in individual channel modes; for example, GIGE mode. The Quartus II software automatically selects /5 as the division factor for all supported functional modes. The local clock dividers also forward the high-speed serial clock from the transmitter PLL to the serializer as shown in Figure 1–9.

Figure 1–9. Local Clock Divider Block Note (3)



#### *Notes to Figure 1–9:*

- High-speed serial clock from the local clock divider block feeds the serializer in its associated channel in individual-channel modes (for example, GIGE).
- (2) Low-speed parallel clock from the local clock divider block feeds the transceiver PCS logic in its associated channel in individual-channel mode (for example, GIGE).
- (3) Each channel within a transceiver block is fed by its own local clock divider block, as shown in Figure 1–10.

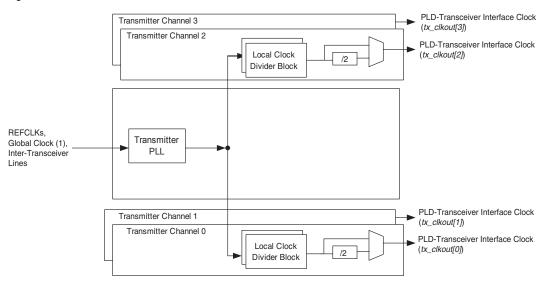



Figure 1–10 shows the clock distribution in individual channel mode.

*Note to Figure 1–10:* 

(1) The global clock line must be driven from an input pin only.

Figure 1–10. Clock Distribution in Individual Channel Mode

# **Transmitter Phase Compensation FIFO**

A transmitter phase compensation FIFO (Figure 1–11) is located at each transmitter channel's logic array interface. It compensates for the phase difference between the transmitter PCS clock and the local PLD clock.

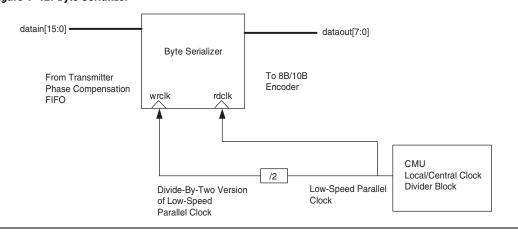
In individual channel mode (for example, GIGE and Serial RapidIO), the low-speed parallel clock (or its divide-by-two version if the byte serializer is used) from the local clock divider block of each channel clocks the read port of its transmitter phase compensation FIFO buffer. This clock is also forwarded to the logic array on tx\_clkout port of its associated channel. If the tx\_coreclk port is not instantiated, the clock signal on the tx\_clkout port of Channel 0 is automatically fed back to clock the write port of the transmitter phase compensation FIFOs in all channels within the transceiver block. If the tx\_coreclk port is instantiated, the clock signal driven on the tx\_coreclk port clocks the write port of the transmitter phase compensation FIFO of its associated channel. You must ensure that the clock on the tx\_coreclk port is frequency-locked to the read clock of the transmitter phase compensation FIFO. For more information about using the PLD core clock (tx\_coreclk), refer to "PLD-Transceiver Interface Clocking" on page 1–50.

In bonded channel mode (for example, x4 PCI Express [PIPE]), the low-speed parallel clock from the central clock divider block is divided by two. This divide-by-two clock clocks the read port of the transmitter phase compensation FIFO. This clock is also forwarded to the logic array on the coreclkout port. If the tx\_coreclk port is not instantiated, the clock signal on the coreclkout port is automatically fed back to clock the write port of transmitter phase compensation FIFO buffers in all channels within the transceiver block. If the tx\_coreclk port is instantiated, the clock signal driven on the tx\_coreclk port clocks the write port of the transmitter phase compensation FIFO of its associated channel. You must ensure that the clock on the tx\_coreclk port is frequency locked to the read clock of the transmitter phase compensation FIFO. For more information about using the PLD core clock (tx\_coreclk), refer to "PLD-Transceiver Interface Clocking" on page 1–50.

Transmitter Channel datain[] dataout[] Transmitter Phase From PLD Compensation To Byte Serializer or PIPE **FIFO** or 8B/10B Interface Encoder rdclk tx\_coreclk CMU Local/Central Clock /2 Divider Block tx clkout coreclkout

Figure 1–11. Transmitter Phase Compensation FIFO

# Transmitter Phase Compensation FIFO Error Flag


The write port of the transmitter phase compensation FIFO can be clocked by either the CMU output clock or its divide-by-two version (tx\_clkout or coreclkout) or a PLD clock. The read port is always clocked by the CMU output clock or its divide-by-two version. In all configurations, the write clock and the read clock must have 0 PPM difference to avoid overrun/underflow of the phase compensation FIFO.

An optional debug\_tx\_phase\_comp\_fifo\_error port is available in all modes to indicate transmitter phase compensation FIFO overrun/underflow condition. This feature should be used for debug purpose only if link errors are observed.

# Byte Serializer

In PCI Express (PIPE) and Serial RapidIO functional modes, the byte serializer (Figure 1–12) takes in 16-bit wide data from the transmitter phase compensation FIFO buffer and serializes it into an 8-bit wide data at twice the speed. This allows clocking the PLD-transceiver interface at half the speed as compared to the transmitter PCS logic. The byte serializer is bypassed in GIGE mode.

Figure 1-12. Byte Serializer



After serialization, the byte serializer transmits the least significant byte (LSByte) first and the most significant byte (MSByte) last.

Figure 1–13 shows byte serializer input and output. datain [15:0] is the input to the byte serializer from the transmitter phase compensation FIFO and dataout [7:0] is the output of the byte serializer.

Figure 1-13. Byte Serializer Operation



In Figure 1–13, the LSByte is transmitted before the MSByte from the transmitter byte serializer. For input data D1, the output data is  $D1_{LSByte}$  and then  $D1_{MSByte}$ .

### 8B/10B Encoder

The 8B/10B encoder block takes in 8-bit data from the byte serializer (in PCI Express [PIPE] and Serial RapidIO modes) or transmitter phase compensation FIFO buffer (in GIGE mode). It generates a 10-bit code group with proper running disparity from the 8-bit character and a 1-bit control identifier (tx\_ctrlenable). The 10-bit code group is fed to the serializer. The 8B/10B encoder conforms to the IEEE 802.3 1998 edition standard.

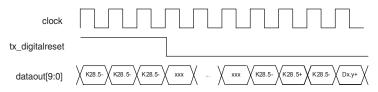
Figure 1–14 shows the 8B/10B conversion format.



For additional information about 8B/10B encoding rules, refer to the *Specifications and Additional Information* chapter in volume 2 of the *Arria GX Device Handbook*.

Figure 1-14. 8B/10B Encoder

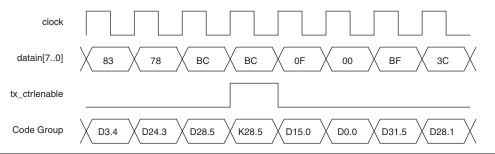



The 10-bit encoded data output from the 8B/10B encoder is fed to the serializer that transmits the data from LSB to MSB.

#### Reset Behavior

The transmitter digital reset (tx\_digitalreset) signal resets the 8B/10B encoder. During reset, the running disparity and data registers are cleared and the 8B/10B encoder outputs a K28.5 pattern from the RD-column continuously. Once out of reset, the 8B/10B encoder starts with a negative disparity (RD-) and transmits three K28.5 code groups for synchronizing before it starts encoding the input data or control character.

Figure 1–15 shows the 8B/10B encoder's reset behavior. When in reset (tx\_digitalreset is high), a K28.5- (K28.5 10-bit code group from the RD- column) is sent continuously until tx\_digitalreset is low. The transmitter channel pipelining causes some "don't cares (10'hxxx)" until the first of three K28.5 is sent. User data follows the third K28.5






### Control Code Group Encoding

A control identifier (tx\_ctrlenable) input signal identifies if the 8-bit input character is to be encoded as a control word (Kx.y) or data word (Dx.y). When tx\_ctrlenable is low, the input character is encoded as data (Dx.y). When tx\_ctrlenable is high, the input character is encoded as a control word (Kx.y). The waveform in Figure 1–16 shows that the second 0xBC character is encoded as a control word (Kx.y). The rest of the characters are encoded as data (Dx.y).







The 8B/10B encoder does not check to see if the code group word entered is one of the 12 valid codes. If you enter an invalid control code, the resultant 10-bit code group may be encoded as an invalid code (does not map to a valid Dx.y or Kx.y code group), or unintended valid Dx.y code group, depending on the value entered.

### Transmitter Polarity Inversion

The positive and negative signals of a serial differential link might accidentally be swapped during board layout. Solutions such as a board re-spin or major updates to the PLD logic can prove expensive. The transmitter polarity inversion feature is provided to correct this situation.

An optional tx\_invpolarity port is available in all modes to dynamically enable the transmitter polarity inversion feature. A high on the tx\_invpolarity port inverts the polarity of every bit of the 10-bit input data word to the serializer in the transmitter data path. Since inverting the polarity of each bit has the same effect as swapping the positive and negative signals of the differential link, correct data is seen by the receiver. The tx\_invpolarity is a dynamic signal and may cause initial disparity errors at the receiver of an 8B/10B encoded link. The downstream system must be able to tolerate these disparity errors.

Figure 1–17 illustrates the transmitter polarity inversion feature.

# Serializer

The serializer block clocks in 10-bit encoded data from the 8B/10B encoder using the low-speed parallel clock and clocks out serial data using the high-speed serial clock from the central or local clock divider blocks. The serializer feeds the data LSB to MSB to the transmitter output buffer.

Input to transmitter PMA

Output from transmitter PCS

Figure 1–18 shows the serializer block diagram.

Figure 1-18. Serializer

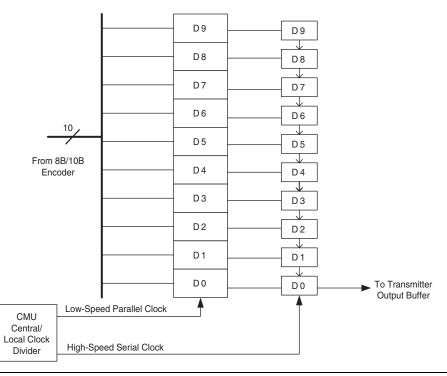
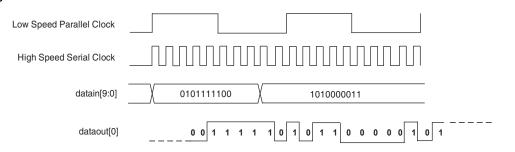




Figure 1–19 shows the serial bit order at the serializer output. In this example, 10'b17C data is serialized and transmitted from LSB to MSB.

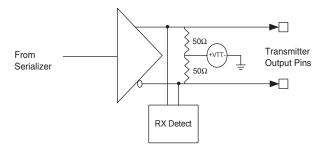




## **Transmitter Buffer**

The transmitter buffer takes in serial data from the serializer and drives it on the tx\_dataout port of the associated transceiver channel.

Table 1–2 shows available transmitter buffer settings in each functional mode.


| Table 1–2. Transmitter Buffer Settings |                                            |                           |                                                      |                                              |              |
|----------------------------------------|--------------------------------------------|---------------------------|------------------------------------------------------|----------------------------------------------|--------------|
| Mode                                   | On-Chip<br>Termination with<br>Calibration | Supported I/O<br>Standard | Differential<br>Output Voltage<br>(V <sub>OD</sub> ) | Common Mode<br>Voltage<br>(V <sub>CM</sub> ) | Pre-Emphasis |
| PCI Express<br>(PIPE)                  | 100 Ω                                      | 1.2 V-PCML                | 800 mV                                               | 600 mV                                       | Enabled (1)  |
| GIGE                                   | 100 Ω                                      | 1.5 V-PCML                | 800 mV                                               | 600 mV                                       | Disabled     |
| Serial RapidIO                         | 100 Ω                                      | 1.5 V-PCML                | 800 mV                                               | 600 mV                                       | Disabled     |

#### Note to Table 1-2:

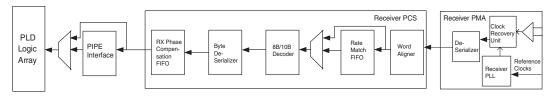
(1) In PCI Express (PIPE) mode, 49% pre-emphasis is used to meet the PCI Express de-emphasis specification.

Figure 1–20 shows the transmitter buffer circuitry.

Figure 1-20. Transmitter Buffer



The transmitter buffer supports the Electrical Idle and Receiver Detect features in PCI Express (PIPE) mode.




Refer to the Transmitter Buffer section of the respective functional mode in the *Arria GX Transceiver Protocol Support and Additional Features* chapter in volume 2 of the *Arria GX Device Handbook* for more details about the supported features.

# Receiver Channel Architecture

This section provides a brief description about sub-blocks within the receiver channel (Figure 1–21). The sub-blocks are described in order from the serial receiver input buffer to the receiver phase compensation FIFO buffer at the transceiver-PLD interface.

Figure 1-21. Receiver Channel Block Diagram

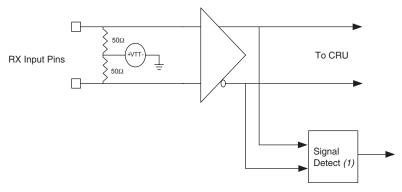


## **Receiver Buffer**

The receiver buffer receives serial data from the rx\_datain port and feeds it to the clock recovery unit (CRU).

Table 1–3 shows available receiver buffer settings in each functional mode.

| Table 1–3. Receiver Buffer Settings            |                                      |                                                                           |                                                 |          |  |
|------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------|----------|--|
| Mode                                           | On-Chip Termination with Calibration | Supported I/O<br>Standard                                                 | Common Mode<br>Voltage<br>(RX V <sub>CM</sub> ) | Coupling |  |
| PCI Express (PIPE),<br>GIGE,<br>Serial RapidIO | 100 Ω                                | 1.2 V-PCML,<br>1.5 V-PCML,<br>3.3 V-PCML,<br>Differential LVPECL,<br>LVDS | 850 mV                                          | AC       |  |


The receiver buffer also incorporates signal threshold detection circuitry only in PCI Express (PIPE) mode.



Refer to the Receiver Buffer section of the respective functional mode in the *Arria GX Transceiver Protocol Support and Additional Features* chapter in volume 2 of the *Arria GX Device Handbook* for more details about the supported features.

Figure 1–22 shows the receiver buffer circuitry.

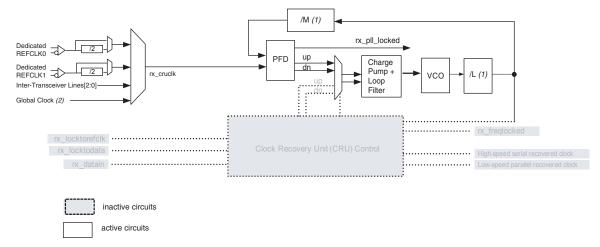
Figure 1-22. Receiver Buffer



Note to Figure 1–22:

(1) The signal detect circuitry is available only in PCI Express (PIPE) mode.

#### **Receiver PLL**


Each transceiver channel has its own receiver PLL that is fed by an input reference clock. The reference clock frequency depends on the functional mode that the transceiver channel is configured for. The clock recovery unit (CRU) controls whether the receiver PLL locks to the input reference clock (lock-to-reference mode) or the incoming serial data (lock-to-data mode). Refer to "Clock Recovery Unit (CRU)" on page 1–27 for more details on lock-to-reference and lock-to-data modes. The receiver PLL, in conjunction with the clock recovery unit, generates two clocks: a high-speed serial clock that clocks the deserializer and a low-speed parallel clock that clocks the receiver's digital logic.



This section only discusses the receiver PLL operation in lock-to-reference mode. For lock-to-data mode, refer to "Clock Recovery Unit (CRU)" on page 1–27.

Figure 1–23 shows the block diagram of the receiver PLL in lock-to-reference mode.

Figure 1-23. Receiver PLL Block Diagram



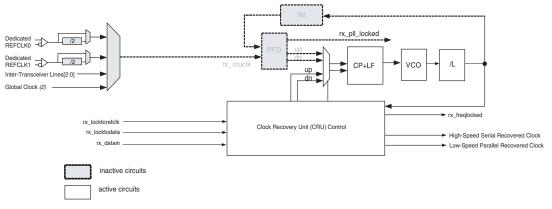
#### *Notes to Figure 1–23:*

- You only need to select the protocol and the available input reference clock frequency in the Quartus II MegaWizard Plug-In Manager. Based on your selections, the Plug-In Manager automatically selects the necessary /M and /L dividers.
- (2) The global clock line must be driven from an input pin only.

The reference clock input to the receiver PLL can be derived from:

- One of the two available dedicated reference clock input pins (REFCLK0 or REFCLK1) of the associated transceiver block
- PLD clock network (must be driven directly from an input clock pin and cannot be driven by user logic or enhanced PLL)
- Inter-transceiver block lines driven by reference clock input pins of other transceiver blocks




Depending on the functional mode, the Quartus II software automatically selects the appropriate receiver PLL bandwidth.

# **Clock Recovery Unit (CRU)**

The CRU (Figure 1–24) in each transceiver channel recovers the clock from the received serial data stream. You can set the CRU to lock to the received serial data phase and frequency (lock-to-data mode) to eliminate any clock-to-data skew or to keep the receiver PLL locked to the reference clock (lock-to-reference mode). The switch between lock-to-data and lock-to-reference modes can be done automatically or manually. The CRU

in conjunction with the receiver PLL generates two clocks: a high-speed serial recovered clock that feeds the deserializer and a low-speed parallel recovered clock that feeds the receiver's digital logic.

Figure 1-24. Clock Recovery Unit



#### Notes to Figure 1-24:

- (1) You only need to select the protocol and the available input reference clock frequency in the Quartus II MegaWizard Plug-In Manager. Based on your selections, the Plug-In Manager automatically selects the necessary /M and /L dividers.
- (2) The global clock line must be driven from an input pin only.

#### Automatic Lock Mode

After coming out of reset in automatic lock mode, the CRU initially sets the receiver PLL to lock to the input reference clock (lock-to-reference mode). After the receiver PLL locks to the input reference clock, the CRU automatically sets it to lock to the incoming serial data (lock-to-data mode) when the following two conditions are met:

- The receiver PLL output clock is within the configured PPM frequency threshold setting with respect to its reference clock (frequency locked)
- The reference clock and receiver PLL output clock are phase matched within approximately 0.08 UI (phase locked)

When the receiver PLL and CRU are in lock-to-reference mode, the PPM detector and the phase detector circuits monitor the relationship of the reference clock to the receiver PLL VCO output. If the frequency difference is within the configured PPM setting (as set in the MegaWizard Plug-In Manager) and the phase difference is within 0.08 UI, the CRU

switches to lock-to-data mode. The switch from lock-to-reference to lock-to-data mode is indicated by the assertion of the rx\_freqlocked signal.

In lock-to-data mode, the receiver PLL uses a phase detector to keep the recovered clock phase-matched to the data. If the PLL does not stay locked to data due to frequency drift or severe amplitude attenuation, the CRU switches back to lock-to-reference mode to lock the PLL to the reference clock. In automatic lock mode, the following condition forces the CRU to fall out of lock-to-data mode:

 The CRU PLL is not within the configured PPM frequency threshold setting with respect to its reference clock

The switch from lock-to-data to lock-to-reference mode is indicated by the de-assertion of rx freqlocked signal.

When the CRU is in lock-to-data mode (rx\_freqlocked is asserted), it tries to phase-match the PLL with the incoming data. As a result, the phase of the PLL output clock may differ from the reference clock due to which rx\_pll\_locked signal might get de-asserted. You should ignore the rx\_pll\_locked signal when the rx\_freqlocked signal is asserted high.

#### Manual Lock Mode

Two optional input pins (rx\_locktorefclk and rx\_locktodata) allow you to control whether the CRU PLL automatically or manually switches between lock-to-reference mode and lock-to-data mode. This enables you to bypass the default automatic switchover circuitry if either rx\_locktorefclk or rx\_locktodata is instantiated.

When the rx\_locktorefclk signal is asserted, the CRU forces the receiver PLL to lock to the reference clock. When the rx\_locktodata signal is asserted, the CRU forces the receiver PLL to lock to data. When both signals are asserted, the rx\_locktodata signal takes precedence over the rx\_locktorefclk signal, forcing the receiver PLL to lock to data.

The PPM threshold frequency detector and phase relationship detector reaction times may be too long for some applications. You can manually control the CRU to reduce PLL lock times using the rx\_locktorefclk and rx\_locktodata ports. Using the manual mode may reduce the time it takes for the CRU to switch from lock-to-reference mode to lock-to-data mode. You can assert the rx\_locktorefclk to initially

train the PLL to the reference clock. Once the receiver PLL locks to the reference clock, you can assert the rx\_locktodata signal to force the PLL to lock to the incoming data.

When the rx\_locktorefclk signal is asserted high, the rx\_freqlocked signal does not have any significance and is always driven low, indicating that the CRU is in lock-to-reference mode. When the rx\_locktodata signal is asserted high, the rx\_freqlocked signal is always driven high, indicating that the CRU is in lock-to-data mode. If both signals are de-asserted, the CRU is in automatic lock mode.

Table 1–4 shows a summary of the control signals.

| Table 1–4. CRU User Control Lock Signals |               |                         |  |  |
|------------------------------------------|---------------|-------------------------|--|--|
| rx_locktorefclk                          | rx_locktodata | CRU Mode                |  |  |
| 1                                        | 0             | Lock-to-reference clock |  |  |
| х                                        | 1             | Lock to data            |  |  |
| 0                                        | 0             | Automatic               |  |  |

## Deserializer

The deserializer block clocks in serial input data from the receiver buffer using the high-speed serial recovered clock and deserializes it into 10-bit parallel data using the low-speed parallel recovered clock. It feeds the de-serialized 10-bit data to the word aligner as shown in Figure 1–25.

Figure 1-25. Deserializer

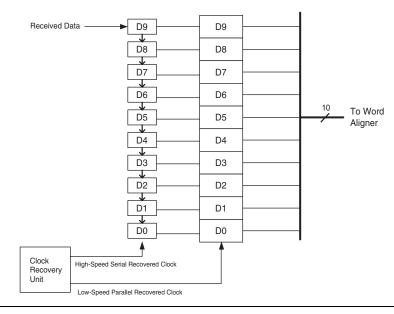
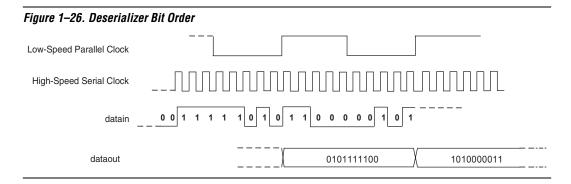




Figure 1–26 shows the serial bit order of the deserializer block input and the parallel data output of the deserializer block. A serial stream (0101111100) is de-serialized to a value 10'h17C. The serial data is assumed to be received LSB to MSB.



## Receiver Polarity Inversion

The positive and negative signals of a serial differential link might be accidentally swapped during board layout. Solutions such as a board re-spin or major updates to the PLD logic can prove expensive. The receiver polarity inversion feature is provided to correct this situation.

An optional rx\_invpolarity port is available in all modes to dynamically enable the receiver polarity inversion feature. A high on the rx\_invpolarity port inverts the polarity of every bit of the 10-bit input data word to the word aligner in the receiver data path. Since inverting the polarity of each bit has the same effect as swapping the positive and negative signals of the differential link, correct data is seen by the receiver. The rx\_invpolarity is a dynamic signal and may cause initial disparity errors in an 8B/10B encoded link. The downstream system must be able to tolerate these disparity errors.

The receiver polarity inversion feature is different from the PCI Express (PIPE) 8B/10B polarity inversion feature. The receiver polarity inversion feature inverts the polarity of the data bits at the input of the word aligner. The PCI Express (PIPE) 8B/10B polarity inversion feature inverts the polarity of the data bits at the input of the 8B/10B decoder and is available only in PCI Express (PIPE) mode. Enabling the generic receiver polarity inversion and the PCI Express (PIPE) 8B/10B polarity inversion simultaneously is not allowed in PCI Express (PIPE) mode.

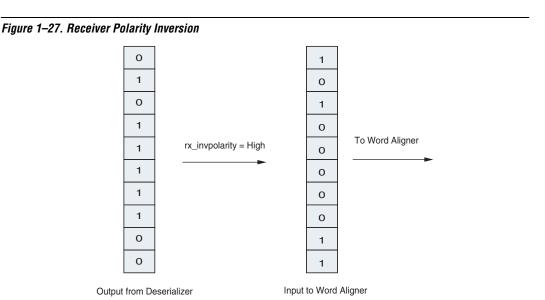
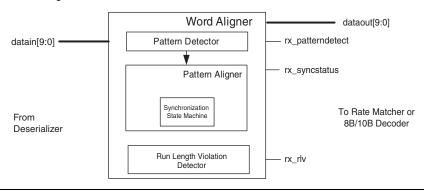



Figure 1–27 illustrates the receiver polarity inversion feature.

# **Word Aligner**


The word aligner clocks in 10-bit received data from the deserializer using the low-speed recovered clock. It restores the word boundary of the upstream transmitter based on the pre-defined word alignment character for the selected protocol. In addition to restoring the word boundary, the word aligner also implements a synchronization state machine in all functional modes to achieve lane synchronization.

The word aligner consists of three sub-modules:

- Pattern detector module
- Pattern aligner module
- Run length violation detector module

Figure 1–28 shows the block diagram for the word aligner block.

Figure 1-28. Word Aligner



#### Pattern Detector Module

The pattern detector looks for the configured word alignment pattern in the data clocked into the word aligner. When the pattern detector detects the word alignment pattern for the first time, it asserts the rx\_patterndetect signal. The pattern aligner aligns the word boundary to the received word alignment pattern. Any subsequent word alignment pattern found in the same word boundary causes the rx\_patterndetect signal to assert for one parallel clock cycle. The rx\_patterndetect signal is not asserted if the word alignment pattern is found across the current word boundary.



All three supported functional modes, PCI Express (PIPE), GIGE, and Serial RapidIO, specify K28.5 (10'b0101111100 or 10'b1010000011) as the synchronization code group. The Quartus II software automatically programs both disparities of K28.5 control word as the word alignment pattern in all three modes.

## Pattern Aligner Module

The pattern aligner module, in conjunction with the pattern detector, aligns the received data to the pre-defined word alignment pattern. The pattern aligner incorporates an automatic synchronization state machine in all supported functional modes.

### **Automatic Synchronization State Machine**

The synchronization state machine offers automatic detection of a pre-defined number of valid alignment patterns to indicate lane synchronization and detection of code group errors for falling out of synchronization. The synchronization state machine indicates lane synchronization status on the rx\_syncstatus port. A high signal on the rx\_syncstatus port indicates that the lane synchronization has been achieved and a low signal indicates that the lane is not synchronized. In synchronized state (as indicated by rx\_syncstatus asserted high), the pattern aligner does not re-align the word boundary if the pattern detector detects the word alignment pattern in the incoming data. It re-aligns the word boundary only when the synchronization state machine detects loss of synchronization state (as indicated by rx\_syncstatus de-asserted low).

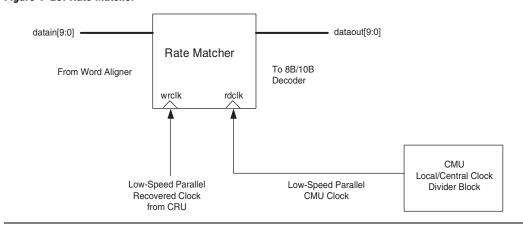
The Quartus II software automatically configures the synchronization state machine parameters; for example, number of valid synchronization characters received and number of invalid code groups received to fall out of synchronization. It selects these parameters as specified by each protocol standard (functional mode).



### Run Length Violation

The programmable run-length violation circuit resides in the word aligner block and detects consecutive 1s or 0s in the data. If the data stream exceeds the preset maximum number of consecutive 1s or 0s, the violation is signified by the assertion of the rx rlv signal.

The rx\_rlv signal is not synchronized to the parallel data and appears in the logic array earlier than the run-length violation data. To ensure that the PLD can latch this signal in systems where there are frequency variations between the recovered clock and the PLD logic array clock, the rx\_rlv signal is asserted for a minimum of two clock cycles. The rx\_rlv signal may be asserted longer, depending on the run-length of the received data.

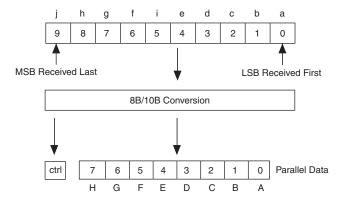

In all supported functional modes, you can set the run length violation circuitry to detect up to 160 consecutive 1s or 0s. The run length settings are available in increments of five.

### **Rate Matcher**

In asynchronous systems, the upstream transmitter and the local receiver may be clocked with independent reference clock sources. Frequency differences in the order of a few hundred parts per million (PPM) can potentially corrupt the data at the receiver. The rate matcher compensates for small clock frequency differences between the upstream transmitter and the local receiver clocks by inserting or removing skip characters or ordered-sets from the inter-packet gap (IPG) or idle streams. It inserts a skip character or ordered-set if the local receiver is running a faster clock than the upstream transmitter. It deletes a skip character or ordered-set if the local receiver is running a slower clock than the upstream transmitter. The rate matcher is available only in PCI Express (PIPE) and GIGE functional modes. The Quartus II software automatically configures the appropriate skip character or ordered-set as specified in the Gigabit Ethernet and PCI Express Base Specification depending on the selected functional mode.

The rate matcher consists of a 20-word-deep FIFO buffer and necessary logic to detect and perform the insertion and deletion functions. The write port of the rate matcher FIFO is clocked by the low-speed parallel recovered clock. The read port is clocked by the low-speed parallel clock from the CMU central or local clock divider block (Figure 1–29).



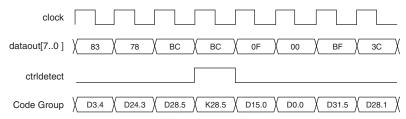



### 8B/10B Decoder

The 8B/10B decoder takes in 10-bit data from the rate matcher and decodes it into 8-bit data + 1-bit control identifier, thereby restoring the original transmitted data at the receiver. The decoded data is fed to the byte deserializer (in PCI Express [PIPE] and Serial RapidIO modes) or the receiver phase compensation FIFO buffer (in GIGE mode). The 8B/10B decoder conforms to IEEE 802.3 1998 edition standards.

Figure 1–30 shows a 10-bit code group decoded to an 8-bit data and a 1-bit control indicator.

Figure 1-30. 10-Bit to 8-Bit Conversion




### Control Code Group Detection

The 8B/10B decoder differentiates between data and control codes through the rx\_ctrldetect port. If the received 10-bit code group is a control code group (Kx.y), the rx\_ctrldetect signal is driven high, and if it is a data code group (Dx.y), the rx\_ctrldetect signal is driven low.

Figure 1–31 shows an example waveform demonstrating the receipt of a K28.5 code group (BC + ctrl). The rx\_ctrldetect=1 'b1 is aligned with 8'hbc, indicating that it is a control code group. The rest of the codes received are Dx.y code groups.

Figure 1-31. Control Code Group Detection



### Code Group Error Detection

If the received 10-bit code group is not a part of valid Dx.y or Kx.y code groups, the 8B/10B decoder block asserts an error flag on rx\_errdetect port. The error flag signal (rx\_errdetect) has the same data path delay from the 8B/10B decoder to the PLD-transceiver interface as the invalid code group.

### Disparity Error Detection

If the received 10-bit code group is detected with incorrect running disparity, the 8B/10B decoder block asserts an error flag on rx\_disperr and rx errdetect port.



Refer to the *Specifications & Additional Information* chapter in volume 2 of the *Arria GX Device Handbook* for information about the disparity calculation.

If negative disparity is calculated for the last 10-bit code group, a neutral or positive disparity 10-bit code group is expected. If the 8B/10B decoder does not receive a neutral or positive disparity 10-bit code group, the rx\_disperr signal goes high, indicating that the code group received has a disparity error. Similarly, if a neutral or negative disparity is expected and a 10-bit code group with positive disparity is received, the rx\_disperr signal goes high.

The detection of the disparity error might be delayed, depending on the data that follows the actual disparity error. The 8B/10B control codes terminate propagation of the disparity error. Any disparity errors propagated stop at the control code group, terminating that disparity error.

Figure 1–32 shows a case where the disparity is violated. A K28.5 code group has an 8-bit value of 8'hbc and a 10-bit value that depends on the disparity calculation at the point of the generation of the K28.5 code group. The 10-bit value is 10'b0011111010 (10'h17c) for RD– or

10'b1100000101 (10'h283) for RD+. If the running disparity at time n - 1 is negative, the expected code group at time must be from the RD– column. A K28.5 does not have a balanced 10-bit code group (equal number of 1s and 0s), so the expected RD code group must toggle back and forth between RD– and RD+. At time n + 3, the 8B/10B decoder received a RD+ K28.5 code group (10'h283), which makes the current running disparity negative. At time n + 4, because the current disparity is negative, a K28.5 from the RD– column is expected, but a K28.5 code group from the RD+ is received instead. This prompts  $rx\_disperr$  to go high during time n + 4 to indicate that this particular K28.5 code group had a disparity error. The current running disparity at the end of time n + 4 is negative because a K28.5 from the RD+ column was received. Based on the current running disparity at the end of time n + 5, a positive disparity K28.5 code group (from the RD–) column is expected at time n + 5.

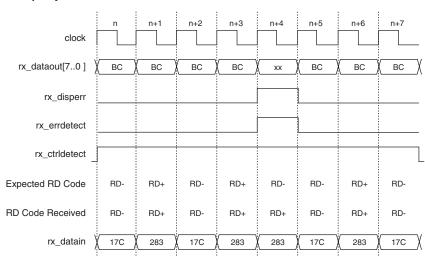
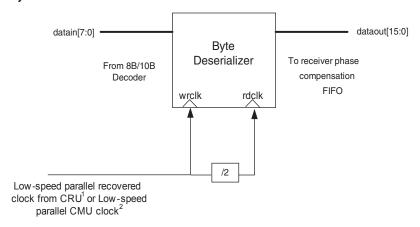



Figure 1-32. Disparity Error Detection

### Reset Condition

The reset for the 8B/10B decoder block is derived from the receiver digital reset (rx\_digitalreset). When rx\_digitalreset is asserted, the 8B/10B decoder block resets. In reset, the disparity registers are cleared and the outputs of the 8B/10B decoder block are driven low. After reset, the 8B/10B decoder starts with unknown disparity, depending on the disparity of the data it receives. The decoder calculates the initial running disparity based on the first valid code group received.




The receiver block must be word aligned after reset before the 8B/10B decoder can decode valid data or control codes. If word alignment has not been achieved, the data from the 8B/10B decoder should be discarded and considered invalid.

### Byte Deserializer

In PCI Express (PIPE) and Serial RapidIO functional modes, the byte deserializer (Figure 1–33) takes in 8-bit wide data from the 8B/10B decoder and deserializes it into a 16-bit wide data at half the speed. This allows clocking the PLD-transceiver interface at half the speed as compared to the receiver PCS logic. The byte deserializer is bypassed in GIGE mode.

Figure 1-33. Byte Deserializer



#### *Notes to Figure 1–33:*

- (1) Write port is clocked by low-speed parallel recovered clock if rate matcher is not used.
- (2) Write port is clocked by low-speed parallel CMU clock if rate matcher is used.

If the byte deserializer is used, the byte ordering at the receiver output might be different than what was transmitted. Figure 1–34 shows the 16-bit transmitted data pattern with A at the lower byte, followed by B at the upper byte. C and D follow in the next lower and upper bytes, respectively. At the byte deserializer, byte A arrives when it is stuffing the upper byte instead of stuffing the lower byte. This is a non-deterministic swap because it depends on PLL lock times and link delay. You must implement byte-ordering logic in the PLD to correct this situation.

Figure 1–34. Intended Transmitted Pattern and Incorrect Byte Position at Receiver After Byte Serializer

| Χ | В | D |  |
|---|---|---|--|
| Χ | Α | С |  |

Intended Transmitted
Pattern

| Α | С | Х |
|---|---|---|
| Х | В | D |

Incorrect Byte Position at Receiver

### **Receiver Phase Compensation FIFO buffer**

A receiver phase compensation FIFO buffer (Figure 1–35) is located at each receiver channel's logic array interface. It compensates for the phase difference between the receiver PCS clock and the local PLD clock.

In individual channel mode with rate matcher (PCI Express [PIPE] ×1 and GIGE), the low-speed clock output from the local clock divider block of each channel or its divide-by-two version clocks the write port of its receiver phase compensation FIFO buffer. This clock is also forwarded to the logic array (tx\_clkout). In individual channel mode without rate matcher (Serial RapidIO), the low-speed parallel recovered clock from the CRU is divided by two. This divide-by-two clock clocks the write port of its receiver phase compensation FIFO buffer. This clock is also forwarded to the logic array (rx\_clkout). If the rx\_coreclk port is instantiated, the clock signal on the rx\_coreclk port clocks the read port of the FIFO. If the rx\_coreclk port is not instantiated, the clock signal on tx\_clkout (if rate matcher is used) or rx\_clkout (if rate matcher is not used) port is automatically fed back to clock the read port of the FIFO.

In bonded channel mode (x4 PCI Express [PIPE]), the low-speed clock output from the central clock divider block is divided by two. This divide-by-two clock clocks the write port of the receiver phase compensation FIFO buffers in all channels. This clock is also forwarded to the logic array (coreclkout). If the rx\_coreclk port is instantiated, the clock signal on the rx\_coreclk port clocks the read port of the FIFO. If the rx\_coreclk port is not instantiated, the clock signal on the coreclkout port is automatically fed back to clock the read port of the FIFO in all channels within the transceiver block.

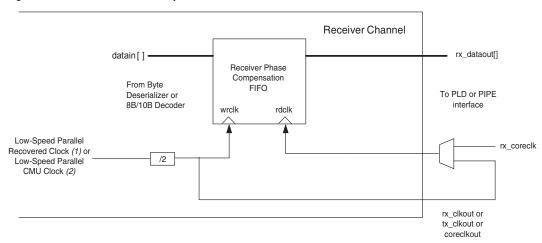



Figure 1–35. Receiver Phase Compensation FIFO Buffer

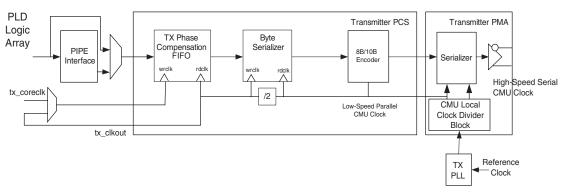
Notes to Figure 1-35:

- (1) Write port is clocked by low-speed parallel recovered clock when rate matcher is not used.
- (2) Write port is clocked by low-speed parallel CMU clock when rate matcher is used.

# Transceiver Channel Clock Distribution

This section describes clock distribution within the transceiver channel for all supported functional modes. Clock distribution can be classified into two categories:

- Individual-channel mode clocking—GIGE, Serial RapidIO, and PCI Express [PIPE] ×1 functional modes fall in this category
- Bonded-channel mode clocking—PCI Express (PIPE) ×4 functional mode falls in this category


### **Individual-Channel Mode Clocking**

In GIGE, Serial RapidIO, and PCI Express (PIPE) ×1 functional modes, each channel within the transceiver block forms an independent link. The blocks in the transmitter and receiver data paths of each channel are clocked independently and do not share any control signals. The transmitter channel-to-channel skew in individual channel modes could be relatively higher compared to bonded-channel mode.

### Individual-Channel Mode Transmitter Clock Distribution

Figure 1–36 shows clock distribution within a transmitter channel when configured in one of the individual-channel modes.

Figure 1–36. Individual-Channel Mode Transmitter Clock Distribution



The transmitter PLL multiplies the input reference clock to generate a high-speed serial clock at a frequency that is half the data rate of the configured functional mode. This high-speed serial clock is fed to the local clock divider block in each channel within the transceiver block. Depending on the configured functional mode, the local clock divider block divides the high-speed serial clock to generate the low-speed parallel clock that clocks the transmitter PCS logic in the associated channel.

Table 1–5 shows high-speed serial clock frequencies, low-speed parallel clock frequencies, and PLD-transceiver interface frequencies for individual-channel functional modes.

| Table 1–5. CMU Output Clock Frequencies |                                            |                                                |                                                 |  |  |
|-----------------------------------------|--------------------------------------------|------------------------------------------------|-------------------------------------------------|--|--|
| Functional Mode                         | High-Speed Serial Clock<br>Frequency (MHz) | Low-Speed Parallel<br>Clock Frequency<br>(MHz) | PLD-Transceiver<br>Interface Frequency<br>(MHz) |  |  |
| PCI Express (PIPE) x1 (2.5 Gbps)        | 1250                                       | 250                                            | 125                                             |  |  |
| GIGE (1.25 Gbps)                        | 625                                        | 125                                            | 125                                             |  |  |
| Serial RapidIO (1.25 Gbps)              | 625                                        | 125                                            | 62.5                                            |  |  |
| Serial RapidIO (2.5 Gbps)               | 1250                                       | 250                                            | 125                                             |  |  |

In functional modes that use the byte serializer (PCI Express [PIPE] x1 and Serial RapidIO), the low-speed parallel clock is divided by two before being driven on the tx clkout port. In GIGE mode that does not use the byte serializer, the low-speed parallel clock is directly driven on the tx clkout port. If the tx coreclk port is not instantiated, the Quartus II software automatically clocks the write port of the transmitter phase compensation FIFO in each channel with the tx clkout signal of channel 0 (tx clkout [0]) of that transceiver block. In PCI Express (PIPE) x1 mode, the tx\_clkout signal also clocks each channel's PCI Express (PIPE) interface logic. The read port of the transmitter phase compensation FIFO is clocked by the low-speed parallel clock output (or its divide-by-two version if byte serializer is used) of the channel's local clock divider block. The read port of the byte deserializer block (if used) is clocked by the low-speed parallel clock and the write port is clocked by its divide-by-two version. The 8B/10B encoder is clocked by the low-speed parallel clock. The 10-bit input data to the serializer block is clocked by the low-speed parallel clock and the serialized data is clocked out by the high-speed serial clock.

### Individual-Channel Mode Receiver Clock Distribution

The clock distribution within a receiver channel varies depending on whether rate matcher is used or not. GIGE and functional modes have a rate matcher in the receiver data path to compensate for the frequency difference between the upstream transmitter and local receiver clock. Serial RapidIO and Low-Latency (Synchronous) PCI Express (PIPE) ×1 modes do not have a rate matcher in the receiver data path.

#### Receiver Clock Distribution Without the Rate Matcher

Figure 1–37 shows clock distribution within a receiver channel when configured in an individual-channel mode without a rate matcher (Serial RapidIO and Low-Latency [Synchronous] PCI Express [PIPE] ×1 modes).

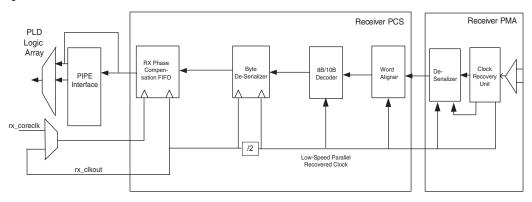



Figure 1-37. Receiver Clock Distribution in Individual-Channel Mode Without the Rate Matcher

The clock recovery unit (CRU) in each channel generates a high-speed serial recovered clock and a low-speed parallel recovered clock. The de-serializer clocks in the serial received data using the high-speed serial recovered clock and clocks out the 10-bit de-serialized data using the low-speed parallel recovered clock.

The low-speed parallel recovered clock clocks the word aligner, 8B/10B decoder, and the write port of the byte deserializer. The low-speed parallel recovered clock is divided by two before being driven on the rx\_clkout port of the corresponding channel. This divide-by-two version of the recovered clock clocks the write port of the receiver phase compensation FIFO. If the rx\_coreclk port is not instantiated, the Quartus II software automatically clocks the read port of the receiver phase compensation FIFO in each channel with its rx\_clkout signal.

### Receiver Clock Distribution With the Rate Matcher

Figure 1–38 shows clock distribution within a receiver channel when configured in an individual-channel mode with a rate matcher (GIGE and PCI Express (PIPE) ×1 modes).

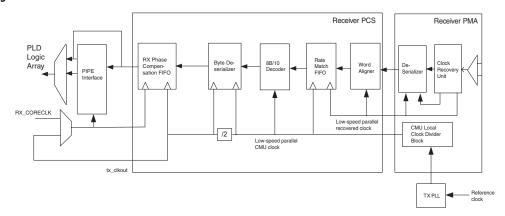



Figure 1-38. Receiver Clock Distribution in Individual-Channel Mode With the Rate Matcher

As seen in Figure 1–38, the deserializer output, the word aligner, and the write port of the rate matcher are clocked by the low-speed parallel recovered clock of its associated channel. The rate matcher clocks the data out using the low-speed parallel clock output from its associated CMU local clock divider block. The 8B/10B decoder and the write port of the byte deserializer (if used) are clocked by the low-speed parallel clock. The write port of the receiver phase compensation FIFO are clocked by the low-speed parallel clock or its divide-by-two version (if the functional mode uses the byte deserializer). This clock is also forwarded to the PLD logic array on the tx\_clkout port. If the rx\_coreclk port is not instantiated, the Quartus II software automatically clocks the read port of the receiver phase compensation FIFO in each channel with its associated tx\_clkout signal.

### **Bonded-Channel Mode Clocking**

In PCI Express (PIPE) ×4 functional mode, each channel within the transceiver block is a part of a four-lane PCI Express (PIPE) link. To reduce lane-to-lane skew, the blocks in the transmitter and receiver data paths share clocks and control signals.

### Bonded-Channel Mode Transmitter Clock Distribution

Figure 1–39 shows clock distribution within a transmitter channel when configured in a bonded-channel mode (PCI Express [PIPE] ×4).

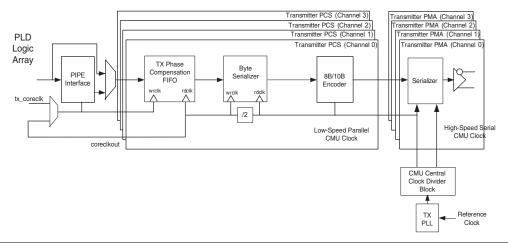



Figure 1–39. Bonded-Channel Mode Transmitter Clock Distribution

The transmitter PLL multiplies the input reference clock to generate a high-speed serial clock at a frequency that is half the data rate of the configured functional mode. This high-speed serial clock is fed to the central clock divider block in the transceiver block. The central clock divider block divides the high-speed serial clock to generate the low-speed parallel clock that clocks the transmitter PCS logic in all channels within the transceiver block.

Table 1–6 shows high-speed serial clock and low-speed parallel clock frequencies for PCI Express (PIPE) ×4 bonded-channel mode.

| Table 1–6. CMU Output Clock Frequencies                                                                               |      |     |     |  |  |
|-----------------------------------------------------------------------------------------------------------------------|------|-----|-----|--|--|
| Functional Mode  High-Speed Serial Clock Frequency (MHz)  Low-Speed Parallel Clock Frequency (MHz)  PLD-Trans Interfa |      |     |     |  |  |
| PCI Express (PIPE) ×4 (2.5 Gbps)                                                                                      | 1250 | 250 | 125 |  |  |

The low-speed parallel clock is divided by two before being driven on the coreclkout port. If the tx\_coreclk port is not instantiated, the Quartus II software automatically clocks the write port of the transmitter phase compensation FIFO in all channels with the coreclkout signal. The coreclkout signal also clocks each channel's PIPE interface logic. The read port of the transmitter phase compensation FIFO is clocked by the divide-by-two version of the low-speed parallel clock output from central clock divider block. The read port of the byte deserializer block is clocked by the low-speed parallel clock and the write port is clocked by its divide-by-two version. The 8B/10B encoder is clocked by the low-speed parallel clock. The 10-bit input data to the serializer block is clocked by the low-speed parallel clock and the serialized data is clocked out by the high-speed serial clock output from the central clock divider block (refer to Figure 1–39).

### Bonded-Channel Mode Receiver Clock Distribution

In PCI Express (PIPE) ×4 mode, you can choose to implement or bypass the rate match FIFO depending on your system requirements. Bypassing the rate matcher FIFO (Low-Latency PCI Express [PIPE] mode) yields lower latency through the receiver path. The clocking within the receiver channel varies depending on whether rate matcher is used.

### Bonded-Channel Mode Receiver Clock Distribution Without the Rate Matcher

Figure 1–40 shows clock distribution within a receiver channel when configured in PCI Express (PIPE) ×4 mode without the rate matcher.

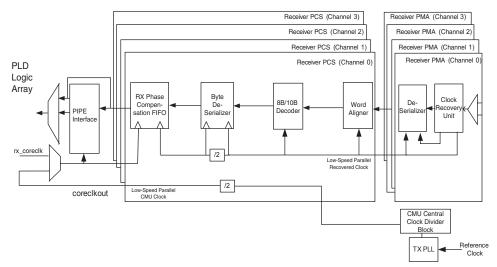



Figure 1–40. Bonded Channel Mode Receiver Clock Distribution Without the Rate Matcher

As seen in Figure 1–39, the deserializer output, the word aligner, the 8B/10B decoder, and the write port of the byte deserializer are clocked by the low-speed parallel recovered clock of its associated channel. The read port of the byte deserializer and the write port of the receiver phase compensation FIFO are clocked by the divide-by-two version of the low-speed parallel recovered clock. If the rx\_coreclk port is not instantiated, the write port of the receiver phase compensation FIFO is automatically clocked by the coreclkout signal.

### Bonded-Channel Mode Receiver Clock Distribution With the Rate Matcher

Figure 1–41 shows clock distribution within a receiver channel when configured in PCI Express (PIPE) x4 mode with the rate matcher.

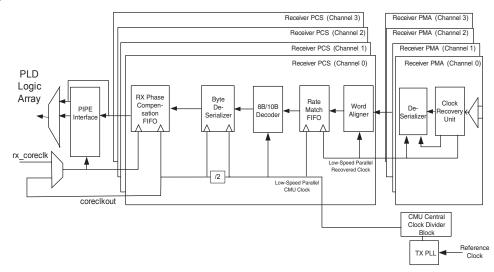



Figure 1–41. Bonded-Channel Mode Receiver Clock Distribution With the Rate Matcher

As seen in Figure 1–40, the deserializer output, the word aligner, and the write port of the rate matcher in each of the four channels are clocked by the low-speed parallel recovered clock of its associated channel. The rate matcher in all four channels clocks the data out using the low-speed parallel clock output from the CMU central clock divider block. The 8B/10B decoder and the byte deserializer are clocked by the low-speed parallel clock. The write port of the receiver phase compensation FIFO is clocked by the divide-by-two version of the low-speed parallel clock. This clock is also forwarded to the PLD logic array on the coreclkout port. If the rx\_coreclk port is not instantiated, the Quartus II software automatically clocks the read port of the receiver phase compensation FIFO in all four channels with the coreclkout signal.

### PLD-Transceiver Interface Clocking

The transmitter phase compensation FIFO present at each channel's PLD-transmitter interface compensates for the phase difference between the PLD clock that produces the data to be transmitted and the transmitter PCS clock. The receiver phase compensation FIFO present at each channel's PLD-receiver interface compensates for the phase difference between the PLD clock that processes the received data and the receiver PCS clock.

Depending on the functional mode, the Quartus II software automatically selects appropriate clocks to clock the read port of the transmitter phase compensation FIFO and the write port of the receiver phase compensation FIFO.

The write clock of the transmitter phase compensation FIFO and the read clock of the receiver phase compensation FIFO are part of the PLD-transceiver interface clocks. Arria GX transceivers provide the following two options for selecting these PLD-transceiver interface clocks:

- Automatic Phase Compensation FIFO clock selection
- User Controlled Phase Compensation FIFO clock selection

The automatic phase compensation FIFO clock selection is a simpler option but could lead to higher clock resource utilization as compared to user controlled phase compensation FIFO clock selection. This could be critical in designs with high clock resource requirements.

### **Automatic Phase Compensation FIFO Clock Selection**

If you do not instantiate the tx\_coreclk and rx\_coreclk ports for the Arria GX transceiver instance in the MegaWizard Plug-In Manager, the Quartus II software automatically selects appropriate clocks to clock the write port of the transmitter phase compensation FIFO and the read clock of the receiver phase compensation FIFO.

Table 1–7 lists the clock sources that the Quartus II software automatically selects for the transmitter and receiver phase compensation FIFOs, depending on the functional mode.

| Table 1–7. Clock Sources for the Transmitter and Receiver Phase Compensation FIFOs (Part 1 of 2) |                                                                                                        |                                                                                                       |  |  |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|--|
| Functional Mode                                                                                  | Write port clock selection for<br>Transmitter Phase Compensation<br>FIFO                               | Read port clock selection for<br>Receiver Phase Compensation<br>FIFO                                  |  |  |
| Individual-channel mode with rate matcher (PCI Express [PIPE] ×1, GIGE)                          | tx_clkout [0] from channel 0 clocks the FIFO write port in all channels in the same transceiver block. | tx_clkout [0] from channel 0 clocks the FIFO read port in all channels in the same transceiver block. |  |  |

| Table 1–7. Clock Sources for the Transmitter and Receiver Phase Compensation FIFOs (Part 2 of 2) |                                                                                                        |                                                                                     |  |  |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|
| Functional Mode                                                                                  | Write port clock selection for<br>Transmitter Phase Compensation<br>FIFO                               | Read port clock selection for<br>Receiver Phase Compensation<br>FIFO                |  |  |
| Individual-channel mode without rate matcher (Serial RapidIO, Low-latency PCI Express [PIPE] ×1) | tx_clkout [0] from channel 0 clocks the FIFO write port in all channels in the same transceiver block. | rx_clkout from each channel clocks the FIFO read port of its associated channel.    |  |  |
| Bonded-channel mode with/without rate matcher (PCI Express [PIPE] x4)                            | coreclkout clocks the FIFO write port in all channels in the same transceiver block.                   | coreclkout clocks the FIFO read port in all channels in the same transceiver block. |  |  |

In an individual-channel mode without rate matcher (Serial RapidIO), a total of five global/regional clock resources per transceiver block are utilized by the PLD-transceiver interface clocks. Four clock resources are utilized by the rx\_clkout signal of each channel being routed back to clock the read port of its receiver phase compensation FIFO. One clock resource is utilized by the tx\_clkout[0] signal of channel 0 being routed back to clock the write port of all transmitter phase compensation FIFOs in the transceiver block.

Figure 1–42 shows the minimum PLD-Interface clock utilization per transceiver block when configured in individual-channel mode without the rate matcher.

PLD **XCVR** Channel 3 ĒΧ RX Phase Comp FIFO CRU ΤX TX Phase Comp FIFO TX CLK Div Block Channel 2 RX RX Phase Comp FIFO CRU TX TX Phase Comp FIFO TX CLK Div Block Channel 1 RX RX Phase Comp FIFO CRU ŦΧ TX Phase Comp FIFO TX CLK Div Block clkout[0] Channel 0 RΧ RX Phase Comp FIFO CRU TX TX Phase Comp FIFO TX CLK Div Block

Figure 1-42. Minimum PLD-Interface Clock Utilization Per Transceiver Block Without the Rate Matcher

The PLD-transceiver clock utilization can be reduced by driving the transmitter and receiver phase compensation FIFOs with a single clock. This is possible only if the driving clock is frequency locked to the transceiver output clocks (tx\_clkout, coreclkout, or rx\_clkout). To control the write and read clock selection for the transmitter and receiver phase compensation FIFO, you must instantiate the tx coreclk and rx coreclk ports for the transceiver channels.

### **User Controlled Phase Compensation FIFO Clock Selection**

Instead of the Quartus II software automatically selecting the write and read clocks of the transmitter and receiver phase compensation FIFOs, respectively, you can manually connect appropriate clocks by instantiating the tx\_coreclk and rx\_coreclk ports in the MegaWizard Plug-In Manager. For all like channels configured in the same functional mode and running off the same clock source, you can connect the tx coreclk and rx coreclk ports of all channels together and drive them using the same clock source. You can use a PLD clock input pin or a transceiver clock (tx clkout[0]/coreclkout/rx clkout) to clock the

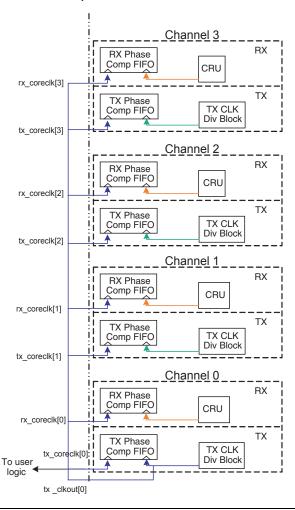



Figure 1-43. User Controlled Phase Compensation FIFO Clock



If the rx\_clkout is used as a driver, it can only drive the rx\_coreclk ports. It cannot drive the tx\_coreclk ports. If tx\_coreclk and rx\_coreclk need to be driven with the same clock, you must use the tx\_clkout signal as the clock driver.

If the clock signal on tx\_coreclk is used to clock the write side of the transmitter phase compensation FIFO, you must make sure that it is frequency locked to the transmitter PCS clock reading from the FIFO. If the clock signal on rx\_coreclk is used to clock the read side of the

receiver phase compensation FIFO, you must make sure that it is frequency locked to the receiver PCS clock writing into the FIFO. Any frequency differences may cause data corruption.

To help guard against incorrect usage, the use of the tx\_coreclk and rx\_coreclk options requires clock assignments in the assignment organizer. If no assignments are used, the Quartus II software will issue a compilation error.

There are four settings to enable the PLD interface clocking options:

- Stratix II GX/Arria GX GXB Shared Clock Group Setting
- Stratix II GX/Arria GX GXB Shared Clock Group Driver Setting
- Stratix II GX/Arria GX 0PPM Clock Group Setting
- Stratix II GX/Arria GX 0PPM Clock Group Driver Setting

There are two main settings, Shared Clock and 0 PPM Clock, each with a driver and clock group setting. When specifying clock groups, an integer identifier is used as the group name to differentiate other clock group settings from one another.

The Stratix II GX/Arria GX GXB Shared Clock Group Setting is the safest assignment. The Quartus II compiler analyzes the netlist during compilation to ensure transmitter channel members are derived from the same source. The Quartus II software gives a fitting error for incompatible assignments. The software cannot check for the output of the receiver frequency locked to the driving clock as the exact frequency is dictated by the upstream transmitter's source clock. You must ensure that the rx\_coreclk is derived from the same source clock as the upstream transmitter.

The Stratix II GX/Arria GX GXB Shared Clock Group Driver Setting assignment must be made to the source channel of the tx\_clkout or coreclkout. Specifying anything except the transmitter channels (the source for the tx\_clkout or coreclkout) results in a fitter error. If the source clock is not from tx\_clkout or coreclkout (for example, the source is from rx\_clkout or from a PLD clock input), the OPPM setting must be used instead.

For example, in a synchronous system, the transmitter and receiver are running off the same clock. To make tx\_clkout[0] the clock driver, the Stratix II GX/Arria GX GXB Shared Clock Group Driver Setting is made in the assignment editor on the tx\_dataout[0] name. You can use a group identifier value of "1" to identify the group that this driver feeds. The Stratix II GX/Arria GX GXB Shared Clock Group Setting is made to all the rx\_datain channels that the tx\_dataout[0] output clock drives.



The other tx\_dataout channels do not need an assignment as the Quartus II software automatically groups the like transmitters in a transceiver block. A group identifier value of "1" is also made to the rx\_datain assignments.

The assignments in the Assignment Editor are shown in Table 1–8.

| Table 1–8. Assignment Editor |                                                                                |  |
|------------------------------|--------------------------------------------------------------------------------|--|
| То:                          | tx_dataout[0]                                                                  |  |
| Assignment name:             | Stratix II GX/Arria GX GXB Shared Clock Group Driver Setting                   |  |
| Value:                       | 1                                                                              |  |
| То:                          | <pre>rx_datain[] (note that the [] signifies the entire rx_datain group)</pre> |  |
| Assignment name:             | Stratix II GX/Arria GX GXB Shared Clock Group Setting                          |  |
| Value:                       | 1                                                                              |  |

The Stratix II GX/Arria GX 0PPM Clock Group Setting is for more advanced users that know the clocking configuration of the entire system and want to reduce the PLD global clock resource and PLD interface clock resource utilization. The Quartus II compiler does not perform any checking on the clock source. It is up to you to ensure that there is no frequency difference from the associated transceiver clock of the group and the driving clock to the tx\_coreclk and rx\_coreclk ports.

The Stratix II GX/Arria GX 0PPM Clock Group Driver Setting can be made to any of the transceiver output clocks (tx\_clkout, rx\_clkout, and coreclk\_out) as well as any PLD clock input pins, transceiver dedicated REFCLK pin, or PLD PLL output. User logic cannot be used as a driver. As with the shared clock group setting, the driver setting for the transceiver output clocks is made to the associated channel. For example, for tx\_clkout or coreclk\_out, the transmitter channel name is specified. When the rx\_clkout is the driver, the receiver channel name of the associated rx\_clkout is specified. For the PLD input clock pins and the transceiver REFCLK pins, the name of the clock pin can be specified. For the PLL output, the PLL clock output port of the PLL can be found in the Node Finder and entered as the driver name. An integer value is specified for the group identification.

The Stratix II GX/Arria GX 0 PPM Clock Group Setting is made to the transmitter or receiver channel names.

The assignments in the Assignment Editor are shown in Table 1–9.

| Table 1–9. Assignment Editor |                                                                        |  |
|------------------------------|------------------------------------------------------------------------|--|
| То:                          | <pre>tx_dataout[0], pld_clk_pin_name, refclk_pin, and pll_outclk</pre> |  |
| Assignment name:             | Stratix II GX/Arria GX GXB 0 PPM Clock Group Driver<br>Setting         |  |
| Value:                       | 1                                                                      |  |
| To:                          | rx_datain[] and tx_dataout[]                                           |  |
| Assignment name:             | Stratix II GX/Arria GX GXB 0 PPM Clock Group Setting                   |  |
| Value:                       | 1                                                                      |  |



For a complete set of features supported in each protocol, refer to the *Arria GX Transceiver Protocol Support and Additional Features* chapter in volume 2 of the *Arria GX Device Handbook*.

## Referenced Documents

This chapter references the following documents:

- Arria GX Transceiver Protocol Support and Additional Features chapter in volume 2 of the Arria GX Device Handbook
- Specifications and Additional Information chapter in volume 2 of the Arria GX Device Handbook

### Document Revision History

Table 1–10 shows the revision history for this chapter.

| Table 1–10. Document Revision History |                                           |                    |  |  |
|---------------------------------------|-------------------------------------------|--------------------|--|--|
| Date and<br>Document<br>Version       | Changes Made                              | Summary of Changes |  |  |
| ,                                     | Added the "Referenced Documents" section. | _                  |  |  |
| v1.2                                  | Minor text edits.                         | _                  |  |  |
| June 2007<br>v1.1                     | Added GIGE information.                   | _                  |  |  |
| May 2007<br>v1.0                      | Initial release.                          | _                  |  |  |



### 2. Arria GX Transceiver Protocol Support and Additional Features

AGX52002-1.2

### Introduction

Arria<sup>TM</sup> GX transceivers have dedicated physical coding sublayer (PCS) and physical media attachment (PMA) circuitry to support PCI Express (PIPE), Gigabit Ethernet (GIGE), and Serial RapidIO<sup>TM</sup> protocols.

Table 2–1 lists the Arria GX transceiver datapath modules employed in each mode.

| Table 2-1.                      | Table 2–1. Arria GX Transceiver Datapath Modules          |                                     |                               |                 |                 |                                                  |                                                        |                           |
|---------------------------------|-----------------------------------------------------------|-------------------------------------|-------------------------------|-----------------|-----------------|--------------------------------------------------|--------------------------------------------------------|---------------------------|
| Functional<br>Mode              | Transmitter<br>/Receiver<br>Phase<br>Compensation<br>FIFO | Byte<br>Serializer/<br>Deserializer | 8B/10B<br>Encoder/<br>Decoder | Word<br>Aligner | Rate<br>Matcher | PLD-<br>Transceiver<br>Interface<br>Width (bits) | PLD-<br>Transceiver<br>Interface<br>Frequency<br>(MHz) | PCS<br>Frequency<br>(MHz) |
| PCI<br>Express<br>(PIPE)        | ~                                                         | ~                                   | ~                             | <b>✓</b>        | <b>√</b> (1)    | 16                                               | 125                                                    | 250                       |
| GIGE                            | ~                                                         |                                     | <b>✓</b>                      | <b>✓</b>        | <b>✓</b>        | 8                                                | 125                                                    | 125                       |
| Serial<br>RapidIO<br>(1.25Gbps) | ✓                                                         | <b>✓</b>                            | ~                             | <b>✓</b>        |                 | 16                                               | 62.5                                                   | 125                       |
| Serial<br>RapidIO<br>(2.5Gbps)  | <b>✓</b>                                                  | <b>&gt;</b>                         | <b>✓</b>                      | <b>✓</b>        |                 | 16                                               | 125                                                    | 250                       |

Note to Table 2–1:

# PCI Express (PIPE) Mode

PCI Express is an evolution of peripheral component interconnect (PCI). PCI is bandwidth-limited for today's applications because it relies on synchronous single-ended type signaling with a wide multi-drop data bus. Clock and data-trace matching is required with PCI. PCI Express uses differential serial signaling with an embedded clock to enable an effective data rate of 2 Gbps per lane to overcome the limitations of PCI.

Arria GX transceivers support ×1 (single-lane) and ×4 (four-lane) link widths when configured in PCI Express (PIPE) mode. The Arria GX family supports up to twelve duplex (transmitter and receiver) ×1 links and up to three ×4 links per device. Transceiver channels configured in ×4

<sup>(1)</sup> The rate matcher can be bypassed in low-latency (synchronous) PCI Express (PIPE) mode.

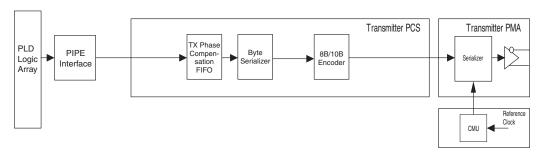
PCI Express (PIPE) mode must be physically located in the same transceiver block with logical Lane 0 assigned to physical Channel 0, logical Lane 1 assigned to physical Channel 1 and so on.

In addition to providing the transceiver PCS and PMA circuitry, Arria GX transceivers support the following protocol-specific features:

- PCI Express synchronization state machine
- Receiver detection
- Electrical idle generation/detection
- Beacon transmission
- Polarity inversion
- Power state management



This section is organized into transmitter and receiver data path modules when configured for PCI Express (PIPE) mode. The description for each module only covers details specific to PCI Express (PIPE) functional mode support. Familiarity of PCI Express protocol and PCI Express (PIPE) specifications is assumed.




For a general description of each module, refer to the *Arria GX Transceiver Architecture* chapter in volume 2 of the *Arria GX Device Handbook*.

### PCI Express (PIPE) Mode Transmitter Architecture

This section lists sub-blocks within the transmitter channel configured in PCI Express (PIPE) mode (Figure 2–1). The sub-blocks are described in order from the PLD transceiver parallel interface to the serial transmitter buffer.

Figure 2-1. PCI Express (PIPE) Transmitter Architecture



### Clock Multiplier Unit

The clock multiplier unit (CMU) takes in a reference clock and synthesizes the clocks that are used to clock the transmitter digital logic (PCS), the serializer, and the PLD-transceiver interface.



Refer to the Clock Multiplier Unit section in the *Arria GX Transceiver Architecture* chapter in volume 2 of the *Arria GX Device Handbook* for more details about CMU architecture.

In ×1 PCI Express (PIPE) mode, the CMU block consists of:

- Transmitter PLL that generates high-speed serial clock for the serializer
- Local clock divider block that generates low-speed parallel clock for transmitter digital logic and PLD-transceiver interface

In ×4 PCI Express (PIPE) mode, the CMU block consists of:

- Transmitter PLL that generates high-speed serial clock for the serializer
- Central clock divider block that generates low-speed parallel clock for transmitter digital logic and PLD-transceiver interface of each channel in the transceiver block

### **Input Reference Clock**

In PCI Express (PIPE) mode, the only supported input reference clock frequency is 100 MHz.

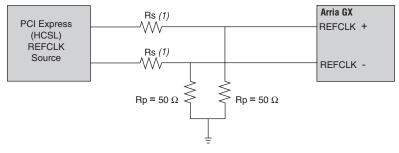
The reference clock input to the transmitter PLL can be derived from:

- One of the two available dedicated reference clock input pins (REFCLK0 or REFCLK1) of the associated transceiver block
- Inter-transceiver block lines driven by reference clock input pins of other transceiver blocks



Altera® recommends using the dedicated reference clock input pins (REFCLK0 or REFCLK1) to provide reference clock for the transmitter PLL.

Table 2–2 specifies the input reference clock options available in PCI Express (PIPE) mode.


| Table 2–2. PCI Express (PIPE) Mode Input Reference Clock Specifications |                                                                     |          |             |  |
|-------------------------------------------------------------------------|---------------------------------------------------------------------|----------|-------------|--|
| Frequency                                                               | I/O Standard                                                        | Coupling | Termination |  |
| 100 MHz                                                                 | 1.2V PCML, 1.5V<br>PCML, 3.3V<br>PCML, Differential<br>LVPECL, LVDS | AC       | On-chip     |  |
|                                                                         | HCSL (1)                                                            | DC (2)   | Off-chip    |  |

Notes to Table 2-2:

- (1) In PCI Express (PIPE) mode, you have the option of selecting the HCSL standard for the reference clock if compliance to PCI Express is required. The Quartus<sup>®</sup> II software automatically selects DC coupling with external termination for the signal if configured as HCSL.
- (2) Refer to Figure 2–2 for an example termination scheme.

Figure 2–2 shows an example termination scheme for the reference clock signal when configured as HCSL.

Figure 2–2. DC Coupling and External Termination Scheme for PCI Express Reference Clock



### Note to Figure 2-2:

(1) Select resistor values as recommended by the PCI Express clock source vendor.

### **Clock Synthesis**

In PCI Express (PIPE) mode, the reference clock pre-divider divides the 100 MHz input reference clock by two. The resulting 50 MHz clock is fed to the transmitter PLL. Since the transmitter PLL implements a half-rate VCO, it multiplies the 50 MHz input clock by 25 to generate a 1250 MHz high-speed serial clock. This high-speed serial clock feeds the central clock divider and four local clock dividers of the transceiver block.

In ×4 PCI Express (PIPE) mode, the central clock divider in the transceiver block divides the 1250 MHz clock from the transmitter PLL by 5 to generate a 250 MHz parallel clock. This low-speed parallel clock output from the central clock divider block is used to clock the transmitter digital logic (PCS) in all channels of the transceiver block. The central clock divider block also forwards the high-speed serial clock from the transmitter PLL to the serializer within each channel. Since all four channels in the transceiver block are clocked with the same clock, the channel-to-channel skew is minimized.

In  $\times 1$  PCI Express (PIPE) mode, the local clock divider in each channel of the transceiver block divides the 1250 MHz clock from the transmitter PLL by 5 to generate a 250 MHz parallel clock. This low-speed parallel clock output from the local clock divider block is used to clock the transmitter digital logic (PCS) of the associated channel. The local clock divider block also forwards the high-speed serial clock from the transmitter PLL to the serializer within its associated channel.



The Quartus II software automatically selects the appropriate transmitter PLL bandwidth suited for the PCI Express (PIPE) data rate.

Figure 2–3 shows the CMU implemented in PCI Express (PIPE) mode.

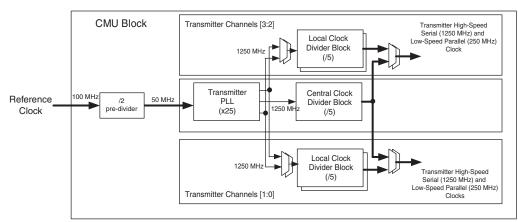



Figure 2-3. PCI Express (PIPE) Mode CMU

### Transmitter Phase Compensation FIFO Buffer

The transmitter phase compensation FIFO buffer compensates for the phase difference between the PLD clock that clocks in parallel data into the transmitter and the PCS clock that clocks the rest of the transmitter digital logic.



Refer to the Transmitter Phase Compensation FIFO Buffer section in the *Arria GX Transceiver Architecture* chapter in volume 2 of the *Arria GX Device Handbook* for more details about transmitter phase compensation FIFO buffer architecture.

In PCI Express (PIPE) mode, the 250 MHz clock generated by the CMU clock divider block is divided by 2. The resulting 125 MHz clock is used to clock the read port of the FIFO buffer. This 125 MHz clock is also forwarded to the PLD logic array (on the tx\_clkout port in ×1 PCI Express (PIPE) mode or the coreclkout port in ×4 PCI Express (PIPE) mode). If the tx\_coreclk port is not instantiated, the clock signal on the tx\_clkout port of channel 0 is routed back to clock the write side of the transmitter phase compensation FIFO buffer in all channels with the transceiver block. The 16-bit PLD-transceiver interface clocked at 125 MHz results in an effective PCI Express (PIPE) data rate of 2 Gbps.

In PCI Express (PIPE) mode, the transmitter phase compensation FIFO is eight words deep. The latency through the FIFO is three to four PLD-transceiver interface clock cycles.

Figure 2–4. TX Phase Compensation FIFO in PCI Express (PIPE) Mode Transmitter Channel tx datain[15:0] dataout[15:0] Transmitter Phase Compensation From **FIFO** To Byte Serializer **PLD** rdclk wrclk 250 MHz CMU tx coreclk 125 MHz 125 MHz Local/Central Clock Divider Block

Figure 2–4 shows the block diagram of transmitter phase compensation FIFO in PCI Express (PIPE) mode.

Byte Serializer

In PCI Express (PIPE) mode, the PLD-transceiver interface data is 16-bits wide and is clocked into the transmitter phase compensation FIFO at 125 MHz. The byte serializer clocks in the 16-bit wide data from the transmitter phase compensation FIFO at 125 MHz and clocks out 8-bit data to the 8B/10B encoder at 250 MHz. This allows clocking the PLD-transceiver interface at half the speed.



tx\_clkout or coreclkout

Refer to the Byte Serializer section in the *Arria GX Transceiver Architecture* chapter in volume 2 of the *Arria GX Device Handbook* for more details about byte serializer architecture.

The write port of the byte serializer is clocked by the divide-by-two version of the low-speed parallel clock from the CMU. The read port is clocked by the low-speed parallel clock from the CMU. The byte serializer clocks out the least significant byte (LSByte) of the 16-bit data first and the most significant byte (MSByte) last.

Figure 2–5 shows the block diagram of the byte serializer in PCI Express (PIPE) mode.

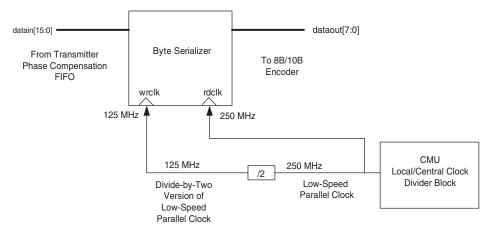



Figure 2-5. Byte Serializer in PCI Express (PIPE) Mode

### 8B/10B Encoder

In PCI Express (PIPE) mode, the 8B/10B encoder clocks in 8-bit data and 1-bit control identifier from the byte serializer and generates 10-bit encoded data. The 10-bit encoded data is fed to the serializer.



Refer to the 8B/10B Encoder section in the *Arria GX Transceiver Architecture* chapter in volume 2 of the *Arria GX Device Handbook* for more details about the 8B/10B encoder functionality.

### **Compliance Pattern Transmission Support**

PCI Express has an option to transmit a compliance pattern for testing purposes. The compliance pattern must be transmitted beginning with a negative disparity. In PCI Express (PIPE) mode, you set the negative disparity with the tx forcedispcompliance port.

Asserting the tx\_forcedispcompliance port sets the least significant byte of the 16-bit PLD-transmitter interface data to be encoded with a negative disparity. The tx\_forcedispcompliance port must be de-asserted after the first word of the compliance pattern is clocked into the transceiver.



The compliance pattern generator is not part of the Arria GX transceiver and must be designed using the PLD logic. This feature only allows you to begin the compliance pattern with a negative disparity.

### Serializer

In PCI Express (PIPE) mode, the 10-bit encoded data from the 8B/10B encoder is clocked into the 10:1 serializer with the low-speed parallel clock at 250 MHz. The 10-bit data is clocked out of the serializer LSB to MSB at both edges of the high-speed serial clock at 1250 MHz. The resulting 2.5 Gbps serial data output of the serializer is fed into the transmitter output buffer.



Refer to the Serializer section in the *Arria GX Transceiver Architecture* chapter in volume 2 of the *Arria GX Device Handbook* for more details about the serializer architecture.

### Transmitter Buffer

Table 2–3 shows the transmitter buffer settings when configured in PCI Express (PIPE) mode.

| Table 2–3. Transmitter Buffer Settings in PCI Express (PIPE) Mode |                |  |  |
|-------------------------------------------------------------------|----------------|--|--|
| Settings                                                          | Value          |  |  |
| I/O Standard                                                      | 1.2-V PCML (2) |  |  |
| Differential Output Voltage (V <sub>OD</sub> )                    | 800 mV (1)     |  |  |
| Common Mode Voltage (V <sub>CM</sub> )                            | 600 mV (1)     |  |  |
| Differential Termination                                          | 100 Ω (2)      |  |  |
| Transmitter Pre-Emphasis                                          | Enabled (3)    |  |  |
| V <sub>CCH</sub> (Transmitter Buffer Power)                       | 1.2 V          |  |  |

### *Notes to Table 2–3:*

- (1) The differential output voltage (Vod) and common mode voltage (Vcm) are fixed in the MegaWizard® Plug-In Manager and cannot be changed.
- (2) The I/O standard and differential termination settings are defaulted to 1.2-V PCML and  $100~\Omega$ , respectively. If you select any other setting for the I/O standard or differential termination in the Assignment Editor, the Quartus II compiler will issue an error message.
- (3) The transmitter pre-emphasis setting of 49% is selected to meet the PCI Express de-emphasis specification.

### **Transmitter Electrical Idle**

In PCI Express (PIPE) mode, you can force the transmitter into electrical idle condition during P0 and P2 power state by asserting the  $\label{eq:tx_force} \text{tx_force} \\ \text{elecidle signal high. In electrical idle state, the transmitter buffer is tri-stated. The <math display="block">\label{eq:tx_force} \text{force} \\ \text{elecidle signal must always be asserted high in P0 and P1 power states. Refer to "Power State Management" on page 2–22 for more details about PCI Express (PIPE) mode power states.$ 

### **Receiver Detect**

PCI Express Base Specification requires the transmitter to be capable of detecting a far-end receiver before beginning link training. Arria GX transceivers have dedicated receiver detect circuitry that gets activated in PCI Express (PIPE) mode.

The receiver detect circuitry is only available in the P1 power state and is set through the tx\_detectrxloopback port. Refer to "Power State Management" on page 2–22 for more details about PCI Express (PIPE) mode power states.

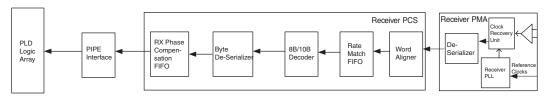
In P1 power state, the transmitter output buffer is tri-stated since the transmitter is in electrical idle. A high on the tx\_detectrxloopback port triggers the receiver detect circuitry to alter the transmitter buffer common mode voltage. The sudden change in common mode voltage effectively appears as a step voltage at the tri-stated transmitter buffer output. If a receiver (that complies with PCI Express input impedance requirements) is present at the far end, the time constant of the step voltage is higher. If a receiver is not present or powered down, the time constant of the step voltage is lower. The receiver detect circuitry snoops the transmitter buffer output for the time constant of the step voltage to detect the presence of the receiver at the far end.

A high pulse is driven on the pipephydonestatus port and 3'b011 is driven on the pipestatus port (refer to "Receiver Status" on page 2–21) to indicate that a receiver has been detected. There is some latency after asserting the tx\_detectrxloopback signal, before the receiver detection is indicated on the pipephydonestatus port.



The tx\_forceelecidle port must be asserted at least 10 parallel clock cycles prior to the tx\_detectrxloopback port to ensure that the transmitter buffer is tri-stated.

### **Beacon Transmission**


The beacon is an optional 30 kHz to 500 MHz in-band signal that wakes the receiver from a P2 power state. This signal is optional; the Arria GX device does not have dedicated beacon transmission circuitry. The Arria GX device supports the transmission of the beacon signal through

a 10-bit encoded code group that has a five 1's pulse (for example, K28.5) (10'b0101111100). Because the beacon signal is a pulse that ranges from 2 ns to 500 ns, sending out a K28.5 at 2.5 Gbps meets the lower requirement with its five 1's pulse. (Though other 8B/10B code groups might meet the beacon requirement, this document uses the K28.5 control code group as the beacon signal.) The beacon transmission takes place only in the P2 power state. The tx\_forceelecidle port controls when the transmitter is in Electrical Idle or not. This port must be de-asserted in order to transmit the K28.5 code group for beacon transmission.

### PCI Express (PIPE) Mode Receiver Architecture

This section lists sub-blocks within the receiver channel configured in PCI Express (PIPE) mode (Figure 2–6). The sub-blocks are described in order from the serial receiver input buffer to the receiver phase compensation FIFO buffer at the transceiver-PLD interface.

Figure 2–6. PCI Express (PIPE) Mode Receiver Architecture



### Receiver Buffer

Table 2–4 shows the receiver buffer settings when configured in PCI Express (PIPE) mode.

| Table 2–4. Receiver Buffer Settings in PCI Express (PIPE) Mode (Part 1 of 2) |                                                                     |
|------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Settings                                                                     | Value                                                               |
| I/O Standard                                                                 | 1.2-V PCML, 1.5-V PCML,<br>3.3-V PCML, Differential LVPECL,<br>LVDS |
| Input Common Mode Voltage (Rx V <sub>CM</sub> )                              | 850 mV (1)                                                          |
| Differential Termination                                                     | 100 Ω (2)                                                           |

| Table 2–4. Receiver Buffer Settings in PCI Express (PIPE) Mode (Part 2 of 2) |       |
|------------------------------------------------------------------------------|-------|
| Settings                                                                     | Value |
| Coupling                                                                     | AC    |

*Notes to Table 2–4:* 

- (1) The common mode voltage (Rx  $V_{CM}$ ) is fixed in the MegaWizard Plug-In Manager and cannot be changed.
- (2) The differential termination setting is defaulted to  $100 \Omega$ . If you select any other setting for differential termination in the Assignment Editor, the Quartus II compiler will issue an error message.

### Signal Detect Threshold Circuitry

In PCI Express (PIPE) mode, the receiver buffer incorporates a signal detect threshold circuitry. The signal detect threshold circuitry senses if the specified threshold voltage level exists at the receiver buffer. This detector has a hysteresis response that filters out any high frequency ringing caused by inter symbol interference or high frequency losses in the transmission medium.

The rx\_signaldetect signal indicates if the signal at the receiver buffer conforms to the signal detection settings. A high level on the rx\_signaldetect port indicates that the signal conforms to the settings and a low level indicates that the signal does not conform to the settings. The Quartus II software automatically defaults to the appropriate signal detect threshold based on the PCI Express electrical idle specifications.

### Receiver PLL and Clock Recovery Unit (CRU)

In PCI Express (PIPE) mode, the receiver PLL in each transceiver channel is fed by a 100 MHz input reference clock. The receiver PLL in conjunction with the clock recovery unit generates two clocks: a high-speed serial recovered clock at 1250 MHz (half-rate VCO) that feeds the deserializer, and a low-speed parallel recovered clock at 250 MHz that feeds the receiver's digital logic.

You can set the clock recovery unit in either automatic lock mode or manual lock mode. In automatic lock mode, the PPM detector and the phase detector within the receiver channel automatically switches the receiver PLL between lock-to-reference and lock-to-data modes. In manual lock mode, you can control the receiver PLL switch between lock-to-reference and lock-to-data modes via the rx\_locktorefclk and rx\_locktodata signals.



Refer to the Receiver PLL and Clock Recovery Unit (CRU) section in the *Arria GX Transceiver Architecture* chapter in volume 2 of the *Arria GX Device Handbook* for more details on the CRU lock modes.

The reference clock input to the receiver PLL can be derived from:

- One of the two available dedicated reference clock input pins (REFCLK0 or REFCLK1) of the associated transceiver block
- Inter-transceiver block lines driven by reference clock input pins of other transceiver blocks

## Deserializer

The 1:10 deserializer clocks in serial data from the receiver buffer using the high-speed recovered clock. The 10-bit de-serialized data is clocked out to the word aligner using the low-speed recovered clock at 250 MHz. The deserializer assumes that the transmission bit order is LSB to MSB; for example, the LSB of a data word is received earlier in time than its MSB.



Refer to the Deserializer section in the *Arria GX Transceiver Architecture* chapter in volume 2 of the *Arria GX Device Handbook* for more details about the deserializer architecture.

## Word Aligner

The word aligner clocks in the 10-bit data from the deserializer and restores the word boundary of the upstream transmitter. Besides restoring the word boundary, it also implements a synchronization state machine as specified in the PCI Express Base Specification to achieve lane synchronization.



Refer to the Word Aligner section in the *Arria GX Transceiver Architecture* chapter in volume 2 of the *Arria GX Device Handbook* for more details about the word aligner architecture.

In PCI Express (PIPE) mode, the word aligner comprises of the following three modules:

- Pattern detector module
- Pattern aligner module
- Run-length violation detector module

#### **Pattern Detector**

In PCI Express (PIPE) mode, the Quartus II software automatically configures 10-bit K28.5 (10'b0101111100) as the word alignment pattern. After coming out of reset (rx digitalreset), when the pattern

detector detects either disparities of the K28.5 control word, it asserts the rx\_patterndetect signal for one parallel clock cycle. Once the pattern aligner has aligned the incoming data to the desired word boundary, the pattern detector asserts the rx\_patterndetect signal only if the word alignment pattern is found in the current word boundary.

## Pattern Aligner

In PCI Express (PIPE) mode, the pattern aligner incorporates an automatic synchronization state machine. The Quartus II software automatically configures the synchronization state machine to indicate lane synchronization when the receiver receives four good /K28.5/control code groups. Synchronization can be accomplished through the reception of four good PCI Express training sequences (TS1 or TS2) or four fast training sequences (FTS). Lane synchronization is indicated on the rx\_syncstatus port of each channel. A high on the rx\_syncstatus port indicates that the lane is synchronized and a low indicates that it has fallen out of synchronization.

Table 2–5 lists the synchronization state machine parameters when configured in PCI Express (PIPE) mode.

| Table 2–5. Synchronization State Machine Parameters in PCI Express (PI<br>Mode        |    |
|---------------------------------------------------------------------------------------|----|
| Number of valid /K28.5/ code groups received to achieve synchronization (kcntr)       | 4  |
| Number of errors received to lose synchronization (ecntr)                             | 17 |
| Number of continuous good code groups received to reduce the error count by 1 (gcntr) | 16 |

Figure 2–7 shows a state diagram of the PCI Express (PIPE) synchronization.

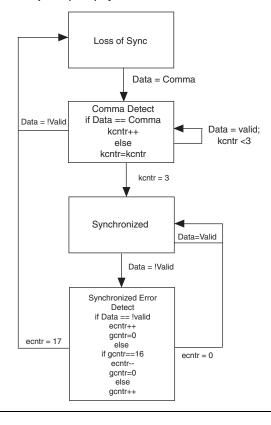


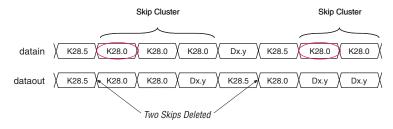

Figure 2-7. PCI-Express (PIPE) Synchronization State Machine

Tables 2–6 and 2–7 list the TS1 and TS2 training sequences, respectively. A PCI Express fast training sequence consists of a /K28.5/, followed by three /K28.1/ code groups.

| Table 2-6        | Table 2–6. PCI Express TS1 Ordered Set (Part 1 of 2)   |                          |                                       |  |
|------------------|--------------------------------------------------------|--------------------------|---------------------------------------|--|
| Symbol<br>Number | Allowed Vallies   Encoded Vallies   Higgs Introduction |                          |                                       |  |
| 0                |                                                        | K28.5                    | Comma code group for symbol alignment |  |
| 1                | 0–255                                                  | D0.0-D31.7,<br>and K23.7 | Link number with component            |  |

| Table 2–6. PCI Express TS1 Ordered Set (Part 2 of 2) |                                                                            |                                        |                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Symbol<br>Number                                     | Allowed Values                                                             | Encoded Values                         | Description                                                                                                                                                                                                                                                                                                 |
| 2                                                    | 0–31                                                                       | D0.0-D31.0,<br>and K23.7               | Lane number within port                                                                                                                                                                                                                                                                                     |
| ο                                                    | 0–255                                                                      | D0.0-D31.7                             | N_FTS. The number of fast training ordered sets required by the receiver to obtain reliable bit and symbol lock.                                                                                                                                                                                            |
| 4                                                    | 2                                                                          | D2.0                                   | Data rate identifier Bit 0-Reserved, set to 0 Bit 1 = 1, generation 1 (2.5Gbps) data rate supported Bit 27-Reserved, set to 0                                                                                                                                                                               |
| g                                                    | Bit 0 = 0, 1<br>Bit 1 = 0, 1<br>Bit 2 = 0, 1<br>Bit 3 = 0, 1<br>Bit 47 = 0 | D0.0, D1.0,<br>D2.0, D4.0, and<br>D8.0 | Training control  Bit 0 – Hot reset Bit 0 = 0, de-assert Bit 0 = 1, assert  Bit 1 – Disable link Bit 1 = 0, de-assert Bit 1 = 1, assert  Bit 1 – Loopback Bit 2 = 0, de-assert Bit 2 = 1, assert  Bit 3 – Disable scrambling Bit 3 = 0, de-assert Bit 3 = 1, assert  Bit 47 – Reserved Bit 0 = 0, de-assert |
| 6–15                                                 |                                                                            | D10.2                                  | TS1 identifier                                                                                                                                                                                                                                                                                              |

| Table 2-7.       | Table 2–7. PCI Express TS2 Ordered Set                                     |                                        |                                                                                                                                                                                                                                                                                                             |  |
|------------------|----------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Symbol<br>Number | Allowed Values                                                             | Encoded Values                         | Description                                                                                                                                                                                                                                                                                                 |  |
| 0                |                                                                            | K28.5                                  | Comma code group for symbol alignment.                                                                                                                                                                                                                                                                      |  |
| 1                | 0–255                                                                      | D0.0-D31.7,<br>and K23.7               | Link number with component.                                                                                                                                                                                                                                                                                 |  |
| 2                | 0–31                                                                       | D0.0-D31.0,<br>and K23.7               | Lane number within port.                                                                                                                                                                                                                                                                                    |  |
| 3                | 0–255                                                                      | D0.0-D31.7                             | N_FTS. The number of fast training ordered sets required by the receiver to obtain reliable bit and symbol lock.                                                                                                                                                                                            |  |
| 4                | 2                                                                          | D2.0                                   | Data rate identifier Bit 0-Reserved, set to 0 Bit 1 = 1, generation 1 (2.5Gbps) data rate supported Bit 27-Reserved, set to 0                                                                                                                                                                               |  |
| 5                | Bit 0 = 0, 1<br>Bit 1 = 0, 1<br>Bit 2 = 0, 1<br>Bit 3 = 0, 1<br>Bit 47 = 0 | D0.0, D1.0,<br>D2.0, D4.0, and<br>D8.0 | Training control  Bit 0 – Hot reset Bit 0 = 0, de-assert Bit 0 = 1, assert  Bit 1 – Disable link Bit 1 = 0, de-assert Bit 1 = 1, assert  Bit 1 – Loopback Bit 2 = 0, de-assert Bit 2 = 1, assert  Bit 3 – Disable scrambling Bit 3 = 0, de-assert Bit 3 = 1, assert  Bit 47 – Reserved Bit 0 = 0, de-assert |  |
| 6–15             |                                                                            | D5.2                                   | TS2 identifier                                                                                                                                                                                                                                                                                              |  |


#### Rate Matcher

In PCI Express (PIPE) mode, the rate matcher can compensate up to  $\pm$  300 parts per million (PPM) (600 PPM total) frequency difference between the upstream transmitter and the receiver. In ×1 and ×4 PCI Express (PIPE) mode, the write port of the rate matcher FIFO in each receiver channel is clocked by its low-speed parallel recovered clock. In ×1 PCI Express (PIPE) mode, the read port is clocked by the low-speed parallel clock output of the CMU local clock divider block. In ×4 PCI Express (PIPE) mode, the read port is clocked by the low-speed parallel clock output of the CMU central clock divider block.

The rate matcher logic looks for skip ordered sets (SKP), which contains a /K28.5/ comma followed by three /K28.0/ skip characters. It deletes or inserts /K28.0/ skip characters as necessary from/to the rate matcher FIFO. The rate matcher can delete only one skip character in a consecutive cluster of skip characters and can insert only one skip character per skip cluster.

Figure 2–8 shows an example of a PCI Express (PIPE) mode rate matcher deletion of two skip characters.

Figure 2-8. PCI Express (PIPE) Mode Rate Matcher Deletion



The rate matcher in PCI Express (PIPE) mode has FIFO buffer overflow and underflow protection. In the event of a FIFO buffer overflow, the rate matcher deletes any data after detecting the overflow condition to prevent FIFO pointer corruption until the rate matcher is not full. In an underflow condition, the rate matcher inserts 9'h1FE (/K30.7/) until the FIFO buffer is not empty. These measures ensure that the FIFO buffer can gracefully exit the overflow/underflow condition without requiring a FIFO reset. The rate matcher FIFO overflow and underflow condition is indicated on the pipestatus port.

#### 8B/10B Decoder

In PCI Express (PIPE) mode, the 8B/10B decoder clocks in 10-bit data from the rate matcher and decodes it into 8-bit data + 1-bit control identifier. The 8-bit decoded data is fed to the byte deserializer.



Refer to the 8B/10B Decoder section in the *Arria GX Transceiver Architecture* chapter in volume 2 of the *Arria GX Device Handbook* for more details about the 8B/10B decoder functionality.

If the received 10-bit code is not a part of valid Dx.y or Kx.y code groups, the 8B/10B decoder block asserts an error flag on rx\_errdetect port. The 8B/10B decoder replaces the invalid code group with /K30.7/ code (8'hFE + 1'b1 after decoding). The error flag signal (rx\_errdetect) has the same data path delay from the 8B/10B decoder to the PLD-transceiver interface as the invalid code group.

If the received 10-bit code is detected with incorrect running disparity, the 8B/10B decoder block asserts an error flag on the rx\_disperr and rx\_errdetect ports. The error flag signal (rx\_disperr) has the same delay from the 8B/10B decoder to the PLD-transceiver interface as the received data.

## **Polarity Inversion**

The 8B/10B decoder supports the PCI Express (PIPE) compatible polarity inversion feature. This polarity inversion feature inverts the bits of the incoming data stream prior to the 8B/10B decoding block to fix accidental P-N polarity inversion on the differential input buffer. You use the pipe8b10binvpolarity port to invert the inputs to the 8B/10B decoder dynamically from the PLD.



You must not enable the receiver polarity inversion feature if you enable the PCI Express polarity inversion.

## Byte Deserializer

In PCI Express (PIPE) mode, the PLD-receiver interface data is 16-bits wide and is clocked out of the receiver phase compensation FIFO at 125 MHz. The byte deserializer clocks in the 8-bit wide data from the 8B/10B decoder at 250 MHz and clocks out 16-bit wide data to the receiver phase compensation FIFO at 125 MHz. This allows clocking the PLD-transceiver interface at half the speed.



Refer to the Byte Deserializer section in the *Arria GX Transceiver Architecture* chapter in volume 2 of the *Arria GX Device Handbook* for more details about byte deserializer architecture

In ×1 PCI Express (PIPE) mode, the write port of the byte deserializer is clocked by the low-speed parallel clock output from the CMU local clock divider block (tx\_clkout) and the read port is clocked by divide-by-two version of this clock. In ×4 PCI Express (PIPE) mode, the write port of the byte deserializer is clocked by the low-speed parallel clock output from the CMU central clock divider block (coreclkout) and the read port is clocked by divide-by-two version of this clock.

Due to 8-bit to 16-bit byte descrialization, the byte ordering at the PLD-receiver interface might be incorrect. You implement the byte ordering logic in the PLD core to correct for this situation.

Figure 2–9 shows the block diagram of the byte serializer in PCI Express (PIPE) mode.

Byte
Deserializer

From 8B/10B
Decoder

Wrclk

rdclk

125 MHz

Low-Speed Parallel CMU Clock

Figure 2-9. Byte Deserializer in PCI Express (PIPE) Mode

## Receiver Phase Compensation FIFO Buffer

The receiver phase compensation FIFO buffer compensates for the phase difference between the local receiver PLD clock and the receiver PCS clock.



Refer to the Receiver Phase Compensation FIFO Buffer section in the *Arria GX Transceiver Architecture* chapter in volume 2 of the *Arria GX Device Handbook* for more details about receiver phase compensation FIFO buffer architecture.

In PCI Express (PIPE) mode, the 250 MHz clock generated by the CMU clock divider block is divided by two. The resulting 125 MHz clock is used to clock the write port of the FIFO buffer. This 125 MHz clock is also forwarded to the PLD logic array (on the tx\_clkout port in ×1 PCI Express (PIPE) mode or the coreclkout port in ×4 PCI Express (PIPE)

mode). If the rx\_coreclk port is not instantiated, the clock signal on the tx\_clkout/coreclkout port is routed back to clock the read side of the receiver phase compensation FIFO buffer. The 16-bit PLD-receiver interface, clocked at 125 MHz, results in an effective PCI Express (PIPE) data rate of 2 Gbps.

In PCI Express (PIPE) mode, the receiver phase compensation FIFO is eight words deep. The latency through the FIFO is two to three PLD-transceiver interface clock cycles.

Figure 2–10 shows the block diagram of transmitter phase compensation FIFO in PCI Express (PIPE) mode.

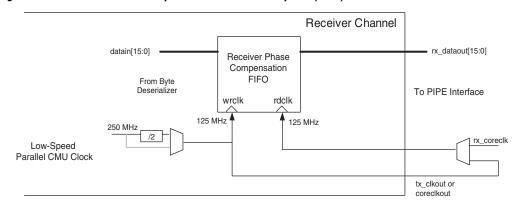



Figure 2-10. Receiver Phase Compensation FIFO in PCI Express (PIPE) Mode

## **Receiver Status**

PCI Express (PIPE) specifies a receiver status indicator that reports the status of the PHY (PCS and PMA). In PCI Express (PIPE) mode, the receiver status is communicated to the PLD logic by the three-bit pipestatus port. This port reports the status, as shown in Table 2–8. If more than one event occurs at the same time, the signal is resolved with the higher priority status. The skip character added and removed flags (3'b001 and 3'b010) are not supported. The pipestatus port may be encoded to 3b'001 and 3'b010, which should be ignored. It does not indicate that a skip has been added or removed and should be considered the same as 3'b000—received data. If the upper MAC layer must know when a skip character was added or removed, Altera recommends monitoring the number of skip characters received. The transmitter should send three skip characters in a standard skip-ordered set.

| Table 2-8. | Table 2–8. pipestatus Description and Priority |          |  |  |
|------------|------------------------------------------------|----------|--|--|
| pipestatus | Description                                    | Priority |  |  |
| 3'b000     | Received data                                  | 6        |  |  |
| 3'b001     | One skip character added (not supported)       | N/A      |  |  |
| 3'b010     | One skip character removed (not supported)     | N/A      |  |  |
| 3'b011     | Receiver detected 1                            |          |  |  |
| 3'b100     | 8B/10B decoder error 2                         |          |  |  |
| 3'b101     | Elastic buffer overflow                        | 3        |  |  |
| 3'b110     | Elastic buffer underflow                       | 4        |  |  |
| 3'b111     | Received disparity error                       | 5        |  |  |

## **Power State Management**

There are four supported power states in Arria GX transceivers when configured in PIPE mode: P0, P0s, P1, and P2. P0 is the normal power state. P0s is a low recovery time power state that is lower than P0. P1 is a lower power state than P0s and has higher latency to come out of this state. P2 is the lowest power state.

The powerdn port transitions the transceiver into different power states. The encoded value is shown in Table 2–9. The pipephydonestatus signal reacts to the powerdn request and pulses high for one parallel clock cycle.

There are specific functions that are performed at each of the power states. The power-down states are for PCI Express (PIPE) emulation. The transceiver does not go into actual power saving mode, with the exception of the transmitter buffer for Electrical Idle.

Table 2–9 shows each power state and its function.

| Table 2–9. Power State Functions and Descriptions (Part 1 of 2) |       |                                                                                          |                                      |
|-----------------------------------------------------------------|-------|------------------------------------------------------------------------------------------|--------------------------------------|
| Power State powerdn Function                                    |       | Description                                                                              |                                      |
| P0                                                              | 2'b00 | Transmits normal data,<br>transmits Electrical Idle,<br>or enters into loopback<br>mode. | Normal operation mode                |
| P0s                                                             | 2'b01 | Only transmits Electrical Idle.                                                          | Low recovery time power saving state |

| Table 2-9. P | Table 2–9. Power State Functions and Descriptions (Part 2 of 2) |                                                                                      |                                       |  |
|--------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------|--|
| Power State  | Power State powerdn Function                                    |                                                                                      | Description                           |  |
| P1           | 2'b10                                                           | Transmitter buffer is powered down and can do a receiver detect while in this state. | High recovery time power saving state |  |
| P2           | 2'b11                                                           | Transmits Electrical Idle or a beacon to wake up the downstream receiver.            | Lowest power saving state             |  |

There are two signals associated with the power states:  $tx\_detectrxloopback$  and  $tx\_forceelecidle$ . The  $tx\_detectrxloopback$  signal controls whether the channel goes into loopback when the power state is in P0 or receiver detect when in P1 state. This signal does not have any affect in any other power states. The  $tx\_forceelecidle$  signal governs when the transmitter goes into an electrical idle state. The  $tx\_forceelecidle$  signal is asserted in P0s and P1 states and de-asserted in P0 state. In P2 state, under normal conditions, the  $tx\_forceelecidle$  signal is asserted and then de-asserted when the beacon signal must be sent out, signifying the intent to exit the P2 power-down state.

Table 2-10 shows the behavior of the tx\_detectrxloopback and tx forceelecidle signals in the power states.

| Table 2–10. Power States and Functions Allowed in Each Power State |                                                 |                                                                   |  |
|--------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------|--|
| Power State                                                        | tx_detectrxloopback                             | tx_forceelecidle                                                  |  |
| P0                                                                 | 0: normal mode<br>1: data path in loopback mode | 0: Must be de-asserted.<br>1: Illegal mode                        |  |
| P0s                                                                | Don't care                                      | 0: Illegal mode<br>1: Must be asserted in this state              |  |
| P1                                                                 | 0: Electrical Idle<br>1: receiver detect        | 0: Illegal mode<br>1: Must be asserted in this state              |  |
| P2                                                                 | Don't care                                      | De-asserted in this state for sending beacon. Otherwise asserted. |  |

# NFTS Fast Recovery IP (NFRI)

The PCI Express fast training sequences (FTS) are used for bit and byte synchronization to transition from P0s state to P0 state. The PCI Express standard specifies the required time period for this transition to be between 16 ns and 4  $\mu s$ . The default PCI Express (PIPE) settings do not meet this requirement. You must enable the NFTS fast recovery IP (NFRI) for the receiver to transition from P0s to P0 within 4  $\mu s$  by selecting the **Enable fast recovery mode** option in the MegaWizard Plug-In Manager.

## PCI Express (PIPE) Mode Default Settings

The NFRI, if enabled, controls the <code>rx\_locktorefclk</code> and <code>rx\_locktodata</code> signals to meet the 4  $\mu s$  transition time from P0s to P0 power state.



If you select the rx\_locktorefclk and rx\_locktodata signals in the MegaWizard Plug-In Manager (CRU Manual Lock mode), the **Enable fast recovery mode** option cannot be selected.

When you select the **Enable fast recovery mode** option, consider the following:

- NFRI is created in the PLD side for each PCI Express (PIPE) channel
- NFRI is a soft IP, so it consumes logic resources
- This block is self-contained, so no input/output ports are available to access the soft IP

# Low-Latency (Synchronous) PCI Express (PIPE) Mode

The Arria GX receiver data path employs a rate match FIFO in PCI Express (PIPE) mode to compensate up to ±300 PPM difference between the upstream transmitter and the local receiver reference clock. The low-latency (synchronous) PCI Express (PIPE) mode allows bypassing the rate match FIFO in synchronous systems that derive the transmitter

and receiver reference clocks from the same source. You can bypass the rate match FIFO by not selecting the **Enable Rate Match FIFO** option in the ALT2GXB MegaWizard Plug-In Manager.

The rate match FIFO can be bypassed in both ×1 and ×4 PCI Express (PIPE) modes. In normal PCI Express (PIPE) mode, the receiver blocks following the rate match FIFO are clocked by tx\_clkout (×1 mode) or coreclkout (×4 mode) of the local port. In low-latency (synchronous) PCI Express (PIPE) mode, since the rate match FIFO is bypassed, these receiver blocks are clocked by the recovered clocks of the respective channels.

Except for the rate match FIFO being bypassed and the resulting changes in transceiver internal clocking, the low-latency (synchronous) PCI Express (PIPE) mode shares the same data path and state machines as the normal PCI Express (PIPE) mode. However, some features supported in normal PCI Express (PIPE) mode are not supported in low-latency (synchronous) PCI Express (PIPE) mode.

## PCI Express (PIPE) Reverse Parallel Loopback

In normal PCI Express (PIPE) mode, if the transceiver is in P0 power state, a high value on the tx\_rxdetectloop signal forces a reverse parallel loopback, as discussed in "PCI Express (PIPE) Reverse Parallel Loopback" on page 2–57. Parallel data at the output of the receiver rate match FIFO gets looped back to the input of the transmitter serializer.

In low-latency (synchronous) PCI Express (PIPE) mode, since the rate match FIFO is bypassed, this feature is not supported. A high value on the tx\_rxdetectloop signal when the transceiver is in P1 power state will not force it to perform reverse parallel loopback.

## Link Width Negotiation

In normal ×4 PCI Express (PIPE) configuration, the receiver phase compensation FIFO control signals (write/read enable, etc.) are shared among all lanes within the link. As a result, all lanes are truly bonded and the lane-lane skew meets the PCI Express specification.

In low-latency (synchronous) PCI Express (PIPE) configuration, the receiver phase compensation FIFO of individual lanes do not share control signals. The write port of the receiver phase compensation FIFO of each lane is clocked by its recovered clock. As a result, the lanes within a link are not bonded. You should perform external lane de-skewing to ensure proper link width negotiation.

## Receiver Status

Since the rate match FIFO is bypassed in low-latency (synchronous) PCI Express (PIPE) mode, status signal combinations related to the rate match FIFO on the pipestatus [2:0] port become irrelevant and must not be interpreted (Table 2–11).

| Table 2–11. pipestatus Signal |                                                  |                      |  |
|-------------------------------|--------------------------------------------------|----------------------|--|
| pipestatus[2:0] Normal PIPE   |                                                  | Synchronous PIPE     |  |
| 000                           | Received Data OK                                 | Received Data OK     |  |
| 001                           | Not supported                                    | Not supported        |  |
| 010                           | Not supported                                    | Not supported        |  |
| 011                           | Receiver Detected                                | Receiver Detected    |  |
| 100                           | 8B/10B Decoder Error                             | 8B/10B Decoder Error |  |
| 101                           | Elastic Buffer Overflow                          | Not supported        |  |
| 110                           | Elastic Buffer Underflow                         | Not supported        |  |
| 111                           | Received Disparity Error Received Disparity Erro |                      |  |

# Gigabit Ethernet (GIGE) mode

IEEE 802.3 defines the 1000 Base-X PHY as an intermediate, or transition, layer that interfaces various physical media with the media access control (MAC) in a gigabit ethernet system. It shields the MAC layer from the specific nature of the underlying medium. The 1000 Base-X PHY is divided into three sub-layers: the physical coding sublayer (PCS), the physical media attachment (PMA), and the physical medium dependent (PMD). The PCS sublayer interfaces to the MAC through the gigabit medium independent interface (GMII). The 1000 Base-X PHY defines a physical interface data rate of 1 Gbps.

Figure 2-11. GIGE OSI Reference Model LAN CSMA/CD Lavers OSI Reference Higher Layers Model Layers LLC Application MAC (Optional) Presentation MAC Session Reconciliation Transport GMII Network 1000 Base-X Data Link PHY **PMD** Physical Medium

Figure 2–11 shows the 1000 Base-X PHY position in a Gigabit Ethernet OSI reference model.

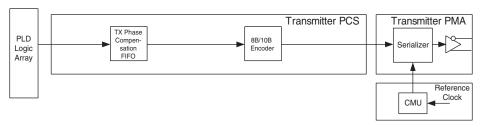
Arria GX transceivers, when configured in GIGE functional mode, provide many of the PCS and PMA functions defined in the IEEE 802.3 specification, for example:

- 8B/10B encoding/decoding
- Synchronization
- Upstream transmitter and local receiver clock frequency compensation (rate matching)
- Clock recovery from the encoded data forwarded by the receiver PMD
- Serialization/deserialization



Arria GX transceivers do not have built-in support for other PCS functions; for example, auto-negotiation, collision-detect, and carrier-sense. If required, you must implement these functions in PLD logic array or external circuits.

This section is organized into transmitter and receiver data path modules when configured for GIGE mode. The description for each module only covers details specific to GIGE functional mode support. Familiarity of IEEE 802.3 Ethernet specification is assumed.




For a general description of each module, refer to the *Arria GX Transceiver Architecture* chapter in volume 2 of the *Arria GX Device Handbook*.

## **GIGE Mode Transmitter Architecture**

This section lists sub-blocks within the transmitter channel configured in GIGE mode (Figure 2–12). The sub-blocks are described in order from the PLD-Transceiver parallel interface to the serial transmitter buffer.

Figure 2-12. GIGE Transmitter Architecture



## Clock Multiplier Unit (CMU)

The clock multiplier unit takes in a reference clock and synthesizes the clocks that are used to clock the transmitter digital logic (PCS), the serializer, and the PLD-transceiver interface.



Refer to the Clock Multiplier Unit (CMU) section in the *Arria GX Transceiver Architecture* chapter in volume 2 of the *Arria GX Device Handbook* for more details about CMU architecture.

In GIGE mode, the CMU block consists of:

- Transmitter PLL that generates high-speed serial clock for the serializer
- Local clock divider block that generates low-speed parallel clock for transmitter digital logic and PLD-transceiver interface

## **Input Reference Clock**

You can select either a 62.5 MHz or 125 MHz input reference clock frequency while configuring the transceiver in GIGE mode using the Quartus II MegaWizard Plug-In Manager.

The reference clock input to the transmitter PLL can be derived from:

- One of the two available dedicated reference clock input pins (REFCLKO or REFCLK1) of the associated transceiver block
- PLD global clock network (must be driven directly from an input clock pin and cannot be driven by user logic or enhanced PLL)
- Inter-transceiver block lines driven by reference clock input pins of other transceiver blocks



Altera recommends using the dedicated reference clock input pins (REFCLK0 or REFCLK1) to provide reference clock for the transmitter PLL.

The reference clock divide-by-two pre-divider is bypassed in GIGE mode.

Table 2–12 specifies the input reference clock options available in GIGE mode.

| Table 2–12. GIGE Mode Input Reference Clock Specification |                                                            |          |             |  |
|-----------------------------------------------------------|------------------------------------------------------------|----------|-------------|--|
| Frequency                                                 | I/O Standard                                               | Coupling | Termination |  |
| 62.5 MHz                                                  | 1.2 V PCML,                                                |          |             |  |
| 125 MHz                                                   | 1.5 V PCML,<br>3.3 V PCML,<br>Differential LVPECL,<br>LVDS | AC       | On-chip     |  |

#### **Clock Synthesis**

In GIGE mode, the input reference clock of 125 MHz (or 62.5 MHz) is fed to the transmitter PLL. Since the transmitter PLL implements a half-rate VCO, it multiplies the 125 MHz (or 62.5 MHz) input clock by 5 (or 10) to generate a 625 MHz high-speed serial clock. This high-speed serial clock feeds the local clock divider block in each GIGE channel instantiated within the transceiver block.

The local clock divider in each channel of the transceiver block divides the 625 MHz clock from the transmitter PLL by 5 to generate a 125 MHz parallel clock. This low-speed parallel clock output from the local clock divider block is used to clock the transmitter digital logic (PCS) of the associated channel. The local clock divider block also forwards the high-speed serial clock from the transmitter PLL to the serializer within its associated channel.



The Quartus II software automatically selects the appropriate transmitter PLL bandwidth suited for GIGE data rate.

CMU Block Transmitter Channels [3:2] Transmitter High-Speed Local Clock Serial (625 MHz) and Low-Speed Divider Block Parallel (125 MHz) Clocks (/5)Transmitter Reference 125 MHz (62.5 MHz) PLL x5 (x10) 625 MHz Clock Local Clock Transmitter High-Speed 625 MHz Divider Block Serial (625 MHz) and Low-Speed Parallel (125 MHz) Clocks Transmitter Channels [1:0]

Figure 2–13 shows the CMU implemented in GIGE mode.

# Figure 2–13. GIGE Mode CMU

## Transmitter Phase Compensation FIFO Buffer

The transmitter phase compensation FIFO buffer compensates for the phase difference between the PLD clock that clocks in parallel data into the transmitter and the PCS clock that clocks the rest of the transmitter digital logic.



Refer to the Transmitter Phase Compensation FIFO Buffer section in the *Arria GX Transceiver Architecture* chapter in volume 2 of the *Arria GX Device Handbook* for more details about the transmitter phase compensation FIFO buffer architecture.

In GIGE mode, the 125 MHz clock generated by the CMU local clock divider is used to clock the read port of the FIFO buffer. This 125 MHz clock is also forwarded to the PLD logic array (on the tx\_clkout port). If the tx\_coreclk port is not instantiated, the clock signal on the tx\_clkout port is automatically routed back to clock the write side of the transmitter phase compensation FIFO buffer. The 8-bit PLD-transceiver interface clocked at 125 MHz results into an effective GIGE data rate of 1 Gbps.

In GIGE mode, the transmitter phase compensation FIFO is four words deep. The latency through the FIFO is two to three PLD-transceiver interface clock cycles.

Figure 2–14 shows the block diagram of transmitter phase compensation FIFO in GIGE mode.

Transmitter Channel tx\_datain[7:0] dataout [7:0] Transmitter Phase Compensation To 8B/10B FIFO From Encoder PLD wrclk rdclk 125 MHz CMU tx\_coreclk 125 MHz 125 MHz Local Clock Divider Block tx\_clkout

Figure 2-14. Transmitter Phase Compensation FIFO in GIGE Mode

## 8B/10B Encoder

In GIGE mode, the 8B/10B encoder clocks in 8-bit data and 1-bit control identifier from the transmitter phase compensation FIFO and generates a 10-bit encoded data. The 10-bit encoded data is fed to the serializer.

Refer to the 8B/10B Encoder section in the Arria GX Transceiver Architecture chapter in volume 2 of the Arria GX Device Handbook for more details about the 8B/10B encoder functionality.

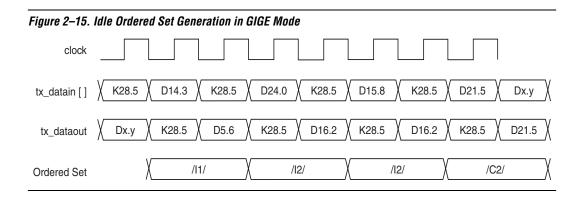
## GIGE Protocol - Ordered Sets and Special Code Groups

Table 2–13 lists ordered sets and special code groups used in the GIGE functional mode.

| Table 2       | Table 2–13. GIGE Ordered Sets (Part 1 of 2) |                             |                             |  |  |
|---------------|---------------------------------------------|-----------------------------|-----------------------------|--|--|
| Code<br>Group | Ordered Set                                 | Number of<br>Code<br>Groups | Encoding                    |  |  |
| /C/           | Configuration                               |                             | Alternating /C1/ and /C2/   |  |  |
| /C1/          | Configuration 1                             | 4                           | /K28.5/D21.5/Config_Reg (1) |  |  |
| /C2/          | Configuration 2                             | 4                           | /K28.5/D2.2/Config_Reg (1)  |  |  |

| Table 2       | Table 2–13. GIGE Ordered Sets (Part 2 of 2) |                             |                                  |  |  |
|---------------|---------------------------------------------|-----------------------------|----------------------------------|--|--|
| Code<br>Group | Ordered Set                                 | Number of<br>Code<br>Groups | Encoding                         |  |  |
| /I/           | IDLE                                        |                             | Correcting /I1/, Preserving /I2/ |  |  |
| /11/          | IDLE 1                                      | 2                           | /K28.5/D5.6                      |  |  |
| /12/          | IDLE 2                                      | 2                           | /K28.5/D16.2                     |  |  |
|               | Encapsulation                               |                             |                                  |  |  |
| /R/           | Carrier_Extend                              | 1                           | /K23.7/                          |  |  |
| /S/           | Start_of_Packet                             | 1                           | /K27.7/                          |  |  |
| /T/           | End_of_Packet                               | 1                           | /K29.7/                          |  |  |
| /V/           | Error_Propagation                           | 1                           | /K30.7/                          |  |  |

*Note to Table 2–13:* 

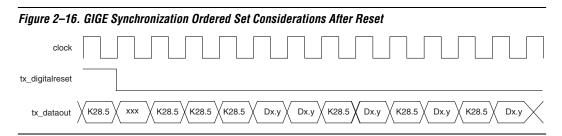

(1) Two data code groups representing the Config Reg value.

#### **Idle Ordered-Set Generation**

IEEE 802.3 requires the GIGE PHY to transmit idle ordered sets (/I/) continuously and repetitively whenever the GMII is idle. This ensures that the receiver maintains bit and word synchronization whenever there is no active data to be transmitted.

In GIGE functional mode, any /Dx.y/ following a /K28.5/ comma is replaced by the transmitter with either a /D5.6/ (/I1/ ordered set) or a /D16.2/ (/I2/ ordered set), depending on the current running disparity. The exception is when the data following the /K28.5/ is /D21.5/ (/C1/ ordered set) or /D2.2/ (/C2/) ordered set. If the running disparity before the /K28.5/ is positive, a /I1/ ordered set is generated. If the running disparity is negative, a /I2/ ordered set is generated. The disparity at the end of a /I1/ is the opposite of that at the beginning of the /I1/. The disparity at the end of a /I2/ is the same as the beginning running disparity (right before the idle code group). This ensures a negative running disparity at the end of an idle ordered set. A /Kx.y/ following a /K28.5/ is not replaced.

Figure 2–15 shows the automatic idle ordered set generation. Note that /D14.3/, /D24.0/, and /D15.8/ are replaced by /D5.6/ or /D16.2/ (for /I1/, /I2/ ordered sets). /D21.5/ (part of the /C1/ order set) is not replaced.




#### **Reset Condition**

After power up or reset, the GIGE transmitter outputs three /K28.5/commas before user data can be sent. This affects the synchronization ordered set transmission.

After reset (tx\_digitalreset), the 8B/10B encoder automatically sends three /K28.5/ commas. Depending on when you start outputting the synchronization sequence, there could be an even or odd number of /Dx.y/ sent as the transmitter before the synchronization sequence. The last of the three automatically sent /K28.5/and the first user-sent /Dx.y/ are treated as one idle ordered set. This can be a problem if there are an even number of /Dx.y/ transmitted before the start of the synchronization sequence.

Figure 2–16 shows an example of even numbers of /Dx.y/ between the last automatically sent /K28.5/ and the first user-sent /K28.5/. The first user-sent ordered set is ignored, so three additional ordered sets are required for proper synchronization. Figure 2–16 shows one don't care data between the tx\_digitalreset signal going low and the first of three automatic K28.5, but there could be more.



#### Serializer

In GIGE mode, the 10-bit encoded data from the 8B/10B encoder is clocked into the 10:1 serializer with the low-speed parallel clock at 125 MHz. The 10-bit data is clocked out of the serializer LSB to MSB at the high-speed effective serial clock rate at 1250 MHz. The serial data output of the serializer is fed into the transmitter output buffer.



Refer to the Serializer section in the *Arria GX Transceiver Architecture* chapter in volume 2 of the *Arria GX Device Handbook* for more details about the serializer architecture.

#### Transmitter Buffer

Table 2–14 shows the transmitter buffer settings when configured in GIGE mode.

| Table 2–14. Transmitter Buffer Settings in GIGE Mode |                |  |
|------------------------------------------------------|----------------|--|
| Settings                                             | Value          |  |
| I/O Standard                                         | 1.5-V PCML (2) |  |
| Differential Output Voltage (V <sub>OD</sub> )       | 800 mV (1)     |  |
| Common Mode Voltage (V <sub>CM</sub> )               | 600 mV (1)     |  |
| Differential Termination                             | 100 Ω (2)      |  |
| V <sub>CCH</sub> (Transmitter Buffer Power)          | 1.5 V          |  |

#### *Notes to Table 2–14:*

- (1) The differential output voltage (Vod) and common mode voltage (Vcm) settings are fixed in the MegaWizard Plug-In Manager and cannot be changed.
- (2) The I/O standard and differential termination settings are defaulted to 1.5-V PCML and  $100\,\Omega$ , respectively. If you select any other setting for I/O standard or differential termination in the Assignment Editor, the Quartus II compiler will issue an error message.

#### **GIGE Mode Receiver Architecture**

This section lists sub-blocks within the receiver channel configured in GIGE mode (Figure 2–17). The sub-blocks are described in order from the serial receiver input buffer to the receiver phase compensation FIFO buffer at the transceiver-PLD interface.

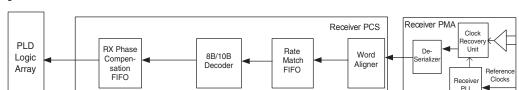



Figure 2-17. GIGE Mode Receiver Architecture

#### Receiver Buffer

Table 2–15 shows the receiver buffer settings when configured in GIGE mode.

| Table 2–15. Receiver Buffer Settings in GIGE Mode |                                                                     |  |
|---------------------------------------------------|---------------------------------------------------------------------|--|
| Settings                                          | Value                                                               |  |
| I/O Standard                                      | 1.2-V PCML, 1.5-V PCML,<br>3.3-V PCML, Differential LVPECL,<br>LVDS |  |
| Input Common Mode Voltage (Rx V <sub>CM</sub> )   | 850 mV (1)                                                          |  |
| Differential Termination                          | 100 Ω <i>(2)</i>                                                    |  |
| Coupling                                          | AC                                                                  |  |

#### Notes to Table 2-15:

- (1) The common mode voltage (Rx  $V_{\rm CM}$ ) is fixed in the MegaWizard Plug-In Manager and cannot be changed.
- (2) The differential termination setting is defaulted to  $100 \Omega$ . If you select any other setting for differential termination in the Assignment Editor, the Quartus II compiler will issue an error message.

## Receiver PLL and Clock Recovery Unit (CRU)

In GIGE mode, the receiver PLL in each transceiver channel is fed by a 125 MHz or a 62.5 MHz input reference clock. The receiver PLL in conjunction with the clock recovery unit (CRU) generates two clocks: a high-speed serial recovered clock at 625 MHz (half-rate PLL) that feeds the deserializer and a low-speed parallel recovered clock at 125 MHz that feeds the receiver's digital logic.

You can set the clock recovery unit in either automatic lock mode or manual lock mode. In automatic lock mode, the PPM detector and the phase detector within the receiver channel automatically switches the receiver PLL between lock-to-reference and lock-to-data modes. In

manual lock mode, you can control the receiver PLL switch between lock-to-reference and lock-to-data modes via the rx\_locktorefclk and rx\_locktodata signals.



Refer to the Receiver PLL and Clock Recovery Unit (CRU) section in the *Arria GX Transceiver Architecture* chapter in volume 2 of the *Arria GX Device Handbook* for more details about the CRU lock modes.

The reference clock input to the receiver PLL can be derived from:

- One of the two available dedicated reference clock input pins (REFCLKO or REFCLK1) of the associated transceiver block
- PLD global clock network (must be driven directly from an input clock pin and cannot be driven by user logic or enhanced PLL)
- Inter-transceiver block lines driven by reference clock input pins of other transceiver blocks

Table 2–16 specifies the input reference clock options available in GIGE mode.

| Table 2–16. GIGE Mode Input Reference Clock Specification |                                                            |          |             |
|-----------------------------------------------------------|------------------------------------------------------------|----------|-------------|
| Frequency                                                 | I/O Standard                                               | Coupling | Termination |
| 125 MHz                                                   | 1.2 V PCML,                                                |          |             |
| 62.5 MHz                                                  | 1.5 V PCML,<br>3.3 V PCML,<br>Differential LVPECL,<br>LVDS | AC       | On-chip     |

## Deserializer

The 1:10 deserializer clocks in serial data from the receiver buffer using the high-speed recovered clock. The 10-bit de-serialized data is clocked out to the word aligner using the low-speed recovered clock at 125 MHz. The deserializer assumes that the transmission bit order is LSB to MSB; for example, the LSB of a data word is received earlier in time than its MSB.



Refer to the Deserializer section in the *Arria GX Transceiver Architecture* chapter in volume 2 of the *Arria GX Device Handbook* for more details about the deserializer architecture.

## Word Aligner

The word aligner clocks in the 10-bit data from the deserializer and restores the word boundary of the upstream transmitter. Besides restoring the word boundary, it also implements a synchronization state machine as specified in the IEEE 802.3 specification to achieve receiver synchronization.

In GIGE mode, the word aligner comprises of the following three modules:

- Pattern detector module
- Pattern aligner module
- Run-length violation detector module

#### **Pattern Detector**

In GIGE mode, the Quartus II software automatically configures 10-bit K28.5 (10'b0101111100) as the word alignment pattern. After coming out of reset (rx\_digitalreset), when the pattern detector detects either disparities of the K28.5 control word, it asserts the rx\_patterndetect signal for one parallel clock cycle. Once the pattern aligner has aligned the incoming data to the desired word boundary, the pattern detector asserts the rx\_patterndetect signal only if the word alignment pattern is found in the current word boundary.

#### Pattern Aligner

In GIGE mode, the pattern aligner incorporates an automatic synchronization state machine. The Quartus II software automatically configures the synchronization state machine to indicate synchronization when the receiver receives three consecutive synchronization ordered sets. An ordered set defined for synchronization is a /K28.5/ code group followed by an odd number of valid /Dx.y/ code groups. The fastest way for the receiver to achieve synchronization is to receive three continuous //K28.5/, /Dx.y/} ordered set.

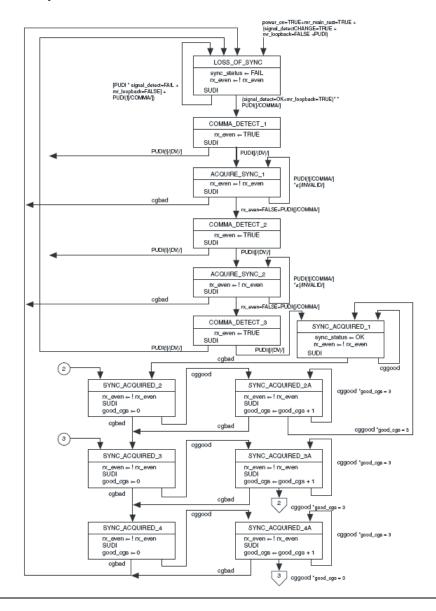

Receiver synchronization is indicated on the rx\_syncstatus port of each channel. A high on the rx\_syncstatus port indicates that the lane is synchronized and a low indicates that it has fallen out of synchronization. The receiver loses synchronization when it detects four invalid code groups separated by less than three valid code groups or when it is reset.

Table 2–17 lists the synchronization state machine parameters when configured in GIGE mode.

| Table 2–17. Synchronization State Machine Parameters in GIGE Mode                  |   |  |
|------------------------------------------------------------------------------------|---|--|
| Number of valid {/K28.5/, /Dx,y/} ordered-sets received to achieve synchronization | 3 |  |
| Number of errors received to lose synchronization                                  | 4 |  |
| Number of continuous good code groups received to reduce the error count by 1      | 4 |  |

Figure 2–18 shows the synchronization state machine implemented in GIGE mode.

Figure 2-18. GIGE Synchronization State Machine



#### Rate Matcher

In GIGE mode, the rate matcher can compensate up to  $\pm 100$  PPM (200 PPM total) frequency difference between the upstream transmitter and the receiver. The write port of the rate matcher FIFO in each receiver channel is clocked by its low-speed parallel recovered clock. The read port is clocked by the low-speed parallel clock output of the CMU local clock divider block.

The rate matcher logic inserts or deletes /I2/ idle ordered-sets to/from the rate matcher FIFO during the inter-frame or inter-packet gap (IFG or IPG). /I2/ is selected as the rate matching ordered-set since it maintains the running disparity unlike /I1/ that alters the running disparity. Since the /I2/ ordered-set contains two 10-bit code groups (/K28.5/,/D16.2/), twenty bits are inserted or deleted at a time for rate matching.



The rate matcher logic does not have capability to insert or delete /C1/ or /C2/ configuration ordered-sets.

Figure 2–19 shows an example of /I2/ deletion and Figure 2–20 shows an example of /I2/ insertion in a GIGE mode rate matcher.

Figure 2-19. GIGE Rate Matcher /12/ Deletion

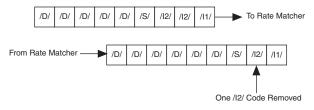
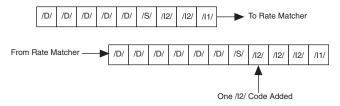




Figure 2-20. GIGE Rate Matcher /12/ Insertion



If the frequency PPM difference between the upstream transmitter and the local receiver is high or if the packet size is too large, the rate matcher FIFO buffer can face an overflow or underflow situation.

#### 8B/10B Decoder

In GIGE mode, the 8B/10B decoder clocks in 10-bit data from the rate matcher and decodes it into 8-bit data + 1-bit control identifier. The 10-bit decoded data is fed to the receiver phase compensation FIFO buffer.



Refer to the 8B/10B Decoder section in the *Arria GX Transceiver Architecture* chapter in volume 2 of the *Arria GX Device Handbook* for more details about the 8B/10B decoder functionality.

If the received 10-bit code group is not a part of valid Dx.y or Kx.y code groups, the 8B/10B decoder block asserts an error flag on the rx\_errdetect port. The error flag signal (rx\_errdetect) has the same data path delay from the 8B/10B decoder to the PLD-transceiver interface as the invalid code group.

If the received 10-bit code group is detected with incorrect running disparity, the 8B/10B decoder block asserts an error flag on the rx\_disperr and rx\_errdetect ports. The error flag signal (rx\_disperr) has the same delay from the 8B/10B decoder to the PLD-transceiver interface as the received data.

## Receiver Phase Compensation FIFO

The receiver phase compensation FIFO buffer compensates for the phase difference between the local receiver PLD clock and the receiver PCS clock.



Refer to the *Receiver Phase Compensation FIFO* section in the *Arria GX Transceiver Architecture* chapter in volume 2 of the *Arria GX Device Handbook* for more details about the receiver phase compensation FIFO buffer architecture.

In GIGE mode, the 125 MHz clock generated by the CMU local clock divider block clocks the write port of the FIFO buffer. This 125 MHz clock is also forwarded to the PLD logic array (on the corresponding <code>tx\_clkout</code> port). If the <code>rx\_coreclk</code> port is not instantiated, the clock signal on the <code>tx\_clkout</code> port is automatically routed back to clock the read side of the receiver phase compensation FIFO buffer. The 8-bit PLD-receiver interface clocked at 125 MHz results into an effective GIGE data rate of 1 Gbps.

In GIGE mode, the receiver phase compensation FIFO is four words deep. The latency through the FIFO is one to two PLD-transceiver interface clock cycles.

Figure 2–21 shows the block diagram of receiver phase compensation FIFO in GIGE mode.

Receiver Channel rx\_dataout[7:0] datain[7:0] Receiver Phase Compensation **FIFO** From 8B/10B To PLD Decoder wrclk rdclk 125 MHz Low-Speed Parallel 125 MHz 125 MHz rx\_coreclk CMU Clock tx clkout

Figure 2-21. Receiver Phase Compensation FIFO in GIGE Mode

# Serial RapidIO Mode

The RapidIO™ standard is a high-performance, packet-switched interconnect technology designed to pass data and control information between microprocessors, digital signal, communications, and network processors, system memories, and peripheral devices. Serial RapidIO physical layer specification defines three line rates at 1.25 Gbps, 2.5 Gbps, and 3.125 Gbps. It also supports two link widths – single-lane (×1) and bonded four-lane (×4) at each line rate.

Arria GX transceivers support both single-lane ( $\times$ 1) and four-lane ( $\times$ 4) Serial RapidIO link widths at 1.25 Gbps and 2.5 Gbps line rates. In  $\times$ 4 Serial RapidIO mode, the four transceiver channels are not bonded and are clocked independently like four individual channels.

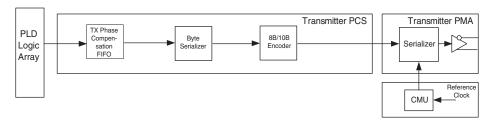
Arria GX transceivers, when configured in Serial RapidIO functional mode, provide the following PCS and PMA functions:

- 8B/10B encoding/decoding
- Word alignment
- Lane Synchronization State Machine
- Clock recovery from the encoded data
- Serialization/deserialization



Arria GX transceivers do not have built-in support for other PCS functions; for example, clock frequency compensation between upstream transmitter clock and local receiver clock (rate matcher), idle sequence generation, and lane alignment in ×4 mode. Depending on your system requirements, you must implement these functions in the logic array or external circuits.

This section is organized into transmitter and receiver data path modules when configured for Serial RapidIO mode. The description for each module only covers details specific to Serial RapidIO functional mode support. Familiarity of RapidIO Interconnect Specification v1.3 is assumed.




For a general description of each module, refer to the *Arria GX Transceiver Architecture* chapter in volume 2 of the *Arria GX Device Handbook*.

# Serial RapidIO Mode Transmitter Architecture

This section lists sub-blocks within the transmitter channel configured in Serial RapidIO mode (Figure 2–22). The sub-blocks are described in order from the PLD-Transceiver parallel interface to the serial transmitter buffer.

Figure 2-22. Serial RapidIO Transmitter Architecture



## Clock Multiplier Unit (CMU)

The clock multiplier unit takes in a reference clock and synthesizes the clocks that are used to clock the transmitter digital logic (PCS), the serializer, and the PLD-transceiver interface.



Refer to the Clock Multiplier Unit (CMU) section in the *Arria GX Transceiver Architecture* chapter in volume 2 of the *Arria GX Device Handbook* for more details about CMU architecture.

In Serial RapidIO mode, the CMU block consists of:

- Transmitter PLL that generates high-speed serial clock for the serializer
- Local clock divider block that generates low-speed parallel clock for transmitter digital logic and PLD-transceiver interface

## **Input Reference Clock**

Table 2–18 lists the input reference clock frequencies allowed in Serial RapidIO mode.

The reference clock input to the transmitter PLL can be derived from:

- One of the two available dedicated reference clock input pins (REFCLK0 or REFCLK1) of the associated transceiver block
- PLD global clock network (must be driven directly from an input clock pin and cannot be driven by user logic or enhanced PLL)
- Inter-transceiver block lines driven by reference clock input pins of other transceiver blocks



Altera recommends using the dedicated reference clock input pins (REFCLK0 or REFCLK1) to provide reference clock for the transmitter PLL.

The reference clock divide-by-two pre-divider is bypassed in serial RapidIO mode.

| Table 2                | Table 2–18. Serial RapidIO Mode Input Reference Clock Specifications |                                            |          |             |
|------------------------|----------------------------------------------------------------------|--------------------------------------------|----------|-------------|
| Data<br>Rate<br>(Gbps) | Reference Clock<br>Frequency (MHz)                                   | I/O Standard                               | Coupling | Termination |
| 1.25                   | 62.5, 78.125, 125,<br>156.25                                         | 1.2V PCML,<br>1.5V PCML,                   |          |             |
| 2.5                    | 125, 156.25, 250,<br>312.5                                           | 3.3V PCML,<br>Differential<br>LVPECL, LVDS | AC       | On-chip     |

## **Clock Synthesis**

In Serial RapidIO mode, the input reference clock is fed to the transmitter PLL. Since the transmitter PLL implements a half-rate VCO, it multiplies the input reference clock to generate a 625 MHz (1.25 Gbps Serial RapidIO) or 1250 MHz (2.5 Gbps Serial RapidIO) high-speed serial clock. This high-speed serial clock feeds the local clock divider block in each Serial RapidIO channel instantiated within the transceiver block. Table 2–19 lists the transmitter PLL multiplication factors that the Quartus II software automatically selects, depending on the Serial RapidIO data rate and input reference clock frequency selection.

| Table 2–19. Serial RapidIO Mode Transmitter PLL Multiplication Factors |                                    |                                          |
|------------------------------------------------------------------------|------------------------------------|------------------------------------------|
| Data Rate<br>(Gbps)                                                    | Reference Clock<br>Frequency (MHz) | Transmitter PLL Multiplication<br>Factor |
|                                                                        | 62.5                               | 10                                       |
| 1.25                                                                   | 78.125                             | 8                                        |
|                                                                        | 125                                | 5                                        |
|                                                                        | 156.25                             | 4                                        |
|                                                                        | 125                                | 10                                       |
| 2.5                                                                    | 156.25                             | 8                                        |
|                                                                        | 250                                | 5                                        |
|                                                                        | 312.5                              | 4                                        |

In Serial RapidIO 1.25Gbps (2.5Gbps) mode, the local clock divider in each channel of the transceiver block divides the 625MHz (1250 MHz) clock from the transmitter PLL by 5 to generate a 125MHz (250 MHz) parallel clock. This low-speed parallel clock output from the local clock divider block is used to clock the transmitter digital logic (PCS) of the associated channel. The local clock divider block also forwards the high-speed serial clock from the transmitter PLL to the serializer within its associated channel.



The Quartus II software automatically selects the appropriate transmitter PLL bandwidth suited for Serial RapidIO data rate.

## Transmitter Phase Compensation FIFO Buffer

The transmitter phase compensation FIFO buffer compensates for the phase difference between the PLD clock that clocks in parallel data into the transmitter and the PCS clock that clocks the rest of the transmitter digital logic.



Refer to the Transmitter Phase Compensation FIFO Buffer section in the *Arria GX Transceiver Architecture* chapter in volume 2 of the *Arria GX Device Handbook* for more details about the transmitter phase compensation FIFO buffer architecture.

In Serial RapidIO 1.25 Gbps (2.5 Gbps) mode, the 125 MHz (250 MHz) clock generated by the CMU clock divider block is divided by 2. The resulting 62.5MHz (125MHz) clock is used to clock the read port of the FIFO buffer. This divide-by-two clock is also forwarded to the PLD logic array (on the  $tx_clkout$  port of its associated channel). If the  $tx_coreclk$  port is not instantiated, the clock signal on the  $tx_clkout$  port is automatically routed back to clock the write side of the transmitter phase compensation FIFO buffer. The 16-bit PLD-transceiver interface clocked at 62.5 MHz (125 MHz) results into an effective Serial RapidIO data rate of 1 Gbps (2 Gbps).

In Serial RapidIO mode, the transmitter phase compensation FIFO is four words deep. The latency through the FIFO is two to three PLD-transceiver interface clock cycles.

Figure 2–23 shows the block diagram of transmitter phase compensation FIFO in Serial RapidIO mode.

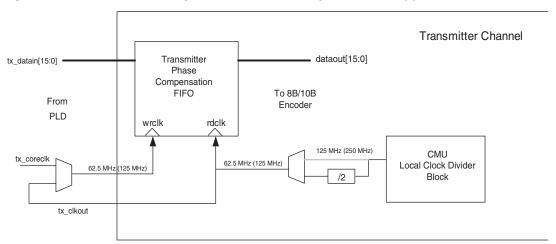



Figure 2–23. Transmitter Phase Compensation FIFO in Serial RapidIO Mode Note (1)

Note to Figure 2-23:

(1) The clock frequencies inside the parenthesis apply to 2.5 Gbps Serial RapidIO mode and the ones outside apply to 1.25 Gbps Serial RapidIO mode.

## Byte Serializer

In Serial RapidIO 1.25 Gbps (2.5 Gbps) mode the PLD-transceiver interface data is 16 bits wide and is clocked into the transmitter phase compensation FIFO at 62.5 MHz (125 MHz). The byte serializer clocks in the 16-bit wide data from the transmitter phase compensation FIFO at 62.5 MHz (125 MHz) and clocks out 8-bit data to the 8B/10B encoder at 125 MHz (250 MHz). This allows clocking the PLD-transceiver interface at half the speed.



Refer to the Byte Serializer section in the *Arria GX Transceiver Architecture* chapter in volume 2 of the *Arria GX Device Handbook* for more details about the byte serializer architecture.

The write port of the byte serializer is clocked by the divide-by-two version of the low-speed parallel clock from CMU. The read port is clocked by the low-speed parallel clock from CMU. The byte serializer clocks out the least significant byte of the 16-bit data first and the most significant byte last.

Figure 2–24 shows the block diagram of the byte serializer in Serial RapidIO mode.

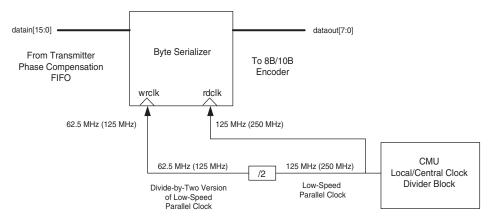



Figure 2–24. Byte Serializer in Serial RapidIO Mode Note (1)

Note to Figure 2-24:

 The clock frequencies inside the parenthesis apply to 2.5 Gbps Serial RapidIO mode and the ones outside apply to 1.25 Gbps Serial RapidIO mode.

#### 8B/10B Encoder

In Serial RapidIO mode, the 8B/10B encoder clocks in 8-bit data and 1-bit control identifier from the transmitter phase compensation FIFO and generates a 10-bit encoded data. The 10-bit encoded data is fed to the serializer.



Refer to the 8B/10B Encoder section in the *Arria GX Transceiver Architecture* chapter in volume 2 of the *Arria GX Device Handbook* for more details about the 8B/10B encoder functionality.

#### Serializer

In Serial RapidIO 1.25 Gbps (2.5 Gbps) mode, the 10-bit encoded data from the 8B/10B encoder is clocked into the 10:1 serializer with the low-speed parallel clock at 125 MHz (250 MHz). The 10-bit data is clocked out of the serializer LSB to MSB at the high-speed effective serial clock rate at 1250 MHz (2500 MHz). The serial data output of the serializer is fed into the transmitter output buffer.

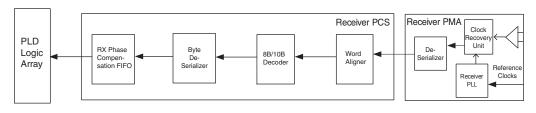


Refer to the Serializer section in the *Arria GX Transceiver Architecture* chapter in volume 2 of the *Arria GX Device Handbook* for more details about the serializer architecture.

#### Transmitter Buffer

Table 2–20 shows the transmitter buffer settings when configured in Serial RapidIO mode.

| Table 2–20. Transmitter Buffer Settings in Serial RapidlO Mode |                |  |
|----------------------------------------------------------------|----------------|--|
| Settings Value                                                 |                |  |
| I/O Standard                                                   | 1.5-V PCML (2) |  |
| Differential Output Voltage (V <sub>OD</sub> )                 | 800 mV (1)     |  |
| Common Mode Voltage (V <sub>CM</sub> )                         | 600 mV (1)     |  |
| Differential Termination                                       | 100 Ω (2)      |  |
| V <sub>CCH</sub> (Transmitter Buffer Power)                    | 1.5 V          |  |


#### *Notes to Table 2–20:*

- (1) The differential output voltage (Vod) and common mode voltage (Vcm) settings are fixed in the MegaWizard Plug-In Manager and cannot be changed.
- (2) The I/O standard and differential termination settings are defaulted to 1.5-V PCML and 100  $\Omega$ , respectively. If you select any other setting for the I/O standard or differential termination in the Assignment Editor, the Quartus II compiler will issue an error message.

#### Serial RapidIO Mode Receiver Architecture

This section lists sub-blocks within the receiver channel configured in Serial RapidIO mode (Figure 2–25). The sub-blocks are described in order from the serial receiver input buffer to the receiver phase compensation FIFO buffer at the transceiver-PLD interface.

Figure 2–25. Serial RapidIO Mode Receiver Architecture



#### Receiver Buffer

Table 2–21 shows the receiver buffer settings when configured in Serial RapidIO mode.

| Table 2–21. Receiver Buffer Settings in Serial RapidIO Mode |                                                                     |  |
|-------------------------------------------------------------|---------------------------------------------------------------------|--|
| Settings                                                    | Value                                                               |  |
| I/O Standard                                                | 1.2-V PCML, 1.5-V PCML,<br>3.3-V PCML, Differential LVPECL,<br>LVDS |  |
| Input Common Mode Voltage (Rx V <sub>CM</sub> )             | 850 mV (1)                                                          |  |
| Differential Termination                                    | 100 Ω (2)                                                           |  |
| Coupling                                                    | AC                                                                  |  |

#### Notes to Table 2-21:

- (1) The common mode voltage (Rx  $V_{CM}$ ) is fixed in the MegaWizard Plug-In Manager and cannot be changed.
- (2) The differential termination setting is defaulted to  $100\,\Omega$ . If you select any other setting for differential termination in the Assignment Editor, the Quartus II compiler will issue an error message.

#### Receiver PLL and Clock Recovery Unit (CRU)

In Serial RapidIO 1.25 Gbps (2.5 Gbps) mode, the receiver PLL in each transceiver channel is fed by an input reference clock. The receiver PLL in conjunction with the clock recovery unit generates two clocks: a half-rate

high-speed serial recovered clock at 625 MHz (1250 MHz) that feeds the deserializer and a low-speed parallel recovered clock at 125 MHz (250 MHz) that feeds the receiver's digital logic.

You can set the clock recovery unit in either automatic lock mode or manual lock mode. In automatic lock mode, the PPM detector and the phase detector within the receiver channel automatically switch the receiver PLL between lock-to-reference and lock-to-data modes. In manual lock mode, you can control the receiver PLL switch between lock-to-reference and lock-to-data modes via the rx\_locktorefclk and rx\_locktodata signals.



Refer to the Receiver PLL and Clock Recovery Unit (CRU) section in the *Arria GX Transceiver Architecture* chapter in volume 2 of the *Arria GX Device Handbook* for more details about the CRU lock modes.

The reference clock input to the receiver PLL can be derived from:

- One of the two available dedicated reference clock input pins (REFCLK0 or REFCLK1) of the associated transceiver block
- PLD global clock network (must be driven directly from an input clock pin and cannot be driven by user logic or enhanced PLL)
- Inter-transceiver block lines driven by reference clock input pins of other transceiver blocks

Table 2–22 specifies the receiver input reference clock options available in Serial RapidIO mode.

| Table 2–22. Serial RapidIO Mode Input Reference Clock Specifications |                                       |                                             |          |             |
|----------------------------------------------------------------------|---------------------------------------|---------------------------------------------|----------|-------------|
| Data Rate<br>(Gbps)                                                  | Reference Clock<br>Frequency<br>(MHz) | I/O Standard                                | Coupling | Termination |
| 1.25                                                                 | 62.5, 78.125,<br>125, 156.25          | 1.2 V PCML,<br>1.5 V PCML,                  |          |             |
| 2.5                                                                  | 125, 156.25,<br>250,<br>312.5         | 3.3 V PCML,<br>Differential<br>LVPECL, LVDS | AC       | On-chip     |

#### Deserializer

In Serial RapidIO 1.25 Gbps (2.5 Gbps) mode, the 1:10 deserializer clocks in serial data from the receiver buffer using the high-speed serial recovered clock. The 10-bit de-serialized data is clocked out to the word aligner using the low-speed parallel recovered clock at 125 MHz

(250 MHz). The deserializer assumes that the transmission bit order is LSB to MSB; that is, the LSB of a data word is received earlier in time than its MSB.



Refer to the Deserializer section in the *Arria GX Transceiver Architecture* chapter in volume 2 of the *Arria GX Device Handbook* for more details on the deserializer architecture.

#### Word Aligner

The word aligner clocks in the 10-bit data from the deserializer and restores the word boundary of the upstream transmitter.



Refer to the Word Aligner section in the *Arria GX Transceiver Architecture* chapter in volume 2 of the *Arria GX Device Handbook* for more details about the word aligner architecture.

In Serial RapidIO mode, the word aligner comprises of the following three modules:

- Pattern detector module
- Pattern aligner module
- Run-length violation detection module

#### **Pattern Detector**

In Serial RapidIO mode, the Quartus II software automatically configures 10-bit K28.5 (10'b0101111100) as the word alignment pattern. After coming out of reset (rx\_digitalreset), when the pattern detector detects either disparities of the K28.5 control word, it asserts the rx\_patterndetect signal for one parallel clock cycle. Once the pattern aligner has aligned the incoming data to the desired word boundary, the pattern detector asserts rx\_patterndetect signal only if the word alignment pattern is found in the current word boundary.

#### Pattern Aligner

In Serial RapidIO mode, the pattern aligner employs an automatic synchronization state machine. The Quartus II software automatically configures the synchronization state machine to indicate synchronization when the receiver receives 127 K28.5 (10'b0101111100 or 10'b1010000011) synchronization code groups without receiving an intermediate invalid code group. Once synchronized, the state machine indicates loss of synchronization when it detects three invalid code groups separated by less than 255 valid code groups or when it is reset.

Receiver synchronization is indicated on the rx\_syncstatus port of each channel. A high on the rx\_syncstatus port indicates that the lane is synchronized and a low indicates that it has fallen out of synchronization.

Table 2–23 lists the synchronization state machine parameters when configured in Serial RapidIO mode.

| Table 2–23. Synchronization State Machine Parameters in Serial RapidIO Mode   |     |
|-------------------------------------------------------------------------------|-----|
| Number of valid K28.5 code groups received to achieve synchronization         | 127 |
| Number of errors received to lose synchronization                             | 3   |
| Number of continuous good code groups received to reduce the error count by 1 | 255 |



In an 8B/10B encoded data stream, a /K28.7/ special code group followed by any of the data code groups /D3.y/, /D11.y/, /D12.y/, /D19.y/, /D20.y/, /D28.y/ or /K28.y/ (where y ranges from 0 to 7), may cause the /K28.5/ alignment pattern to appear across the word boundary. Serial RapidIO protocol allows /K28.7/ transmission only during test and debug.

Figure 2–26 shows the synchronization state machine implemented in Serial RapidIO functional mode.

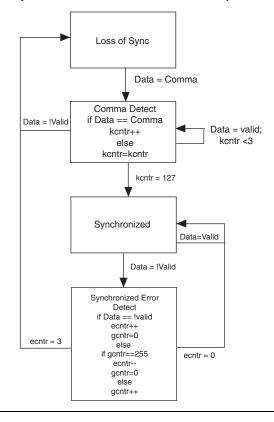



Figure 2–26. Synchronization State Machine in Serial RapidIO Mode

#### 8B/10B Decoder

In Serial RapidIO mode, the 8B/10B decoder clocks in 10-bit data from the word aligner and decodes it into 8-bit data + 1-bit control identifier. The 8-bit decoded data is fed to the byte deserializer.



Refer to the 8B/10B Decoder section in the *Arria GX Transceiver Architecture* chapter in volume 2 of the *Arria GX Device Handbook* for more details about the 8B/10B decoder functionality.

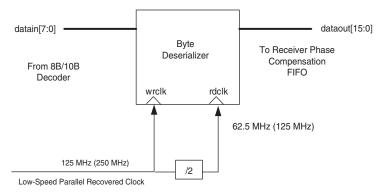
If the received 10-bit code group is not a part of valid Dx.y or Kx.y code groups, the 8B/10B decoder block asserts an error flag on the rx\_errdetect port. The error flag signal (rx\_errdetect) has the same data path delay from the 8B/10B decoder to the PLD-transceiver interface as the invalid code group.

If the received 10-bit code group is detected with incorrect running disparity, the 8B/10B decoder block asserts an error flag on the rx\_disperr and rx\_errdetect ports. The error flag signal (rx\_disperr) has the same delay from the 8B/10B decoder to the PLD-transceiver interface as the received data.

#### Byte Deserializer

In Serial RapidIO 1.25 Gbps (2.5 Gbps) mode, the PLD-receiver interface data is 16 bits wide and is clocked out of the receiver phase compensation FIFO at 62.5 MHz (125 MHz). The byte deserializer clocks in the 8-bit wide data from the 8B/10B decoder at 125 MHz (250 MHz) and clocks out 16-bit wide data to the receiver phase compensation FIFO at 62.5 MHz (125 MHz). This allows clocking the PLD-transceiver interface at half the speed.




Refer to the Byte Deserializer section in the *Arria GX Transceiver Architecture* chapter in volume 2 of the *Arria GX Device Handbook* for more details about byte deserializer architecture.

In Serial RapidIO mode, the write port of the byte deserializer is clocked by the low-speed parallel recovered clock and the read port is clocked by divide-by-two version of this clock.

Due to 8-bit to 16-bit byte deserialization, the byte ordering at the PLD-receiver interface might be incorrect. If required, you must implement the byte ordering logic in the PLD core to correct for this situation.

Figure 2–27 shows the block diagram of the byte de-serializer in Serial RapidIO mode.

Figure 2–27. Byte Deserializer in Serial RapidIO Mode Note (1)



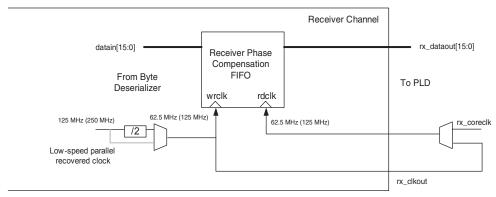
Note to Figure 2-27:

 The clock frequencies inside the parenthesis apply to 2.5 Gbps Serial RapidIO mode and the ones outside apply to 1.25 Gbps Serial RapidIO mode.

#### Receiver Phase Compensation FIFO Buffer

The receiver phase compensation FIFO buffer compensates for the phase difference between the local receiver PLD clock and the receiver PCS clock.




Refer to the Receiver Phase Compensation FIFO Buffer section in the *Arria GX Transceiver Architecture* chapter in volume 2 of the *Arria GX Device Handbook* for more details about the receiver phase compensation FIFO buffer architecture.

In Serial RapidIO 1.25 Gbps (2.5 Gbps) mode, the 125 MHz (250 MHz) low-speed parallel recovered clock is divided by 2. The resulting 62.5 MHz (125 MHz) clock is used to clock the write port of the FIFO buffer. This divide-by-two clock is also forwarded to the PLD logic array (on the <code>rx\_clkout</code> port). If the <code>rx\_coreclk</code> port is not instantiated, the recovered clock signal on the <code>rx\_clkout</code> port is automatically routed back to clock the read side of the receiver phase compensation FIFO buffer. The 16-bit PLD-receiver interface clocked at 62.5 MHz (125 MHz) results into an effective Serial RapidIO data rate of 1 Gbps (2 Gbps).

In Serial RapidIO mode, the receiver phase compensation FIFO is four words deep. The latency through the FIFO is one to two PLD-transceiver interface clock cycles.

Figure 2–28 shows the block diagram of receiver phase compensation FIFO in Serial RapidIO mode.

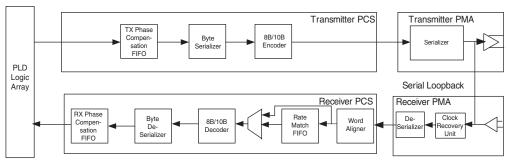
Figure 2–28. Receiver Phase Compensation FIFO in RapidIO Mode Note (1)



Note to Figure 2-28:

 The clock frequencies inside the parenthesis apply to 2.5 Gbps Serial RapidIO mode and the ones outside apply to 1.25 Gbps Serial RapidIO mode.

### **Loopback Modes**


Arria GX transceivers support the following loopback configurations for diagnostic purposes:

- Serial Loopback available in GIGE and Serial RapidIO modes
- PCI Express Reverse Parallel Loopback available in PCI Express (PIPE) mode

#### Serial Loopback

Figure 2–29 shows the transceiver data path in serial loopback.

Figure 2–29. Transceiver Data Path in Serial Loopback Mode



In GIGE and Serial RapidIO modes, you can dynamically put each transceiver channel individually in serial loopback by controlling the rx\_seriallpbken port. You instantiate the rx\_seriallpbken port in the MegaWizard Plug-In Manager by selecting the serial loopback option. A high on the rx\_seriallpbken port puts the transceiver into serial loopback and a low takes the transceiver out of serial loopback.

As seen in Figure 2–29, the serial data output from the transmitter serializer is looped back to the receiver clock recovery unit (CRU) in serial loopback. The transmitter data path from the PLD interface to the serializer in serial loopback is the same as in non-loopback mode. The receiver data path from the clock recovery unit to the PLD interface in serial loopback is the same as in non-loopback mode. Since the entire transceiver data path is available in serial loopback, this option is often used to diagnose the data path as a probable cause of link errors.



When the serial loopback is enabled, the transmitter output buffer is still active and drives the serial data out on the tx\_dataout port.

#### PCI Express (PIPE) Reverse Parallel Loopback

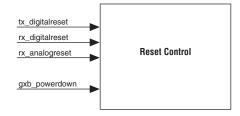
Figure 2–30 shows the data path for the PCI Express (PIPE) reverse parallel loopback. The reverse parallel loopback configuration is compliant with the PCI Express (PIPE) specification and is available only on PCI Express (PIPE) mode.




Figure 2-30. PCI Express (PIPE) Reverse Parallel Loopback

You can dynamically put the PCI Express (PIPE) mode transceiver in reverse parallel loopback by controlling the <code>tx\_detectrxloopback</code> port instantiated in the MegaWizard Plug-In Manager. A high on the <code>tx\_detectrxloopback</code> port in P0 power state puts the transceiver in reverse parallel loopback. A high on the <code>tx\_detectrxloopback</code> port in any other power state does not put the transceiver in reverse parallel loopback.

As seen in Figure 2–30, the serial data received on the  $rx_datain$  port in reverse parallel loopback goes through the CRU, deserializer, word aligner, and the rate matcher blocks. The parallel data at the output of the receiver rate matcher block is looped back to the input of the transmitter serializer block. The serializer converts the parallel data to serial data and feeds it to the transmitter output buffer that drives the data out on the  $tx_dataout$  port. The data at the output of the rate matcher also goes through the 8B/10B decoder, byte deserializer, and receiver phase compensation FIFO before being fed to the PLD on the  $rx_dataout$  port.




The reverse parallel loopback is not available in Low-latency (Synchronous) PCI Express (PIPE) mode as the rate matcher is bypassed.

# Reset Control and Power-Down

Arria GX transceivers provide multiple reset signals to reset the analog and digital circuits in the transceiver channels. Besides individual channel resets, Arria GX transceivers also provide power-down signals that you can assert to power-down the entire transceiver block to reduce power consumption (Figure 2–31).

Figure 2-31. Reset Signals



#### **User Reset and Power-Down Signals**

Each transceiver block and each channel in the transceiver block of the Arria GX device has individual reset signals to reset the digital and analog circuits in the channel. The tx\_digitalreset, rx\_digitalreset, and rx\_analogreset signals affect the channels individually. The gxb\_powerdown signal affects the entire transceiver block.



All reset and power-down signals are optional. Altera strongly recommends using the reset and power-down signals and following the reset sequence discussed in this section.

- tx\_digitalreset—The tx\_digitalreset signal resets all digital logic in the transmitter. This signal operates independently from the other reset signals. The minimum pulse width is two parallel cycles.
- rx\_digitalreset—The rx\_digitalreset signal resets all digital logic in the receiver. This signal operates independently from the other reset signals. The minimum pulse width is two parallel cycles.
- rx\_analogreset—The rx\_analogreset signal resets part of the analog portion of the receiver CRU. This signal operates independently from the other reset signals. The minimum pulse width is two parallel cycles.
- gxb\_powerdown—The gxb\_powerdown signal powers down the entire transceiver block, including the transmitter PLL. All digital and analog circuits are also reset. This signal operates independently from the other reset signals. The minimum pulse width is 100 ns.

Table 2–24 lists the transceiver modules that get affected by each reset and power-down signal.

| Table 2–24. Blocks Affected by Reset and Power-Down Signals            |                 |                |                 |               |
|------------------------------------------------------------------------|-----------------|----------------|-----------------|---------------|
| Transceiver Blocks                                                     | rx_digitalreset | rx_analogreset | tx_digitalreset | gxb_powerdown |
| Transmitter phase compensation FIFO buffer and byte serializer         |                 |                | ~               | ~             |
| Transmitter 8B/10B encoder                                             |                 |                | <b>✓</b>        | <b>✓</b>      |
| Transmitter serializer                                                 |                 |                |                 | ✓             |
| Transmitter analog circuits                                            |                 |                |                 | <b>✓</b>      |
| Transmitter PLLs                                                       |                 |                |                 | ✓             |
| Transmitter analog circuits                                            |                 |                |                 | <b>✓</b>      |
| Receiver deserializer                                                  |                 |                |                 | ✓             |
| Receiver word aligner                                                  | ✓               |                |                 | ✓             |
| Receiver rate matcher                                                  | ✓               |                |                 | ✓             |
| Receiver 8B/10B decoder                                                | <b>✓</b>        |                |                 | ✓             |
| Receiver phase<br>compensation FIFO<br>buffer and byte<br>deserializer | ✓               |                |                 | ~             |
| Receiver PLL and CRU                                                   |                 | ✓              |                 | ✓             |
| Receiver analog circuits                                               |                 |                |                 | ✓             |

The recommended reset sequence varies depending on whether the Clock Recovery Unit is configured in automatic lock mode or manual lock mode.

## Recommended Reset Sequence for GIGE and Serial RapidIO in CRU Automatic Lock Mode

Figure 2–32 shows a sample reset sequence for GIGE and Serial RapidIO modes when the CRU is configured in automatic lock mode.

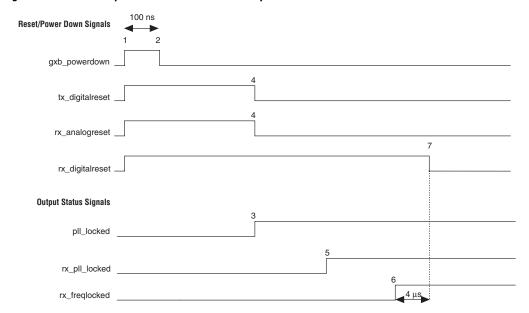



Figure 2-32. Reset Sequence for GIGE and Serial RapidIO in Automatic Mode

After power on, assert the gxb powerdown port for a minimum period of 100 ns (time between markers 1 and 2). Keep the tx digitalreset, rx\_digitalreset, and rx\_analogreset asserted during this time period. After you de-assert the gxb powerdown signal, the transmitter PLL starts locking to the transmitter input reference clock. Once the transmitter PLL locks (as indicated by the pll locked signal going high), you de-assert the tx digitalreset signal. After you de-assert the rx analogreset signal, the receiver PLL starts locking to the receiver input reference clock (in automatic lock mode). Once the receiver PLL locks to the input reference clock, the rx pll locked signal goes high. The internal PPM detector takes sometime to calculate the PPM difference between the receiver PLL output clock and the input reference clock. Once it calculates the PPM difference to be within the pre-defined limits, the rx freqlocked signal goes high. At this point the CRU enters lock-to-data mode and the receiver PLL starts locking to the received data. You de-assert the rx digitalreset 4 µs after the rx freqlocked signal goes high.

## Recommended Reset Sequence for GIGE and Serial RapidIO in CRU Manual Lock Mode

Figure 2–33 shows a sample reset sequence for GIGE and Serial RapidIO modes when the CRU is configured in manual lock mode.

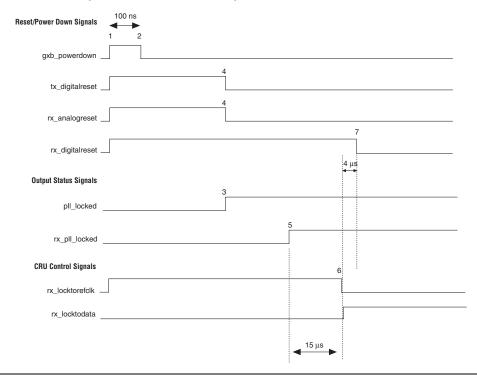



Figure 2-33. Reset Sequence for GIGE and Serial RapidIO in Manual Mode

After power on, assert the <code>gxb\_powerdown</code> port for a minimum period of 100 ns (time between markers 1 and 2). Keep the <code>tx\_digitalreset</code>, <code>rx\_digitalreset</code>, <code>rx\_analogreset</code>, and <code>rx\_locktorefclk</code> signals asserted during this time period. After you de-assert the <code>gxb\_powerdown</code> signal, the transmitter PLL starts locking to the transmitter input reference clock. Once the transmitter PLL locks (as indicated by the <code>pll\_locked</code> signal going high), you de-assert the <code>tx\_digitalreset</code> signal. After you de-assert the <code>rx\_analogreset</code> signal, the receiver PLL starts locking to the receiver input reference clock since <code>rx\_locktorefclk</code> is asserted. Wait for at least 15  $\mu s$  (time between markers 5 and 6) after the <code>rx\_pll\_locked</code> signal goes high and then de-assert the <code>rx\_locktorefclk</code> signal. At the same time assert the <code>rx\_locktodata</code> signal. At this point the CRU enters lock-to-data mode

and the receiver PLL starts locking to the received data. You de-assert the  $rx\_digitalreset$  at least 4  $\mu s$  (time between markers 6 and 7) after asserting the  $rx\_locktodata$  signal.

#### Recommended Reset Sequence for PCI Express (PIPE) Mode

The reset sequence used for GIGE and Serial RapidIO modes looks for the rx\_freqlocked signal to de-assert rx\_digitalreset. In PCI Express (PIPE) mode, the rx\_freqlocked signal does not go high during the PCI Express (PIPE) compliance testing phase because of receiving Electrical Idle.

Figure 2–34 shows the reset sequence for PCI Express (PIPE) mode.

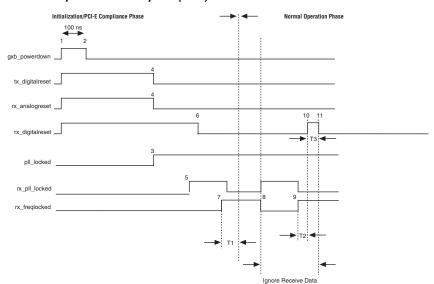



Figure 2-34. Reset Sequence for PCI Express (PIPE) Mode

#### Initialization and PCI Express Compliance Phase

After the device is powered up, a PCI Express compliant device may perform compliance testing. Since rx\_digitalreset must be de-asserted during compliance testing, waiting for the rx\_freqlocked signal to de-assert rx\_digitalreset is not recommended.

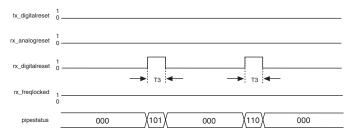
You de-assert the tx\_digitalreset signal after the pll\_locked signal goes high. You de-assert the rx\_digitalreset when the rx\_pll\_locked signal goes high (unlike GIGE and Serial RapidIO modes where you wait until rx\_freqlocked goes high).

The parallel data sent to the PLD logic array in the receive side may not be valid until 4 µs after rx freqlocked goes high.

#### Normal Operation Phase

During normal operation, the receive data is valid and the rx\_freqlocked signal is high. In this situation, when rx\_freqlocked is de-asserted, (marker 8 in Figure 2–34), you wait for the rx\_freqlocked signal to go high again and assert rx\_digitalreset (marker 10 in Figure 2–34) for two parallel receive clock cycles.

The data from the transceiver block is not valid between the time when rx\_freqlocked goes low until rx\_digitalreset is de-asserted. The PLD logic should ignore the data during this time period (the time period between markers 8 and 11 in Figure 2–34).




Minimum T1 and T2 period is 4 μs. Minimum T3 period is two parallel receive clock cycles.

#### Rate Matcher FIFO Buffer Overflow and Underflow Condition

During the normal operation phase, you monitor the overflow and underflow status of the rate matcher FIFO buffer. If there is overflow and underflow on the rate matcher FIFO buffer, you assert the rx\_digitalreset signal for two receive parallel clock cycles. You can monitor the rate matcher FIFO buffer status through the pipestatus [2:0] signal from the PCI Express (PIPE) interface. This condition is shown in Figure 2–35.

Figure 2–35. PCI Express (PIPE) Mode Reset During Rate Matcher FIFO Buffer Overflow & Underflow Condition



*Notes to Figure 2–35:* 

- Pipestatus = 101 represents elastic overflow (not available in Low-Latency [Synchronous] PCI Express [PIPE] mode).
- (2) Pipestatus = 110 represents elastic overflow (not available in Low-Latency [Synchronous] PCI Express [PIPE] mode).

#### Power-Down

The Quartus II software automatically selects the power-down channel feature, which takes effect when you configure the Arria GX device. All unused transceiver channels and blocks in a design are powered down to reduce the overall power consumption.



The gxb\_powerdown port is optional. In simulation, if the gxb\_powerdown port is not instantiated, you must assert tx\_digitalreset, rx\_digitalreset and rx\_analogreset signals appropriately for correct simulation behavior. If the gxb\_powerdown port is instantiated and other reset signals are not used, you must assert the gxb\_powerdown signal for at least one parallel clock cycle for correct simulation behavior. In simulation, you can de-assert the rx\_digitalreset immediately after rx\_freqlocked signal goes HIGH to reduce the simulation run time. It is not necessary to wait for 4 µs as suggested in the actual reset sequence.



In PCI Express (PIPE) mode simulation, you must assert the tx\_forceelecidle signal for at least one parallel clock cycle before transmitting normal data for correct simulation behavior.

#### **TimeQuest Timing Analyzer**

Quartus II software designs targeted towards the Arria GX device family use TimeQuest Timing Analyzer for static timing analysis. In the Quartus II software versions 7.1 and 7.1 sp1, TimeQuest does not

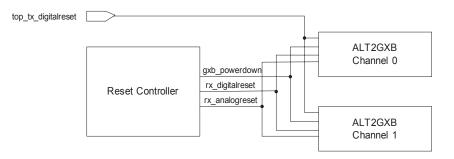
automatically constrain the transceiver reset ports and asynchronous input/output ports. As a result, TimeQuest does not perform timing analysis on these paths.

TimeQuest reports these unconstrained paths in RED in the Timing Analyzer report. You must manually add the constraints in the Synopsys Design Constraints (.sdc) file for TimeQuest to analyze these paths.

#### Unconstrained Reset Ports

In the Quartus II software versions 7.1 and 7.1 sp1, TimeQuest does not constrain the following transceiver reset ports:

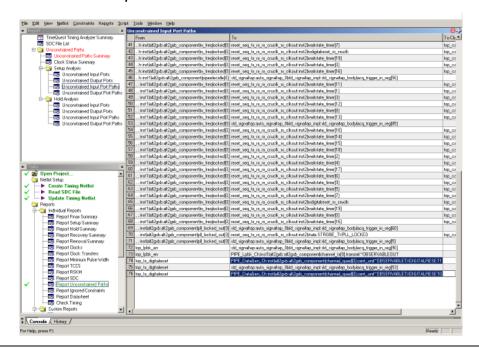
- gxb powerdown
- tx\_digitalreset
- rx digitalreset
- rx\_analogreset


#### **Identifying Unconstrained Reset Ports**

To identify the unconstrained reset/powerdown ports, follow these steps:

- After compiling your design, select the TimeQuest Timing Analyzer in the Tools drop-down menu. This opens up the Quartus II TimeQuest Timing Analyzer window.
- 2. In the **Tasks** pane, execute **Report Unconstrained Paths**. This will report all unconstrained paths in RED in the **Report** pane.
- 3. Expand the **Unconstrained Paths** option in the **Report** pane and further expand the **Setup Analysis** or **Hold Analysis** option.
- Under Setup Analysis or Hold Analysis, you will see
   Unconstrained Input Port Paths, Unconstrained Output Port
   Paths, or both, depending on how the reset/powerdown ports are
   driven.
  - a. If a reset/powerdown port is driven by an input pin, it will be listed in the Unconstrained Input Port Paths report.
  - If a reset/powerdown port is driven by synchronous logic, it will be listed in the Unconstrained Output Port Paths report.
- 5. In the **Unconstrained Input Port Paths** and **Unconstrained Output Port Paths** reports, the unconstrained reset/powerdown ports of
  your ALT2GXB instances are listed under the **To** column.

Consider the design example in Figure 2–36.


Figure 2–36. Example Design for TimeQuest Timing Analyzer Constraints



In the design example in Figure 2–36, all reset/powerdown ports except the tx\_digitalreset port for the two channels are driven by the reset controller. The tx\_digitalreset port is driven from an input pin.

Figures 2–37 and 2–38 show the TimeQuest Timing Analyzer Report for **Unconstrained Input Port Paths** and **Unconstrained Output Port Paths**, respectively.

Figure 2-37. Unconstrained Input Port Paths



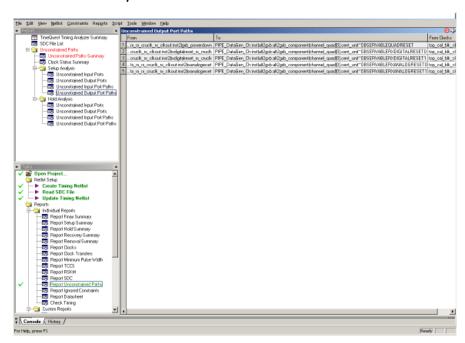



Figure 2-38. Unconstrained Output Port Paths

Having identified the unconstrained reset/powerdown ports in the design, the next step is to constrain these ports.

#### Setting Reset/Powerdown Port Timing Constraints

You must add the reset/powerdown port timing constraints either directly in the SDC file or through the TimeQuest Timing Analyzer GUI.

To add the timing constraints using the TimeQuest GUI, follow these steps:

- 1. Locate the reset/powerdown ports in either the **Unconstrained Input Port Paths** or **Unconstrained Output Port Paths** report.
- Right click on the reset/powerdown port in the To column and select Set Max Delay. On the resulting window, enter an initial Delay Value of 4 ns.

- 3. Right click on the reset/powerdown port in the **To** column again and select **Set Min Delay**. On the resulting window, enter an initial **Delay Value** of **1.2** ns.
- The difference between the maximum delay and minimum delay is set to **2.8** ns which is the maximum skew allowed on reset/powerdown ports.
- 4. Similarly, set the maximum and minimum delay for all transceiver reset/powerdown ports in your design.
- Execute Update Timing Netlist and Write SDC File by double-clicking these options in the Tasks pane of the TimeQuest Timing Analyzer window. Confirm that the above timing constraints were added to the SDC file linked with your design.
- 6. Run the Quartus II Fitter.
- After the Quartus II Fitter operation completes, execute Update
   Timing Netlist by double-clicking this option in the Tasks pane of
   TimeQuest Timing Analyzer window.
- Execute Report Top Failing Paths by double-clicking this option in the Tasks pane of the TimeQuest Timing Analyzer window.
- 9. Assuming all other paths in your design meet timing, one or more of the paths involving reset/powerdown ports might report timing violations. This is because the design is not able to meet the preliminary timing constraints of 4 ns (maximum delay) and 1.2 ns (minimum delay).
- 10. Note the slack in the timing report for all failing paths and adjust the maximum delay and the minimum delay values in the SDC file. Maintain a difference of 2.8 ns between the maximum delay and the minimum delay for each reset/powerdown port.
- 11. After adjusting the delay values, execute **Update Timing Netlist** and run the Quartus II Fitter again.
- 12. After the Quartus II Fitter operation completes, execute **Update Timing Netlist**.
- 13. Execute Report Top Failing Paths once again. If there are any failing paths involving the reset/powerdown ports, adjust the delay values in the SDC file and repeat the procedure until no failing paths are reported.

Consider the previous design example in which all unconstrained ports were identified. The following example shows how to set the constraints for the gxb\_powerdown port. The same procedure must be followed for all other reset ports.

After setting the maximum and minimum delay for the gxb\_powerdown port, the SDC file should have the following constraints:

```
#************
# Set Maximum Delay
#**************
set max delay -from [get keepers
{reset_seq_tx_rx_rx_cruclk_rx_clkout:inst2|gxb_powerd
own]] -to [get_ports
{PIPE DataGen Ch:inst|alt2gxb:alt2gxb component|chann
el quad[0].cent unit~OBSERVABLEQUADRESET}] 4.000
#**************
# Set Minimum Delay
#***************
set min delay -from [get keepers
{reset_seq_tx_rx_rx_cruclk_rx_clkout:inst2|gxb_powerd
own ]] -to [get ports
{PIPE DataGen Ch:inst|alt2gxb:alt2gxb component|chann
el quad[0].cent unit~OBSERVABLEQUADRESET}] 1.200
```

After running the Quartus II fitter with the above timing constraints for the gxb\_powerdown port, the following slack is reported on this path after executing **Report Top Failing Paths** (Figure 2–39).

Figure 2-39. Slack Reported for the gxb\_powerdown Port

|    | SLACK: -0.798 ns (VIOLATED)                                       |                                                                                              |  |  |
|----|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|
| Pá | Path Summary                                                      |                                                                                              |  |  |
|    | Property ∇                                                        | Value                                                                                        |  |  |
| 1  | To Node                                                           | PIPE_DataGen_Ch:inst[alt2gxb:alt2gxb_component]channel_quad[0].cent_unit~OBSERVABLEQUADRESET |  |  |
| 2  | Slack                                                             | -0.798 (VIOLATED)                                                                            |  |  |
| 3  | Launch Clock                                                      | cal_blk_clk                                                                                  |  |  |
| 4  | Latch Clock                                                       | n/a                                                                                          |  |  |
| 5  | From Node reset_seq_tx_rx_rx_cruclk_rx_clkout:inst2lgxb_powerdown |                                                                                              |  |  |
| 6  | Data Required Time 4.000                                          |                                                                                              |  |  |
| 7  | Data Arrival Time                                                 | 4.798                                                                                        |  |  |
|    |                                                                   |                                                                                              |  |  |

Since the data arrival time is later than the data required time by 0.798 ns, the maximum delay and minimum delay should both be incremented by 0.8 ns in the SDC file. The new SDC file should have the following modified constraints for the gxb\_powerdown port.

```
#**********
# Set Maximum Delay
#**************
set max delay -from [get keepers
{reset_seq_tx_rx_rx_cruclk_rx_clkout:inst2|gxb_powerd
own ] -to [get ports
{PIPE DataGen Ch:inst|alt2gxb:alt2gxb component|chann
el quad[0].cent unit~OBSERVABLEQUADRESET}] 4.8
#************
# Set Minimum Delay
#***************
set min delay -from [get keepers
{reset_seq_tx_rx_rx_cruclk_rx_clkout:inst2|gxb_powerd
own ] -to [get ports
{PIPE DataGen Ch:inst|alt2gxb:alt2gxb component|chann
el quad[0].cent unit~OBSERVABLEQUADRESET}] 2.000
```

After modifying the SDC file and running the Quartus II Fitter, the **Update Timing Netlist** option should be executed, followed by **Report Top Failing Paths**. If the <code>gxb\_powerdown</code> port still shows in the failing paths, modify the slack appropriately in the SDC file and repeat the procedure until timing is met on this path.

Follow the same procedure to set timing constraints on all transceiver reset/powerdown ports in your design.



You should set constraints and meet timing for both fast and slow timing models. The same maximum and minimum delay constraints might not be able to meet timing for both timing models. This is acceptable as long as the skew is within the specified period (2.8 ns) for each path in the SDC file for each timing model.

#### **Unconstrained Asynchronous ALT2GXB Ports**

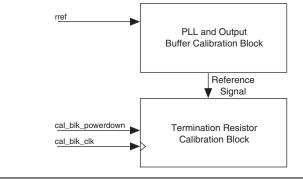
In the Quartus II software versions 7.1 and 7.1 sp1, TimeQuest does not automatically constrain transceiver asynchronous input/output ports. These ports are listed in Table 2–25.

| Table 2–25. TimeQuest Port Names Versus ALT2GXB Port Names |                      |  |
|------------------------------------------------------------|----------------------|--|
| TimeQuest Port Name ALT2GXB Port Nam                       |                      |  |
| ala2size                                                   | rx_ala2size          |  |
| enapatternalign                                            | rx_enapatternalign   |  |
| bitslip                                                    | rx_bitslip           |  |
| rlv                                                        | rx_rlv               |  |
| invpol                                                     | rx_invpolarity       |  |
| enabyteord                                                 | rx_enabyteord        |  |
| pipe8b10binvpolarity                                       | pipe8b10binvpolarity |  |
| revbitorderwa                                              | rx_revbitorderwa     |  |
| bisterr                                                    | rx_bisterr           |  |
| bistdone                                                   | rx_bitstdone         |  |
| phaselockloss                                              | rx_pll_locked        |  |
| freqlock                                                   | rx_freqlocked        |  |
| seriallpbkben                                              | rx_seriallpbken      |  |

You must manually add the timing constraints in the SDC file for TimeQuest to analyze these paths. For these asynchronous ports, you only need to set a maximum delay constraint of 10 ns in the SDC file.

To identify all unconstrained ALT2GXB asynchronous ports, execute **Report Unconstrained Paths** in TimeQuest Timing Analyzer after running the Quartus II Fitter. Set a maximum delay of **10** ns for all such ports in the SDC file.

For example, if the rx\_invpolarity signal is driven by the signal top\_rx\_invpolarity on an input pin, the SDC file constraint for this port should be set as:


```
set_max_delay -from [get_ports {top_rx_invpolarity}]
-to [get_keepers
{xcvr_inst.receive~OBSERVABLEINVPOL}] 10.000
```

Follow the same procedure to constrain all asynchronous ALT2GXB ports in your design before closing timing analysis for your design.

### Calibration Blocks

The Arria GX transceiver block contains calibration circuits to calibrate the on-chip termination, the PLLs, and the output buffers. The calibration circuits are divided into two main blocks: the PLL and output buffer calibration block and the termination resistor calibration block (refer to Figure 2–40). Each transceiver block contains a PLL and output buffer calibration block that calibrates the PLLs and output buffers within that particular transceiver block. Each device contains one termination resistor calibration block that calibrates all the termination resistors in the transceiver channels of the entire device.

Figure 2-40. Calibration Blocks



#### PLL and Output Buffer Calibration Block

Each Arria GX transceiver block contains a PLL and output buffer calibration circuit to counter the effects of PVT (process, voltage, and temperature) on the PLL and output buffer. Each transceiver block's calibration circuit uses a voltage reference derived from an external reference resistor. One reference resistor must be connected to the RREFB pin of each active transceiver block in the Arria GX device. Reference resistor pins (RREFB) of unused transceiver blocks (except the transceiver blocks feeding the termination resistor calibration block) can be left unconnected or tied to a stable power supply.

#### Termination Resistor Calibration Block

The Arria GX transceiver on-chip termination resistors in the transceiver channels of the entire device are calibrated by a single calibration block. This block ensures that process, voltage, and temperature variations do not have an impact on the termination resistor value.

A 2 K\Omega reference resistor must be connected to the RREFB pins of transceiver banks 13 and 14 to ensure proper operation of the termination resistor calibration block.

The termination resistor calibration circuit requires a calibration clock (cal\_blk\_clk) with frequency between 10 MHz and 125 MHz. Any clock resource can be used to provide the calibration clock.

For multiple ALT2GXB instances in the design, if all the instances have the calibration block instantiated, the cal\_blk\_clk port of all instances must be tied to a common clock. The Quartus II design compilation provides an error message if the cal\_blk\_clk ports of multiple ALT2GXB instances in the design are tied to different clock sources.

The calibration block can be powered down through the optional cal\_blk\_powerdown port. The cal\_blk\_powerdown is an active low signal. Powering down the calibration block during operations may yield transmit and receive data errors. You can use this port to reset the calibration block to initiate a re-calibration of the termination resistors to account for variations in temperature or voltage.

## Referenced Document

This chapter references the following document:

 Arria GX Transceiver Architecture chapter in volume 2 of the Arria GX Device Handbook

# Document Revision History

Table 2–26 shows the revision history for this chapter.

| Table 2–26. Document Revision History |                                            |                    |
|---------------------------------------|--------------------------------------------|--------------------|
| Date and<br>Document<br>Version       | Changes Made                               | Summary of Changes |
| August                                | Added the "Referenced Document" section.   | _                  |
| 2007, v1.2                            | Minor text edits.                          | _                  |
| June 2007                             | Added "TimeQuest Timing Analyzer" section. | _                  |
| v1.1                                  | Added GIGE information.                    | _                  |
| May 2007<br>v1.0                      | Initial release.                           | _                  |



### 3. Arria GX ALT2GXB Megafunction User Guide

AGX52003-1.2

#### Introduction

The MegaWizard® Plug-In Manager in the Quartus® II software creates or modifies design files that contain custom megafunction variations that can then be instantiated in a design file. The MegaWizard Plug-In Manager provides a wizard that allows you to specify options for the ALT2GXB megafunction. You can use the wizard to set the ALT2GXB megafunction features in the design.

Start the MegaWizard Plug-In Manager using one of the following methods:

- Choose the **MegaWizard Plug-In Manager** command (Tools menu).
- When working in the Block Editor, click MegaWizard Plug-In Manager in the Symbol dialog box (Edit menu).
- Start the stand-alone version of the MegaWizard Plug-In Manager by typing the following command at the command prompt: qmegawiz.

The ALT2GXB MegaWizard Plug-In Manager allows you to configure one or more transceiver channels.

Figure 3–1 shows the first page of the MegaWizard Plug-In Manager. To generate an ALT2GXB custom megafunction variation, select **Create a new custom megafunction variation**.

Figure 3-1. MegaWizard Plug-In Manager (Page 1)

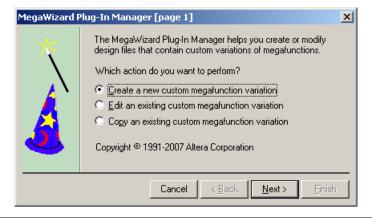
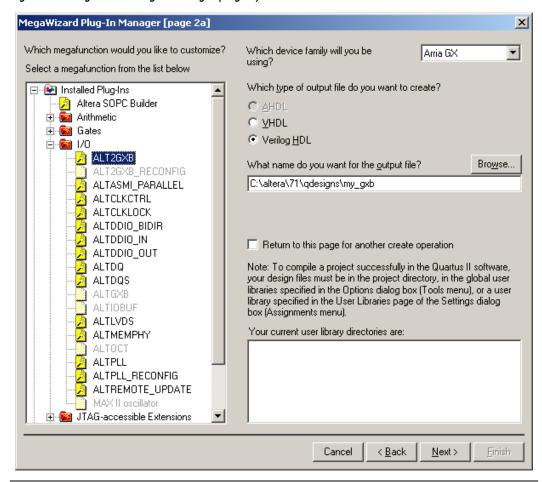




Figure 3–2 shows the second page of the MegaWizard Plug-In Manager. Select the Arria $^{\rm TM}$  GX device as the device family.

Figure 3-2. MegaWizard Plug-In Manager (Page 2)



# PCI Express (PIPE) Mode

This section provides descriptions of the options available on the individual pages of the ALT2GXB MegaWizard Plug-In Manager for the PCI Express (PIPE) mode. The MegaWizard Plug-In Manager provides a warning if any of the settings you choose are illegal.

Figure 3–3 shows page 3 of the ALT2GXB MegaWizard Plug-In Manager for PCI Express (PIPE) mode.

MegaWizard Plug-In Manager [page 3 of 15] × **ALT2GXB** Version 7.1 About Documentation General > PLL/Ports > RX Analog/Cal Blk > TX Analog > PCI > pipe\_gxb Able to implement the requested GXB rx\_datain[0] rx\_dataout[15..0] tx\_datain[15..0] tx\_dataout[0] pll\_inclk tx\_clkout[0] PCI Express (PIPE) Which protocol will you be using? rx\_cruclk[0] rx\_syncstatus[1..0] Which subprotocol will you be using? tx ctrlenable[1..0] rx\_patterndetect[1..0] rx\_ctridetect[1..0] rx\_digitalreset[0] ☐ Enforce default settings for this protocol rx\_analogreset[0] rx\_errdetect[1..0] What is the operation mode? tx\_digitalreset[0] rx\_disperr[1..0] gxb\_powerdown[0] pipestatus[2..0] What is the number of channels? cal blk clk pipedatavalid[0] pipe8b10binvpolarity[0] pipeelecidle[0] tx\_detectrxloop[0] pipephydonestatus[0] ● Single (valid data rates: 622 Mbps - 3.125 Gbps) tx\_forceelecidle[0] O Double (valid data rates: > 1 Gbps) tx\_forcedispcompliance[0 powerdn[1..0] 16 V bits What is the channel width? What would you like to base the setting on?

Data rate

What is the data rate?

Z500

Mbps What is the input clock frequency?

What is the data rate division factor?

The effective data rate is

2500.000 ✓ MHz ☑ Create 'rx\_digitalreset' port for the digital portion of the receiver Create 'rx analogreset' port for the analog portion of the receiver ✓ Create 'tx\_digitalreset' port for the digital portion of the transmitter Cancel < Back Next > Finish

Figure 3–3. MegaWizard Plug-In Manager - ALT2GXB (General)

Table 3–1 describes the available options on page 3 of the MegaWizard Plug-In Manager for your Altzgkb custom megafunction variation.

| ALT2GXB Setting                             | Description                                                                                                                                                                                                                                                                      | Reference                                                                                                                                                |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Which protocol will you be using?           | Determines the specific protocol or modes under which the transceiver operates. The possible selections are PCI Express (PIPE), GIGE, and Serial RapidIO <sup>TM</sup> . For the PCI Express (PIPE) mode, you must select the PCI Express (PIPE) protocol.                       | _                                                                                                                                                        |
| Which subprotocol will you be using?        | In PCI Express (PIPE) mode, the subprotocols are the supported link widths:×1 or ×4                                                                                                                                                                                              | PCI Express (PIPE) Mode section in the Arria GX Transceiver Protocol Support and Additional Features chapter in volume 2 of the Arria GX Device Handbook |
| Enforce default settings for this protocol  | Selecting this option skips the <b>PCI</b> page in the PCI Express (PIPE) MegaWizard Plug-In Manager. The <b>PCI</b> page allows you to select the PCI Express (PIPE) specific ports for your design. If you select this option, all PCI Express (PIPE) specific ports are used. | _                                                                                                                                                        |
| What is the operation mode?                 | Only the receiver and transmitter (full duplex) mode is allowed in the PCI Express (PIPE) mode. Receiver-only and transmitter only modes are not allowed.                                                                                                                        | _                                                                                                                                                        |
| What is the number of channels?             | This determines how many duplicate channels this ALT2GXB instance contains. In a x4 subprotocol, the number of channels increments by 4.                                                                                                                                         | _                                                                                                                                                        |
| What is the deserializer block width?       | This option is unavailable in PCI Express (PIPE) ALT2GXB instance.                                                                                                                                                                                                               | _                                                                                                                                                        |
| What is the channel width?                  | This option determines the PLD-transceiver interface width. Only 16-bit interface width is supported.                                                                                                                                                                            | Byte Serializer and Byte<br>Deserializer sections in the<br>Arria GX Architecture<br>chapter in volume 1 of the<br>Arria GX Device Handbook              |
| What would you like to base the setting on? | This option is unavailable because the data rate is fixed at 2500 Mbps for PCI Express (PIPE) mode.                                                                                                                                                                              | _                                                                                                                                                        |
| What is the data rate?                      | This option is unavailable because the data rate is fixed at 2500 Mbps for PCI Express (PIPE) mode.                                                                                                                                                                              | _                                                                                                                                                        |

| Table 3–1. MegaWizard Plug-In Manager Options (Page 3 for PCI Express [PIPE] Mode) (Part 2 of 2) |                                                                                                                                                         |                                                                                                                                                               |  |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ALT2GXB Setting                                                                                  | Description                                                                                                                                             | Reference                                                                                                                                                     |  |
| What is the input clock frequency?                                                               | Determines the input reference clock frequency for<br>the transceiver. In PCI Express (PIPE) mode, only<br>100 MHz is allowed.                          | PCI Express (PIPE) Mode<br>section in the <i>Arria GX</i><br><i>Architecture</i> chapter in<br>volume 1 of the <i>Arria GX</i><br><i>Device Handbook</i>      |  |
| What is the data rate division factor?                                                           | This option is unavailable in PCI Express (PIPE) ALT2GXB instance.                                                                                      | _                                                                                                                                                             |  |
| Create rx_digital reset port for the digital portion of the receiver                             | Receiver digital reset port. Resets the PCS logic of the receiver. Altera® recommends using this port to implement the recommended reset sequence.      | Reset Control and Power Down section in the Arria GX Transceiver Protocol Support and Additional Features chapter in volume 2 of the Arria GX Device Handbook |  |
| Create rx_analogreset port for the analog portion of the receiver                                | Receiver analog reset port.                                                                                                                             | Reset Control and Power Down section in the Arria GX Transceiver Protocol Support and Additional Features chapter in volume 2 of the Arria GX Device Handbook |  |
| Create tx_digitalreset port for the digital portion of the transmitter                           | Transmitter digital reset port. Resets the PCS logic of the transmitter. Altera recommends using this port to implement the recommended reset sequence. | Reset Control and Power Down section in the Arria GX Transceiver Protocol Support and Additional Features chapter in volume 2 of the Arria GX Device Handbook |  |

Figure 3–4 shows page 4 of the ALT2GXB MegaWizard Plug-In Manager for PCI Express (PIPE) mode.

Figure 3–4. MegaWizard Plug-In Manager - ALT2GXB (PLL/Ports)

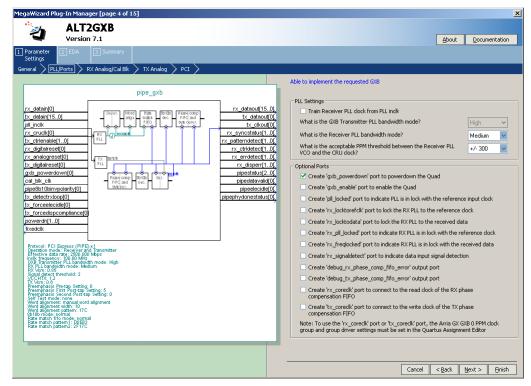



Table 3–2 describes the available options on page 4 of the MegaWizard Plug-In Manager for your Altzgkb custom megafunction variation.

| Table 3–2. MegaWizard Plug-In Manager Options (Page 4 for PCI Express [PIPE] Mode) (Part 1 of 3) |                                                                                                                                                                                                                                                    |                                                                                                                                                               |  |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ALT2GXB Setting                                                                                  | Description                                                                                                                                                                                                                                        | Reference                                                                                                                                                     |  |
| Train Receiver PLL clock from PLL_inclk                                                          | If you select this option, the transmitter input reference clock (pll_inclk) drives the receiver PLL input reference clock also. If you do not select this option, the signal on the rx_cruclk port drives the receiver PLL input reference clock. | _                                                                                                                                                             |  |
| What is the GXB Transmitter PLL bandwidth mode?                                                  | This option is not available in PCI Express (PIPE) mode because the transmitter PLL bandwidth is fixed at high.                                                                                                                                    | _                                                                                                                                                             |  |
| What is the Receiver PLL bandwidth mode?                                                         | This option is not available in PCI Express (PIPE) mode because the receiver PLL bandwidth is fixed at medium.                                                                                                                                     | _                                                                                                                                                             |  |
| What is the acceptable PPM threshold between the Receiver PLL VCO and the CRU clock?             | This option determines the PPM difference that affects the automatic receiver clock recovery unit (CRU) switchover between lock-to-data and lock-to-reference. (There are additional factors that affect the CRU's transition.)                    | Clock Recovery Unit (CRU) section in the <i>Arria GX Transceiver Architecture</i> chapter in volume 2 of the <i>Arria GX Device Handbook</i>                  |  |
| Create gxb_powerdown port to power down the Quad                                                 | Refer to the <i>Arria GX Transceiver Protocol</i> Support and Additional Features chapter in volume 2 of the <i>Arria GX Device Handbook</i> for information about this port.                                                                      | Reset Control and Power Down section in the Arria GX Transceiver Protocol Support and Additional Features chapter in volume 2 of the Arria GX Device Handbook |  |
| Create gxb_enable port to enable the Quad                                                        | Refer to the <i>Arria GX Transceiver Protocol</i> Support and Additional Features chapter in volume 2 of the <i>Arria GX Device Handbook</i> for information about this port.                                                                      | Reset Control and Power Down section in the Arria GX Transceiver Protocol Support and Additional Features chapter in volume 2 of the Arria GX Device Handbook |  |
| Create pll_locked port to indicate PLL is in lock with the reference input clock                 | Refer to the <i>Arria GX Transceiver Protocol</i> Support and Additional Features chapter in volume 2 of the <i>Arria GX Device Handbook</i> for information about this port.                                                                      | Reset Control and Power Down section in the Arria GX Transceiver Protocol Support and Additional Features chapter in volume 2 of the Arria GX Device Handbook |  |
| Create rx_locktorefclk port to lock the RX PLL to the reference clock                            | Refer to the <i>Arria GX Transceiver Architecture</i> chapter in volume 2 of the <i>Arria GX Device Handbook</i> for information about this port.                                                                                                  | Clock Recovery Unit (CRU) section in the <i>Arria GX</i> Transceiver Architecture chapter in volume 2 of the Arria GX Device Handbook                         |  |

| Table 3–2. MegaWizard Plug-In Manager Options (Page 4 for PCI Express [PIPE] Mode) (Part 2 of 3) |                                                                                                                                                                                                                                    |                                                                                                                                                                                                  |  |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ALT2GXB Setting                                                                                  | Description                                                                                                                                                                                                                        | Reference                                                                                                                                                                                        |  |
| Create rx_locktodata port to lock the RX PLL to the received data                                | Refer to the <i>Arria GX Transceiver Architecture</i> chapter in volume 2 of the <i>Arria GX Device Handbook</i> for information about this port.                                                                                  | Clock Recovery Unit (CRU) section in the Arria GX Transceiver Architecture chapter in volume 2 of the Arria GX Device Handbook                                                                   |  |
| Create rx_pll_locked port to indicate RX PLL is in lock with the reference clock                 | Refer to the <i>Arria GX Transceiver Protocol</i> Support and Additional Features chapter in volume 2 of the <i>Arria GX Device Handbook</i> for information about this port.                                                      | Reset Control and Power Down section in the Arria GX Transceiver Architecture chapter in volume 2 of the Arria GX Device Handbook                                                                |  |
| Create rx_freqlocked port to indicate RX PLL is in lock with the received data                   | Refer to the <i>Arria GX Transceiver Architecture</i> chapter in volume 2 of the <i>Arria GX Device Handbook</i> for information about this port.                                                                                  | Clock Recovery Unit (CRU) section in the <i>Arria GX Transceiver Architecture</i> chapter in volume 2 of the <i>Arria GX Device Handbook</i>                                                     |  |
| Create rx_signaldetect port to indicate data input signal detection                              | Refer to the <i>Arria GX Transceiver Protocol</i> Support and Additional Features chapter in volume 2 of the <i>Arria GX Device Handbook</i> for information about this port.                                                      | Receiver Buffer section<br>under PCI Express (PIPE)<br>mode in the Arria GX<br>Transceiver Protocol Support<br>and Additional Features<br>chapter in volume 2 of the<br>Arria GX Device Handbook |  |
| Create debug_rx_phase_comp_ fifo_error output port                                               | This optional output port indicates Receiver Phase Compensation FIFO overflow/underrun condition. Note that no ppm difference is allowed between FIFO read and write clocks. This port should be used for debugging purposes only. | Receiver Phase Compensation FIFO section in the Arria GX Transceiver Architecture chapter in volume 2 of the Arria GX Device Handbook                                                            |  |
| Create debug_tx_phase_comp_ fifo_error output port                                               | This optional output port indicates Transmitter Phase Compensation FIFO overflow/underrun condition. Note that no ppm difference is allowed between FIFO read and write clocks. This port should be used for debug purpose only.   | Transmitter Phase Compensation FIFO section in the Arria GX Transceiver Architecture chapter in volume 2 of the Arria GX Device Handbook                                                         |  |

| Table 3–2. MegaWizard Plug-In Manager Options (Page 4 for PCI Express [PIPE] Mode) (Part 3 of 3)  ALT2GXB Setting Description Reference |                                                                                                                                          | , , , , , , , , , , , , , , , , , , ,                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Create rx_coreclk port to connect to the read clock of the RX phase compensation FIFO                                                   | This optional input port allows you to clock the read side of the Receiver Phase Compensation FIFO with a non-transceiver PLD clock.     | PLD-Transceiver Interface<br>Clocking section in the<br>Arria GX Transceiver<br>Architecture chapter in<br>volume 2 of the Arria GX<br>Device Handbook |
| Create tx_coreclk port to connect to the write clock of the TX phase compensation FIFO                                                  | This optional input port allows you to clock the write side of the Transmitter Phase Compensation FIFO with a non-transceiver PLD clock. | PLD-Transceiver Interface<br>Clocking section in the<br>Arria GX Transceiver<br>Architecture chapter in<br>volume 2 of the Arria GX<br>Device Handbook |

Figure 3–3 shows page 5 of the ALT2GXB MegaWizard Plug-In Manager for PCI Express (PIPE) mode.

MegaWizard Plug-In Manager [page 5 of 15] × **ALT2GXB** Version 7.1 About Documentation 1 Parameter General > PLL/Ports > RX Analog/Cal Blk > TX Analog > PCI > Able to implement the requested GXB pipe\_gxb Receiver Analog Settings rx\_datain[0] rx\_dataout[15..0] ☐ Enable static equalizer control tx\_datain[15..0] tx\_dataout[0] pll\_inclk tx\_clkout[0] rx\_cruclk[0] rx\_syncstatus[1..0] tx ctrlenable[1..0] rx\_patterndetect[1..0] rx\_ctrldetect[1..0] rx\_digitalreset[0] rx\_analogreset[0] rx\_errdetect[1..0] tx\_digitalreset[0] rx\_disperr[1..0] gxb\_powerdown[0] pipestatus[2..0] cal blk clk pipedatavalid[0] pipe8b10binvpolarity[0] pipeelecidle[0] What is the Receiver Common Mode Voltage (RX Vcm)? 0.85 V tx\_detectrxloop[0] tx\_forceelecidle[0] tx\_forcedispcompliance[0 Force signal detection powerdn[1..0] What is the signal detect and signal loss threshold? Protocol: PCI Engress (PIPE): 1
Operation mode: Requiver gait transmitter
Effective data rate; 2000 000 Meyo
Green of the Political Control of the Political Control
Green of the Politica Use external Receiver termination What is the Receiver termination resistance? 100 V Ohms Calibration Block Settings -✓ Use calibration block Note: All calibration circuitries on a chip should be driven by the same clock and all channels using internal termination will be driven by the calibration block ☐ Create active low 'cal\_blk\_powerdown' port to powerdown the calibration block Cancel < Back Next > Finish

Figure 3-5. MegaWizard Plug-In Manager - ALT2GXB (RX Analog/Cal Blk)

Table 3–3 describes the available options on page 5 of the MegaWizard Plug-In Manager for your Altzgkb custom megafunction variation.

| Table 3–3. MegaWizard Plug-In Manager Options (Page 5 for PCI Express [PIPE] Mode) |                                                                                                                                                                            |                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ALT2GXB Setting                                                                    | Description                                                                                                                                                                | Reference                                                                                                                                                                                           |
| What is the Receiver<br>Common Mode Voltage (RX<br>Vcm)?                           | The receiver common mode voltage is set to 0.85 V.                                                                                                                         | Receiver Buffer section<br>under PCI Express (PIPE)<br>mode in the Arria GX<br>Transceiver Protocol<br>Support and Additional<br>Features chapter in volume<br>2 of the Arria GX Device<br>Handbook |
| Force signal detection                                                             | This option disables the signal detect circuit. You must not select this option as signal detect circuitry is required for electrical idle detection at the receiver.      | Receiver Buffer section<br>under PCI Express (PIPE)<br>mode in the Arria GX<br>Transceiver Protocol<br>Support and Additional<br>Features chapter in volume<br>2 of the Arria GX Device<br>Handbook |
| What is the signal detect and signal loss threshold?                               | This option sets the trip point of the signal detect circuit. You must select a threshold level of <b>2</b> in PCI Express (PIPE) mode.                                    | Receiver Buffer section<br>under PCI Express (PIPE)<br>mode in the Arria GX<br>Transceiver Protocol<br>Support and Additional<br>Features chapter in volume<br>2 of the Arria GX Device<br>Handbook |
| Use external receiver termination                                                  | This option is available if you want to use an external termination resistor instead of the on-chip termination (OCT). If checked, this option turns off the receiver OCT. | _                                                                                                                                                                                                   |
| What is the receiver termination resistance?                                       | In PCI Express (PIPE) mode, the only supported receiver termination resistance is 100 $\Omega.$                                                                            | Receiver Buffer section<br>under PCI Express (PIPE)<br>mode in the Arria GX<br>Transceiver Protocol<br>Support and Additional<br>Features chapter in volume<br>2 of the Arria GX Device<br>Handbook |

| Table 3–3. MegaWizard Plug-In Manager Options (Page 5 for PCI Express [PIPE] Mode) |                                                                                                                                                                               |                                                                                                                                                                   |
|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ALT2GXB Setting                                                                    | Description                                                                                                                                                                   | Reference                                                                                                                                                         |
| Use calibration block                                                              | This option allows you to select which instance of ALT2GXB instantiates the calibration block. Only one instance of ALT2GXB is required to instantiate the calibration block. | Calibration Block section in<br>the Arria GX Transceiver<br>Protocol Support and<br>Additional Features<br>chapter in volume 2 of the<br>Arria GX Device Handbook |
| Create active low cal_blk_powerdown to power down the calibration block            | Refer to the Arria GX Transceiver Protocol Support and Additional Features chapter in volume 2 of the Arria GX Device Handbook for information about this port.               | Calibration Block section in<br>the Arria GX Transceiver<br>Protocol Support and<br>Additional Features<br>chapter in volume 2 of the<br>Arria GX Device Handbook |

Figure 3–6 shows page 6 of the ALT2GXB MegaWizard Plug-In Manager for PCI Express (PIPE) mode.

MegaWizard Plug-In Manager [page 6 of 15] × **ALT2GXB** Version 7.1 About Documentation 1 Parameter Settings General > PLL/Ports > RX Analog/Cal Blk > TX Analog > PCI > Able to implement the requested GXB pipe\_gxb Transmitter Analog Settings rx\_datain[0] rx\_dataout[15..0] What is the Transmitter Buffer Power (VCCH)? 1.2 V tx\_datain[15..0] tx\_dataout[0] pll\_inclk tx\_clkout[0] rx\_cruclk[0] rx\_syncstatus[1..0] What is the Transmitter Common Mode Voltage (Vcm)? 0.6 V tx\_ctrlenable[1..0] rx\_patterndetect[1..0]
rx\_ctrldetect[1..0] rx\_digitalreset[0] rx\_analogreset[0] rx\_errdetect[1..0] Use external Transmitter termination tx\_digitalreset[0] rx\_disperr[1..0] 100 V Ohms Select the Transmitter termination resistance: gxb\_powerdown[0] pipestatus[2..0] cal blk clk pipedatavalid[0] pipe8b10binvpolarity[0] pipeelecidle[0] tx\_detectrxloop[0] pipephydonestatus[0] What is the Voltage Output Differential (VOD) control setting? 800 v mV tx\_forceelecidle[0] tx\_forcedispcompliance[0 Preemphasis first post-tap setting (% of VOD): Preemphasis second post-tap setting (% of VOD): powerdn[1..0] Preemphasis pre-tap setting (% of VOD): Protocol: PCI Engress (PIPE): 1
Operation mode: Requiver gait transmitter
Effective data rate; 2000 000 Meyo
Green of the Political Control of the Political Control
Green of the Politica 0 - 1--max - | -0 0 5 Cancel < Back Next > Finish

Figure 3-6. MegaWizard Plug-In Manager - ALT2GXB (TX Analog)

Table 3–4 describes the available options on page 6 of the MegaWizard Plug-In Manager for your Altzgkb custom megafunction variation.

| ALT2GXB Setting                                                      | Description                                                                                                                                                                                                                                                      | Reference                                                                                                                                                                         |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| What is the Transmitter Buffer<br>Power (VCCH)?                      | In PCI Express (PIPE) mode, the transmitter buffer power is fixed at 1.2 V. You must connect the VCCH power pins of a PCI Express (PIPE) transceiver bank to a 1.2-V power supply. You must select 1.2-V PCML I/O standard for the transmitter data output pins. | Transmitter Buffer section under PCI Express (PIPE) Mode in the Arria GX Transceiver Protocol Support and Additional Features chapter in volume 2 of the Arria GX Device Handbook |
| What is the Transmitter Common<br>Mode Voltage (Vcm)?                | In PCI Express (PIPE) mode, the transmitter common mode voltage is fixed at 0.6V.                                                                                                                                                                                | Transmitter Buffer section under PCI Express (PIPE) Mode in the Arria GX Transceiver Protocol Support and Additional Features chapter in volume 2 of the Arria GX Device Handbook |
| Use external Transmitter termination                                 | This option is available if you want to use an external termination resistor instead of the onchip termination (OCT). Checking this option turns off the transmitter OCT.                                                                                        | _                                                                                                                                                                                 |
| Select the Transmitter termination resistance                        | In PCI Express (PIPE) mode, the only supported receiver termination resistance is 100 $\boldsymbol{\Omega}$ .                                                                                                                                                    | Transmitter Buffer section under PCI Express (PIPE) Mode in the Arria GX Transceiver Protocol Support and Additional Features chapter in volume 2 of the Arria GX Device Handbook |
| What is the Voltage Output<br>Differential (VOD) control<br>setting? | In PCI Express (PIPE) mode, the only supported peak-peak differential output voltage is 800 mV.                                                                                                                                                                  | Transmitter Buffer section under PCI Express (PIPE) Mode in the Arria GX Transceiver Protocol Support and Additional Features chapter in volume 2 of the Arria GX Device Handbook |
| Pre-emphasis pre-tap setting (% of VOD)                              | In PCI Express (PIPE) mode, this option is unavailable and is fixed to 0.                                                                                                                                                                                        | _                                                                                                                                                                                 |

| Table 3–4. MegaWizard Plug-In Manager Options (Page 6 for PCI Express [PIPE] Mode) |                                                                                                                                           |                                                                                                                                                                                   |
|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ALT2GXB Setting                                                                    | Description                                                                                                                               | Reference                                                                                                                                                                         |
| Pre-emphasis first post-tap setting (% of VOD)                                     | In PCI Express (PIPE) mode, this option is unavailable and is fixed to 5 (to meet the de-emphasis specification required by PCI Express). | Transmitter Buffer section under PCI Express (PIPE) Mode in the Arria GX Transceiver Protocol Support and Additional Features chapter in volume 2 of the Arria GX Device Handbook |
| Pre-emphasis second post-tap setting (% of VOD)                                    | In PCI Express (PIPE) mode, this option is unavailable and is fixed to 0.                                                                 | -                                                                                                                                                                                 |

Figure 3–7 shows page 13 of the ALT2GXB MegaWizard Plug-In Manager for PCI Express (PIPE) mode. If **Enforce default settings for this protocol** option is selected, this page does not appear in the MegaWizard.

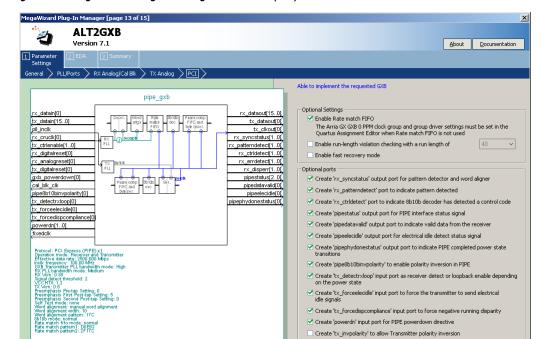



Figure 3-7. MegaWizard Plug-In Manager - ALT2GXB (PCI)

Cancel < Back Next > Finish

Table 3–5 describes the available options on page 13 of the MegaWizard Plug-In Manager for your ALT2GXB custom megafunction variation.

| Table 3–5. MegaWizard Plug-In Manager Options (Page 13 for PCI Express [PIPE] Mode) (Part 1 of 3) |                                                                                                                                                                               |                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ALT2GXB Setting                                                                                   | Description                                                                                                                                                                   | Reference                                                                                                                                                                                     |
| Enable Rate match FIFO                                                                            | This option enables bypassing of the rate match FIFO in the receiver data path (Low-latency [Synchronous] PCI Express [PIPE] mode)                                            | Low-latency (Synchronous) PCI Express (PIPE) Mode in the Arria GX Transceiver Protocol Support and Additional Features chapter in volume 2 of the Arria GX Device Handbook                    |
| Enable run-length violation checking with a run length of                                         | This option activates the run length violation circuit. You can program the run length at which the circuit triggers the rx_rlv signal.                                       | Word Aligner section in the<br>Arria GX Transceiver<br>Architecture chapter in<br>volume 2 of the Arria GX<br>Device Handbook                                                                 |
| Enable fast recovery mode                                                                         | This option creates the NFTS fast recovery IP required to meet the PCI Express specification in the PLD logic array.                                                          | NFTS Fast Recovery IP<br>(NFRI) section in the<br>Arria GX Transceiver<br>Protocol Support and<br>Additional Features<br>chapter in volume 2 of the<br>Arria GX Device Handbook               |
| Create rx_syncstatus output port for pattern detector and word aligner                            | Refer to the <i>Arria GX Transceiver Protocol</i> Support and Additional Features chapter in volume 2 of the <i>Arria GX Device Handbook</i> for information about this port. | Word Aligner section under<br>PCI Express (PIPE) Mode<br>in the Arria GX Transceiver<br>Protocol Support and<br>Additional Features<br>chapter in volume 2 of the<br>Arria GX Device Handbook |
| Create rx_patterndetect output port to indicate pattern detected                                  | Refer to the Arria GX Transceiver Protocol<br>Support and Additional Features chapter in<br>volume 2 of the Arria GX Device Handbook for<br>information about this port.      | Word Aligner section under<br>PCI Express (PIPE) Mode<br>in the Arria GX Transceiver<br>Protocol Support and<br>Additional Features<br>chapter in volume 2 of the<br>Arria GX Device Handbook |
| Create rx_ctrldetect output port to indicate 8B/10B decoder has detected a control code           | Refer to the <i>Arria GX Transceiver Protocol</i> Support and Additional Features chapter in volume 2 of the <i>Arria GX Device Handbook</i> for information about this port. | 8B/10B Decoder section in<br>the Arria GX Transceiver<br>Architecture chapter in<br>volume 2 of the Arria GX<br>Device Handbook                                                               |

| ALT2GXB Setting                                                                                       | Description                                                                                                                                                                   | Reference                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Create pipestatus output port for PIPE interface status signal                                        | Refer to the <i>Arria GX Transceiver Protocol</i> Support and Additional Features chapter in volume 2 of the <i>Arria GX Device Handbook</i> for information about this port. | Receiver Status section in<br>the Arria GX Transceiver<br>Protocol Support and<br>Additional Features<br>chapter in volume 2 of the<br>Arria GX Device Handbook            |
| Create pipedatavalid output port to indicate valid data from the receiver                             | Refer to the Arria GX Transceiver Protocol<br>Support and Additional Features chapter in<br>volume 2 of the Arria GX Device Handbook for<br>information about this port.      | PCI Express (PIPE) Mode section in the <i>Arria GX Transceiver Protocol Support and Additional Features</i> chapter in volume 2 of the <i>Arria GX Device Handbook</i>     |
| Create pipeelecidle output<br>port for Electrical Idle detect<br>status signal                        | Refer to the Arria GX Transceiver Protocol<br>Support and Additional Features chapter in<br>volume 2 of the Arria GX Device Handbook for<br>information about this port.      | PCI Express (PIPE) Mode<br>section in the Arria GX<br>Transceiver Protocol<br>Support and Additional<br>Features chapter in<br>volume 2 of the Arria GX<br>Device Handbook |
| Create pipephydonestatus output port to indicate PIPE completed power state transitions               | Refer to the <i>Arria GX Transceiver Protocol</i> Support and Additional Features chapter in volume 2 of the <i>Arria GX Device Handbook</i> for information about this port. | PCI Express (PIPE) Mode section in the Arria GX Transceiver Protocol Support and Additional Features chapter in volume 2 of the Arria GX Device Handbook                   |
| Create pipe8b/10binvpolarity to enable polarity inversion in PIPE                                     | Refer to the <i>Arria GX Transceiver Protocol</i> Support and Additional Features chapter in volume 2 of the <i>Arria GX Device Handbook</i> for information about this port. | PCI Express (PIPE) Mode section in the <i>Arria GX Transceiver Protocol Support and Additional Features</i> chapter in volume 2 of the <i>Arria GX Device Handbook</i>     |
| Create tx_detectrxloop input port as receiver detect or loopback enable, depending on the power state | Refer to the <i>Arria GX Transceiver Protocol</i> Support and Additional Features chapter in volume 2 of the <i>Arria GX Device Handbook</i> for information about this port. | PCI Express (PIPE) Mode section in the Arria GX Transceiver Protocol Support and Additional Features chapter in volume 2 of the Arria GX Device Handbook                   |

| Table 3–5. MegaWizard Plug-In Manager Options (Page 13 for PCI Express [PIPE] Mode) (Part 3 of 3) |                                                                                                                                                                                                |                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| ALT2GXB Setting                                                                                   | Description                                                                                                                                                                                    | Reference                                                                                                                                                |
| Create tx_forceelecidle input port to force the transmitter to send Electrical Idle signals       | Refer to the <i>Arria GX Transceiver Protocol</i> Support and Additional Features chapter in volume 2 of the <i>Arria GX Device Handbook</i> for information about this port.                  | PCI Express (PIPE) Mode section in the Arria GX Transceiver Protocol Support and Additional Features chapter in volume 2 of the Arria GX Device Handbook |
| Create tx_forcedispcompliance input port to force negative running disparity                      | Refer to the Arria GX Transceiver Protocol<br>Support and Additional Features chapter in<br>volume 2 of the Arria GX Device Handbook 2<br>for information about this port.                     | PCI Express (PIPE) Mode section in the Arria GX Transceiver Protocol Support and Additional Features chapter in volume 2 of the Arria GX Device Handbook |
| Create powerdn input port for PIPE powerdown directive                                            | Refer to the <i>Arria GX Transceiver Protocol</i> Support and Additional Features chapter in volume 2 of the <i>Arria GX Device Handbook</i> for information about this port.                  | PCI Express (PIPE) Mode section in the Arria GX Transceiver Protocol Support and Additional Features chapter in volume 2 of the Arria GX Device Handbook |
| Create rx_invpolarity to enable word aligner polarity inversion                                   | This optional port allows you to dynamically reverse the polarity of the received data at the input of the word aligner. This feature must not be enabled when pipe8b10binvpolarity is enabled | Word Aligner section in the<br>Arria GX Transceiver<br>Architecture chapter in<br>volume 2 of the Arria GX<br>Device Handbook                            |
| Create tx_invpolarity to allow Transmitter polarity inversion                                     | This optional port allows you to dynamically reverse the polarity of the data to be transmitted at the transmitter PCS-PMA interface.                                                          | 8B/10B Encoder section in<br>the Arria GX Transceiver<br>Architecture chapter in<br>volume 2 of the Arria GX<br>Device Handbook\                         |

Figure 3–8 shows page 14 of the MegaWizard Plug-In Manager for the PCI Express (PIPE) protocol selection. The **Generate simulation model** option creates a behavioral model (.vo or .vho) of the transceiver instance for third-party simulators. The **Generate a netlist for synthesis area and timing estimation** option creates a netlist file (.syn) for third-party synthesis tools.

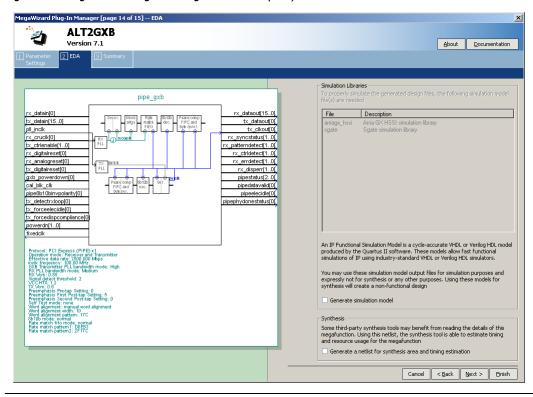



Figure 3-8. MegaWizard Plug-In Manager - ALT2GXB (EDA)

Figure 3–9 shows page 15 (the last page) of the MegaWizard Plug-In Manager for the PCI Express (PIPE) protocol set up. You can select optional files on this page. After you make your selections, click **Finish** to generate the files.

MegaWizard Plug-In Manager [page 15 of 15] -- Summary **ALT2GXB** Version 7.1 About Documentation 3 Summar Turn on the files you wish to generate. A gray checkmark indicates a file that is automatically generated, and a red checkmark indicates an optional file. Click Firish to generate the selected files. The state of each checkbox is maintained in subsequent MegaWizard Plug-In Manager sessions. pipe\_gxb rx\_datain[0] tx\_datain[15..0] rx\_dataout[15..0] tx\_dataout[0] pll\_inclk The MegaWizard Plug-In Manager creates the selected files in the following directory: C:\altera\71\qdesigns\ rx\_syncstatus[1..0] rx\_cruclk[0] tx\_ctrlenable[1..0] rx\_patterndetect[1..0] File Description rx digitalreset(0) rx ctridetect[1..0] ☑ pipe\_gxb.v
□ pipe\_gxb.inc
□ pipe\_gxb.cmp
☑ pipe\_gxb.bsf rx\_analogreset[0] rx\_errdetect[1..0] Variation file
AHDL Include file
VHDL component declaration file
Quartus II symbol file
Instantiation template file tx\_digitalreset[0] rx\_disperr[1..0] gxb\_powerdown[0] ninestatus[2\_0] cal\_blk\_clk pipedatavalid[0] □ pipe\_gxb\_inst.v pipe8b10binvpolarity[0] pipeelecidle[0] ☑ pipe\_gxb\_bb.v Verilog HDL black-box file tx\_detectrxloop[0] pipephydonestatus[0] tx\_forceelecidle[0] tx\_forcedispcompliance[0 powerdn[1..0] Protocol: PCI Express (PIPE) x1 Operation mode: Receiver and Transmitter Effective data rate: 2500 .000 Mbps inclk frequency: 100.00 MHz GXB Transmitter PLL bandwidth mode: High RX PLL bandwidth mode: Medium RX PLL bandwidth mode: Medium BK PLL bandwith modes: Medium Skymm 0.08 mm 0.08 mm 0.08 mm 0.08 mm 0.06 mm 0. Cancel < Back Next > Finish

Figure 3-9. MegaWizard Plug-In Manager - ALT2GXB (Summary)

## **GIGE Mode**

This section provides descriptions of the options available on the individual pages of the ALT2GXB MegaWizard Plug-In Manager for the GIGE mode. The MegaWizard Plug-In Manager provides a warning if any of the settings you choose are illegal.

Figure 3–10 shows page 3 of the ALT2GXB MegaWizard Plug-In Manager for GIGE mode.

MegaWizard Plug-In Manager [page 3 of 15] X ALT2GXB Version 7.1 <u>A</u>bout <u>D</u>ocumentation General > PLL/Ports > RX Analog/Cal Blk > TX Analog > Lpbk > GIGE > gige\_gxb Able to implement the requested GXB rx\_dataout[7..0] rx\_datain[0] tx\_datain[7..0] tx\_dataout[0] General pll\_inclk tx\_clkout[0] Which protocol will you be using? rx\_cruclk[0] rx\_ctrldetect[0] tx\_ctrlenable[0] rx\_errdetect[0] rx\_digitalreset[0] rx\_disperr[0] ☐ Enforce default settings for this protocol rx\_analogreset[0] tx\_digitalreset[0] Receiver and Transmitter What is the operation mode? gxb\_powerdown[0 What is the number of channels? cal\_blk\_clk Protocol: GIGE None Operation mode: Receiver and Transmitter Effective data rate: 1250,000 Mpps include frequency: 02,50 MHz kg PLL bandwidth mode: Medium RX Vern, 0,85 Force RX signal detection VCCHTX: 1.5 VCCHTX: 1.5 VCC ■ Single (valid data rates: 622 Mbps - 3.125 Gbps) O Double (valid data rates: > 1 Gbps) What is the channel width? bits What would you like to base the setting on? Data rate Preemphasis Second Post-tap Setting Self Test mode: none Word alignment: sync state machine Word alignment width: 10 Word alignment pattern: 17C 8b 10b mode: normal Rate match fifo mode: normal Rate match pattern!: A267C Rate match pattern!: A2683 What is the data rate? Mbps What is the input clock frequency? ✓ MHz The effective data rate is 1250.000 Mbps

Optional Ports

✓ Create 'rx\_digitalreset' port for the digital portion of the receiver
✓ Create 'rx\_analogreset' port for the analog portion of the receiver
✓ Create 'tx\_digitalreset' port for the digital portion of the transmitter

Cancel

< Back Next >

Finish

Figure 3-10. MegaWizard Plug-In Manager - ALT2GXB (page 3)

Table 3–6 describes the available options on page 3 of the MegaWizard Plug-In Manager for your Altzgkb custom megafunction variation.

| ALT2GXB Setting                             | Description                                                                                                                                                                                                                              | Reference                                                                                                                                                 |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Which protocol will you be using?           | Determines the specific protocol or modes under which the transceiver operates. The possible selections are PCI Express (PIPE), GIGE, and Serial RapidIO. For the GIGE mode, you must select the GIGE protocol.                          | _                                                                                                                                                         |
| Which subprotocol will you be using?        | Not applicable to GIGE mode.                                                                                                                                                                                                             | _                                                                                                                                                         |
| Enforce default settings for this protocol  | Selecting this option skips the <b>GIGE</b> page of the GIGE MegaWizard Plug-In Manager. The <b>GIGE</b> page allows you to select the GIGE-specific ports for your design. If you select this option, all GIGE-specific ports are used. | _                                                                                                                                                         |
| What is the operation mode?                 | The transmitter only and receiver and transmitter (full duplex) modes are allowed in GIGE protocol. The receiver only mode is not available.                                                                                             | _                                                                                                                                                         |
| What is the number of channels?             | This selects how many duplicate channels this ALT2GXB instance contains. In GIGE mode, the number of channels increments by 1.                                                                                                           | _                                                                                                                                                         |
| What is the deserializer block width?       | This option is unavailable in GIGE ALT2GXB instance.                                                                                                                                                                                     | _                                                                                                                                                         |
| What is the channel width?                  | This option determines the PLD-transceiver interface width. Only 8-bit interface width is supported.                                                                                                                                     | Byte Serializer and Byte Deserializer sections in the Arria GX Transceiver Architecture chapter in volume 2 of the Arria GX Device Handbook               |
| What would you like to base the setting on? | This option is unavailable because the data rate is fixed at 1250 Mbps for GIGE mode.                                                                                                                                                    | _                                                                                                                                                         |
| What is the data rate?                      | This option is unavailable because the data rate is fixed at 1250 Mbps for GIGE mode.                                                                                                                                                    | _                                                                                                                                                         |
| What is the input clock frequency?          | Determines the input reference clock frequency for<br>the transceiver. In GIGE mode, input reference<br>clock frequencies of 62.5 MHz and 125 MHz are<br>supported.                                                                      | GIGE Mode section in the<br>Arria GX Transceiver<br>Protocol Support and<br>Additional Features<br>chapter in volume 2 of the<br>Arria GX Device Handbook |
| What is the data rate division factor?      | This option is unavailable in GIGE ALT2GXB instance.                                                                                                                                                                                     | _                                                                                                                                                         |

| Table 3–6. MegaWizard Plug-In Manager Options (Page 3 for GIGE Mode) (Part 2 of 2) |                                                                                                                                                         |                                                                                                                                                               |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ALT2GXB Setting                                                                    | Description                                                                                                                                             | Reference                                                                                                                                                     |
| Create rx_digitalreset port for the digital portion of the receiver                | Receiver digital reset port. Resets the PCS logic of the receiver. Altera recommends using this port to implement the recommended reset sequence.       | Reset Control and Power Down section in the Arria GX Transceiver Protocol Support and Additional Features chapter in volume 2 of the Arria GX Device Handbook |
| Create rx_analogreset port for the analog portion of the receiver                  | Receiver analog reset port.                                                                                                                             | Reset Control and Power Down section in the Arria GX Transceiver Protocol Support and Additional Features chapter in volume 2 of the Arria GX Device Handbook |
| Create tx_digitalreset port for the digital portion of the transmitter             | Transmitter digital reset port. Resets the PCS logic of the transmitter. Altera recommends using this port to implement the recommended reset sequence. | Reset Control and Power Down section in the Arria GX Transceiver Protocol Support and Additional Features chapter in volume 2 of the Arria GX Device Handbook |

Figure 3–11 shows page 4 of the ALT2GXB MegaWizard Plug-In Manager for GIGE mode.

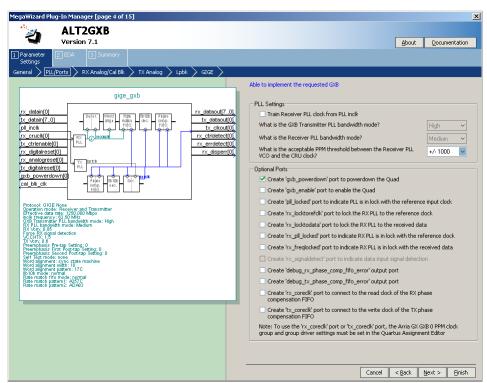



Figure 3–11. MegaWizard Plug-In Manager - ALT2GXB (PLL/Ports)

Table 3–7 describes the available options on page 4 of the MegaWizard Plug-In Manager for your ALT2GXB custom megafunction variation.

| Table 3–7. MegaWizard Plug-In Manager Options (Page 4 for GIGE Mode) (Part 1 of 3) |                                                                                                                                                                                                                                                    |           |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| ALT2GXB Setting                                                                    | Description                                                                                                                                                                                                                                        | Reference |
| Train Receiver PLL clock from PLL_inclk                                            | If you select this option, the transmitter input reference clock (pll_inclk) drives the receiver PLL input reference clock also. If you do not select this option, the signal on the rx_cruclk port drives the receiver PLL input reference clock. | _         |
| What is the GXB Transmitter PLL bandwidth mode?                                    | This option is not available in GIGE mode because the transmitter PLL bandwidth is fixed at high.                                                                                                                                                  | _         |

| ALT2GXB Setting                                                                      | Description                                                                                                                                                                                               | Reference                                                                                                                                                                          |
|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| What is the Receiver PLL bandwidth mode?                                             | This option is not available in GIGE mode because the receiver PLL bandwidth is fixed at medium.                                                                                                          | _                                                                                                                                                                                  |
| What is the acceptable PPM threshold between the Receiver PLL VCO and the CRU clock? | This option determines the PPM difference that affects the automatic receiver CRU switchover between lock-to-data and lock-to-reference. (There are additional factors that affect the CRU's transition.) | Clock Recovery Unit<br>(CRU) section in the Arria<br>GX Transceiver<br>Architecture chapter in<br>volume 2 of the Arria GX<br>Device Handbook                                      |
| Create gxb_powerdown port to power down the Quad                                     | Refer to the Arria GX Transceiver Protocol<br>Support and Additional Features chapter in<br>volume 2 of the Arria GX Device Handbook for<br>information about this port.                                  | Reset Control and Power<br>Down section in the<br>Arria GX Transceiver<br>Protocol Support and<br>Additional Features<br>chapter in volume 2 of the<br>Arria GX Device<br>Handbook |
| Create gxb_enable port to enable the Quad                                            | Refer to the Arria GX Transceiver Protocol<br>Support and Additional Features chapter in<br>volume 2 of the Arria GX Device Handbook for<br>information about this port.                                  | Reset Control and Power<br>Down section in the<br>Arria GX Transceiver<br>Protocol Support and<br>Additional Features<br>chapter in volume 2 of the<br>Arria GX Device<br>Handbook |
| Create pl1_locked port to indicate PLL is in lock with the reference input clock     | Refer to the <i>Arria GX Transceiver Protocol</i> Support and Additional Features chapter in volume 2 of the <i>Arria GX Device Handbook</i> for information about this port.                             | Reset Control and Power<br>Down section in the<br>Arria GX Transceiver<br>Protocol Support and<br>Additional Features<br>chapter in volume 2 of the<br>Arria GX Device<br>Handbook |
| Create rx_locktorefclk port to lock the RX PLL to the reference clock                | Refer to the Arria GX Transceiver Protocol<br>Support and Additional Features chapter in<br>volume 2 of the Arria GX Device Handbook for<br>information about this port.                                  | Clock Recovery Unit<br>(CRU) section in the Arria<br>GX Transceiver<br>Architecture chapter in<br>volume 2 of the Arria GX<br>Device Handbook                                      |
| Create rx_locktodata port to lock the RX PLL to the received data                    | Refer to the <i>Arria GX Transceiver Protocol</i> Support and Additional Features chapter in volume 2 of the <i>Arria GX Device Handbook</i> for information about this port.                             | Clock Recovery Unit<br>(CRU) section in the Arria<br>GX Transceiver<br>Architecture chapter in<br>volume 2 of the Arria GX<br>Device Handbook                                      |

| ALT2GXB Setting                                                                        | Description                                                                                                                                                                                                                      | Reference                                                                                                                                                                          |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Create rx_pll_locked port to indicate RX PLL is in lock with the reference clock       | Refer to the <i>Arria GX Transceiver Protocol</i> Support and Additional Features chapter in volume 2 of the <i>Arria GX Device Handbook</i> for information about this port.                                                    | Reset Control and Power<br>Down section in the<br>Arria GX Transceiver<br>Protocol Support and<br>Additional Features<br>chapter in volume 2 of the<br>Arria GX Device<br>Handbook |
| Create rx_freqlocked port to indicate RX PLL is in lock with the received data         | Refer to the <i>Arria GX Transceiver Protocol</i> Support and Additional Features chapter in volume 2 of the <i>Arria GX Device Handbook</i> for information about this port.                                                    | Clock Recovery Unit<br>(CRU) section in the Arria<br>GX Transceiver<br>Architecture chapter in<br>volume 2 of the Arria GX<br>Device Handbook                                      |
| Create rx_signaldetect port to indicate data input signal detection                    | This option is unavailable in GIGE mode.                                                                                                                                                                                         | _                                                                                                                                                                                  |
| Create debug_rx_phase_comp_ fifo_error output port                                     | This optional output port indicates Receiver Phase Compensation FIFO overflow/underrun condition. Note that no ppm difference is allowed between FIFO read and write clocks. This port should be used for debug purpose only.    | Receiver Phase<br>Compensation FIFO<br>section in the Arria GX<br>Transceiver Architecture<br>chapter in volume 2 of the<br>Arria GX Device<br>Handbook                            |
| Create debug_tx_phase_comp_ fifo_error output port                                     | This optional output port indicates Transmitter Phase Compensation FIFO overflow/underrun condition. Note that no ppm difference is allowed between FIFO read and write clocks. This port should be used for debug purpose only. | Transmitter Phase Compensation FIFO section in the Arria GX Transceiver Architecture chapter in volume 2 of the Arria GX Device Handbook                                           |
| Create rx_coreclk port to connect to the read clock of the RX phase compensation FIFO  | This optional input port allows you to clock the read side of the Receiver Phase Compensation FIFO with a non-transceiver PLD clock.                                                                                             | PLD-Transceiver Interface Clocking section in the Arria GX Transceiver Architecture chapter in volume 2 of the Arria GX Device Handbook                                            |
| Create tx_coreclk port to connect to the write clock of the TX phase compensation FIFO | This optional input port allows you to clock the write side of the Transmitter Phase Compensation FIFO with a non-transceiver PLD clock.                                                                                         | PLD-Transceiver Interface Clocking section in the Arria GX Transceiver Architecture chapter in volume 2 of the Arria GX Device Handbook                                            |

Figure 3–12 shows page 5 of the ALT2GXB MegaWizard Plug-In Manager for GIGE mode.

MegaWizard Plug-In Manager [page 5 of 15] X **ALT2GXB** Version 7.1 About <u>D</u>ocumentation 1 Parameter Settings General > PLL/Ports > RX Analog/Cal Blk > TX Analog > Lpbk > GIGE > Able to implement the requested GXB gige\_gxb Receiver Analog Settings rx\_datain[0] rx\_dataout[7..0] ☐ Enable static equalizer control tx\_datain[7..0] tx\_dataout[0] pll\_inclk tx\_clkout[0] U Low Medium High rx\_cruclk[0] rx\_ctrldetect[0] tx\_ctrlenable[0] rx\_errdetect[0] rx\_digitalreset[0] rx\_disperr[0] rx\_analogreset[0] tx\_digitalreset[0] 0 ~ What is the equalizer DC gain? gxb\_powerdown[0] cal blk clk What is the Receiver Common Mode Voltage (RX Vcm)? 0.85 🔽 V Protocol: GIGE None
Operation mode: Receiver and Transmitter
Friedrive data may 1000 000 Maps
Friedrive data may 1000 000 Maps
GIGE Transmitts PLL bandwidth mode: High
SIGE Transmitts PLL bandwidth mode: High
SIGE Stagnal detection
Friedrich Stagnal
Friedrich Stag Force signal detection Use external Receiver termination 100 V Ohms What is the Receiver termination resistance? Calibration Block Settings Note: All calibration circuitries on a chip should be driven by the same clock and all channels using internal termination will be driven by the calibration ☐ Create active low 'cal\_blk\_powerdown' port to powerdown the calibration block Cancel < Back Next > Finish

Figure 3-12. MegaWizard Plug-In Manager - ALT2GXB (RX Analog/Cal Blk)

Table 3–8 describes the available options on page 5 of the MegaWizard Plug-In Manager for your Altzgkb custom megafunction variation.

| Table 3–8. MegaWizard Plug-In Manager Options (Page 5 for GIGE Mode)    |                                                                                                                                                                                      |                                                                                                                                                                                       |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ALT2GXB Setting                                                         | Description                                                                                                                                                                          | Reference                                                                                                                                                                             |
| What is the Receiver<br>Common Mode Voltage (RX<br>Vcm)?                | The receiver common mode voltage is set to 0.85 V.                                                                                                                                   | Receiver Buffer section<br>under GIGE Mode in the<br>Arria GX Transceiver<br>Protocol Support and<br>Additional Features<br>chapter in volume 2 of the<br>Arria GX Device<br>Handbook |
| Force signal detection                                                  | This option is unavailable in GIGE mode and is always forced selected.                                                                                                               | _                                                                                                                                                                                     |
| What is the signal detect and signal loss threshold?                    | This option is unavailable in GIGE mode as signal detection is forced.                                                                                                               | _                                                                                                                                                                                     |
| Use external receiver termination                                       | This option is available if you want to use an external termination resistor instead of the on-chip termination (OCT). If checked, this option turns off the receiver OCT.           | _                                                                                                                                                                                     |
| What is the receiver termination resistance?                            | In GIGE mode, the only supported receiver termination resistance is 100 $\Omega$ .                                                                                                   | Receiver Buffer section<br>under GIGE Mode in the<br>Arria GX Transceiver<br>Protocol Support and<br>Additional Features<br>chapter in volume 2 of the<br>Arria GX Device<br>Handbook |
| Use calibration block                                                   | This option allows you to select which instance of ALT2GXB instantiates the calibration block. Only one instance of ALT2GXB is required to instantiate the calibration block.        | Calibration Block section<br>in the Arria GX<br>Transceiver Protocol<br>Support and Additional<br>Features chapter in<br>volume 2 of the Arria GX<br>Device Handbook                  |
| Create active low cal_blk_powerdown to power down the calibration block | Refer to the <i>Arria GX Transceiver Protocol Support</i> and <i>Additional Features</i> chapter in volume 2 of the <i>Arria GX Device Handbook</i> for information about this port. | Calibration Block section<br>in the Arria GX<br>Transceiver Protocol<br>Support and Additional<br>Features chapter in<br>volume 2 of the Arria GX<br>Device Handbook                  |

Figure 3–13 shows page 6 of the ALT2GXB MegaWizard Plug-In Manager for GIGE mode.

MegaWizard Plug-In Manager [page 6 of 15] × **ALT2GXB** Version 7.1 About Documentation 1 Parameter Settings General > PLL/Ports > RX Analog/Cal Blk > TX Analog > Lpbk > GIGE > Able to implement the requested GXB gige\_gxb Transmitter Analog Settings rx\_datain[0] rx\_dataout[7..0] What is the Transmitter Buffer Power (VCCH)? 1.5 V tx\_datain[7..0] tx\_dataout[0] pll\_inclk tx\_clkout[0] rx\_cruclk[0] rx\_ctrldetect[0] What is the Transmitter Common Mode Voltage (Vcm)? 0.6 V tx\_ctrlenable[0] rx\_errdetect[0] rx\_digitalreset[0] rx\_disperr[0] rx\_analogreset[0] Use external Transmitter termination tx\_digitalreset[0] 100 V Ohms Select the Transmitter termination resistance: gxb\_powerdown[0] cal blk clk Protocol: GIGE None Operation mode: Receiver and Transmitter Effective data reg. 1950 000 Meyer (Fereive data reg. 1950 Meyer (Fereive data reg. What is the Voltage Output Differential (VOD) control setting? 800 v mV Preemphasis first post-tap setting (% of VOD): Preemphasis second post-tap setting (% of VOD): Preemphasis pre-tap setting (% of VOD): (% or vou): 0 H -max 0 0 0

Figure 3-13. MegaWizard Plug-In Manager - ALT2GXB (TX Analog)

Cancel < Back Next > Finish

Table 3–9 describes the available options on page 6 of the MegaWizard Plug-In Manager for your ALT2GXB custom megafunction variation.

| Table 3–9. MegaWizard Plug-In Manager Options (Page 6 for GIGE Mode) |                                                                                                                                                                                                                                     |                                                                                                                                                                     |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ALT2GXB Setting                                                      | Description                                                                                                                                                                                                                         | Reference                                                                                                                                                           |
| What is the Transmitter Buffer<br>Power (VCCH)?                      | In GIGE mode, the transmitter buffer power is fixed at 1.5 V. You must connect the VCCH power pins of a GIGE transceiver bank to a 1.5V power supply. You must select 1.5-V PCML I/O standard for the transmitter data output pins. | Transmitter Buffer section under GIGE Mode in the Arria GX Transceiver Protocol Support and Additional Features chapter in volume 2 of the Arria GX Device Handbook |
| What is the Transmitter Common Mode Voltage (Vcm)?                   | In GIGE mode, the transmitter common mode voltage is fixed at 0.6 V.                                                                                                                                                                | Transmitter Buffer section under GIGE Mode in the Arria GX Transceiver Protocol Support and Additional Features chapter in volume 2 of the Arria GX Device Handbook |
| Use external Transmitter termination                                 | This option is available if you want to use an external termination resistor instead of the on-chip termination (OCT). Checking this option turns off the transmitter OCT.                                                          | _                                                                                                                                                                   |
| Select the Transmitter termination resistance                        | In GIGE mode, the only supported receiver termination resistance is 100 $\Omega$ .                                                                                                                                                  | Transmitter Buffer section under GIGE Mode in the Arria GX Transceiver Protocol Support and Additional Features chapter in volume 2 of the Arria GX Device Handbook |
| What is the Voltage Output<br>Differential (VOD) control<br>setting? | In GIGE mode, the only supported peak-peak differential output voltage is 800 mV.                                                                                                                                                   | Transmitter Buffer section under GIGE Mode in the Arria GX Transceiver Protocol Support and Additional Features chapter in volume 2 of the Arria GX Device Handbook |
| Pre-emphasis pre-tap setting (% of VOD)                              | In GIGE mode, this option is unavailable and is fixed to 0.                                                                                                                                                                         | _                                                                                                                                                                   |

| Table 3–9. MegaWizard Plug-In Manager Options (Page 6 for GIGE Mode) |                                                             |                                                                                                                                                                     |
|----------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ALT2GXB Setting                                                      | Description                                                 | Reference                                                                                                                                                           |
| Pre-emphasis first post-tap setting (% of VOD)                       | In GIGE mode, this option is unavailable and is fixed to 0. | Transmitter Buffer section under GIGE Mode in the Arria GX Transceiver Protocol Support and Additional Features chapter in volume 2 of the Arria GX Device Handbook |
| Pre-emphasis second post-tap setting (% of VOD)                      | In GIGE mode, this option is unavailable and is fixed to 0. | _                                                                                                                                                                   |

Figure 3–14 shows page 11 of the ALT2GXB MegaWizard Plug-In Manager for GIGE mode.

Figure 3–14. MegaWizard Plug-In Manager - ALT2GXB (Loopback)

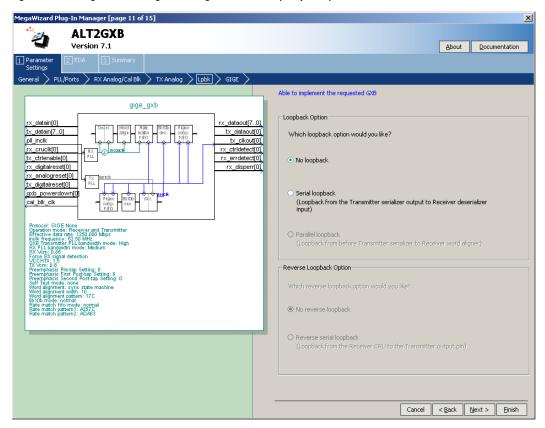



Table 3–10 describes the available options on page 11 of the MegaWizard Plug-In Manager for your Altzgxb custom megafunction variation.

| Table 3–10. MegaWizard Plug-In Manager Options (Page 11 for GIGE Mode) |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                 |
|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| ALT2GXB Setting                                                        | Description                                                                                                                                                                                                                                                                                                               | Reference                                                                                                                                       |
| Which loopback option would you like?                                  | No loopback and serial loopback options are available in GIGE mode.  No loopback is the default mode. If you select serial loopback, the rx_seriallpbken port is available to control the serial loopback feature dynamically. A 1'b1 enables serial loopback and a 1'b0 disables loopback on a channel-by-channel basis. | Loopback Modes section in the Arria GX Transceiver Protocol Support and Additional Features chapter in volume 2 of the Arria GX Device Handbook |

Figure 3–15 shows page 13 of the ALT2GXB MegaWizard Plug-In Manager for GIGE mode. If **Enforce default settings for this protocol** option is selected, this page does not appear in the MegaWizard.

MegaWizard Plug-In Manager [page 13 of 15] ALT2GXB Version 7.1 <u>D</u>ocumentation > PLL/Ports RX Analog/Cal Blk > TX Analog > Lpbk > GIGE > Able to implement the requested GXB gige\_gxb Enable run-length violation checking with a run length of rx\_datain[0] rx\_dataout[7..0] tx\_datain[7..0] tx\_dataout[0] pll\_inclk tx\_clkout[0] Optional ports rx\_ctrldetect[0] rx\_cruclk[0] tx\_ctrlenable[0] rx\_errdetect[0] Create 'rx\_syncstatus' output port for pattern detector and word aligner rx\_digitalreset[0] rx\_disperr[0] rx\_analogreset[0] Create 'rx\_patterndetect' port to indicate pattern detected tx\_digitalreset[0] axb powerdown[0] cal blk clk ☑ Create 'rx\_ctrldetect' port to indicate 8b10b decoder has detected a control code Protocol: GIGE None Operation mode: Receiver and Transmitter Effective data rate: 1250 000 Mbps inclk frequency: 62.50 MHz GXB Transmitter PLL bandwidth mode: High RX PLL bandwidth mode: Medium RX Vbm; 0.85 ☑ Create 'rx\_errdetect' port to indicate 8b10b decoder has detected an error code ☑ Create 'rx\_disperr' port to indicate 8b10b decoder has detected a disparity error CHTR: 1.0 Vern: 0.6 emphasis Pre-tap Setting: 0 emphasis First Post-tap Setting: 0 emphasis Second Post-tap Setting: 0 Create 'rx\_invpolarity' to enable word aligner polarity inversion Preemphasis Second Post-tap Setting Self Test mode: none Word alignment: sync state machine Word alignment width: 10 Word alignment pattern: 17C 8b10b mode: normal ☐ Create 'tx\_invpolarity' to allow Transmitter polarity inversion

Figure 3-15. MegaWizard Plug-In Manager - ALT2GXB (GIGE)

Cancel < Back Next > Finish

Table 3–11 describes the available options on page 13 of the MegaWizard Plug-In Manager for your ALT2GXB custom megafunction variation.

| Table 3–11. MegaWizard Plug-In Manager Options (Page 13 for GIGE Mode)                  |                                                                                                                                                                          |                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ALT2GXB Setting                                                                         | Description                                                                                                                                                              | Reference                                                                                                                                                                       |
| Enable run-length violation checking with a run length of                               | This option activates the run-length violation circuit. You can program the run length at which the circuit triggers the $rx_rlv$ signal.                                | Word Aligner section in the<br>Arria GX Transceiver<br>Architecture chapter in<br>volume 2 of the Arria GX<br>Device Handbook                                                   |
| Create rx_syncstatus output port for pattern detector and word aligner                  | Refer to the Arria GX Transceiver Protocol<br>Support and Additional Features chapter in<br>volume 2 of the Arria GX Device Handbook for<br>information about this port. | Word Aligner section under<br>GIGE mode in the Arria GX<br>Transceiver Protocol<br>Support and Additional<br>Features chapter in volume<br>2 of the Arria GX Device<br>Handbook |
| Create rx_patterndetect output port to indicate pattern detected                        | Refer to the Arria GX Transceiver Protocol<br>Support and Additional Features chapter in<br>volume 2 of the Arria GX Device Handbook for<br>information about this port. | Word Aligner section under<br>GIGE Mode in the Arria GX<br>Transceiver Protocol<br>Support and Additional<br>Features chapter in volume<br>2 of the Arria GX Device<br>Handbook |
| Create rx_ctrldetect output port to indicate 8B/10B decoder has detected a control code | Refer to the <i>Arria GX Transceiver Architecture</i> chapter in volume 2 of the <i>Arria GX Device Handbook</i> for information about this port.                        | 8B/10B Decoder section in<br>the Arria GX Transceiver<br>Architecture chapter in<br>volume 2 of the Arria GX<br>Device Handbook                                                 |
| Create rx_errdetect port to indicate 8B/10B decoder has detected an error code          | Refer to the <i>Arria GX Transceiver Architecture</i> chapter in volume 2 of the <i>Arria GX Device Handbook</i> for information about this port.                        | 8B/10B Decoder section in<br>the Arria GX Transceiver<br>Protocol Support and<br>Additional Features<br>chapter in volume 2 of the<br>Arria GX Device Handbook                  |
| Create rx_disperr port to indicate 8B/10B decoder has detected a disparity error        | Refer to the <i>Arria GX Transceiver Architecture</i> chapter in volume 2 of the <i>Arria GX Device Handbook</i> for information about this port.                        | 8B/10B Decoder section in<br>the Arria GX Transceiver<br>Protocol Support and<br>Additional Features<br>chapter in volume 2 of the<br>Arria GX Device Handbook                  |

| Table 3–11. MegaWizard Plug-In Manager Options (Page 13 for GIGE Mode) |                                                                                                                                       |                                                                                                                                                                |
|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ALT2GXB Setting                                                        | Description                                                                                                                           | Reference                                                                                                                                                      |
| Create rx_invpolarity to enable word aligner polarity inversion        | This optional port allows you to dynamically reverse the polarity of the received data at the input of the word aligner.              | Word Aligner section in the<br>Arria GX Transceiver<br>Architecture chapter in<br>volume 2 of the Arria GX<br>Device Handbook                                  |
| Create tx_invpolarity to allow Transmitter polarity inversion          | This optional port allows you to dynamically reverse the polarity of the data to be transmitted at the transmitter PCS-PMA interface. | 8B/10B Encoder section in<br>the Arria GX Transceiver<br>Protocol Support and<br>Additional Features<br>chapter in volume 2 of the<br>Arria GX Device Handbook |

Figure 3–16 shows page 14 of the MegaWizard Plug-In Manager for the GIGE protocol selection. The **Generate simulation model** option creates a behavioral model (.vo or .vho) of the transceiver instance for third-party simulators. The **Generate a netlist for synthesis area and timing estimation** option creates a netlist file (.syn) for third-party synthesis tools.

MegaWizard Plug-In Manager [page 14 of 15] -- EDA ALT2GXB Version 7.1 About <u>D</u>ocumentation 2 EDA Simulation Libraries To properly simulate the generated design files, the following simulation model file(s) are needed  $% \left( 1\right) =\left( 1\right) \left( 1\right) \left($ gige\_gxb rx\_datain[0] rx\_dataout[7..0] File Description tx\_datain[7..0] tx\_dataout[0] pll\_inclk tx\_clkout[0] rx ctridetect[0] rx cruclk(0) tx ctrlenable[0] rx errdetect[0] rx\_digitalreset[0] rx disperr[0] rx\_analogreset[0] tx\_digitalreset[0] gxb\_powerdown[0] cal blk clk Protocol: GIGE None Operation mode: Receiver and Transmitter Effective data rate: 1250 000 Mbps inclk frequency: 62.50 MHz GNB Transmitter PLL bandwidth mode: High RX PLL bandwidth mode: Medium RX VBC 3854 ປ.80 signal detection Force Ris Signal usessoun.
Victoria 19
Preemphasis Frest posting; 0
Preemphasis Frest post ag Setting; 0
Preemphasis Second Post ag Setting; 0
Preemphasis Second Post ag Setting; 0
Word alignment width: 10
Word alignment patten. 17C
Bate match through the preemphasis Second Post agreement agreem An IP Functional Simulation Model is a cycle-accurate VHDL or Verilog HDL model produced by the Quartus II software. These models allow fast functional simulations of IP using industry-standard VHDL or Verilog HDL simulators. You may use these simulation model output files for simulation purposes and expressly not for synthesis or any other purposes. Using these models for synthesis will create a non-functional design Generate simulation model Synthesis Some third-party synthesis tools may benefit from reading the details of this megafunction. Using this netlist, the synthesis tool is able to estimate timing and resource usage for the megafunction Generate a netlist for synthesis area and timing estimation Cancel < Back Next > Einish

Figure 3-16. MegaWizard Plug-In Manager - ALT2GXB (EDA)

Figure 3–17 shows page 15 (the last page) of the MegaWizard Plug-In Manager for the GIGE protocol set up. You can select optional files on this page. After you make your selections, click **Finish** to generate the files.

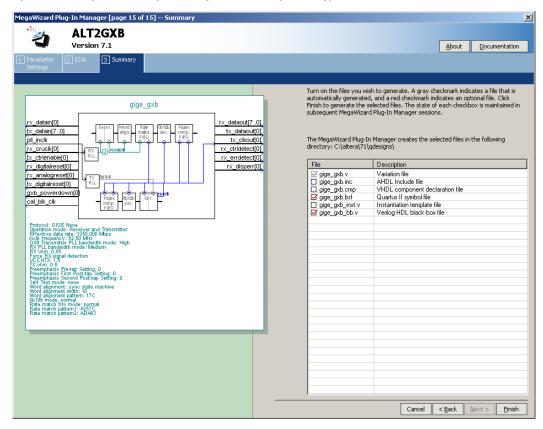



Figure 3–17. MegaWizard Plug-In Manager - ALT2GXB (Summary)

## Serial RapidIO Mode

This section provides descriptions of the options available on the individual pages of the ALT2GXB MegaWizard Plug-In Manager for Serial RapidIO mode.

The MegaWizard Plug-In Manager provides a warning if any of the settings you choose are illegal.

Figure 3–18 shows page 3 of the ALT2GXB MegaWizard Plug-In Manager in Serial RapidIO mode.

MegaWizard Plug-In Manager [page 3 of 16] × ALT2GXB Version 7.1 About Documentation General > PLL/Ports > RX Analog/Cal Blk > TX Analog > Lpbk > SR I/O 1 > SR I/O 2 > srio axb Able to implement the requested GXB rx\_dataout[15..0] rx datain[0] tx\_datain[15..0] tx\_dataout[0] pll\_inclk rx\_clkout[0] Which protocol will you be using? Serial RapidIO rx\_cruclk[0] tx\_clkout[0] tx ctrlenable[1..0] rx\_syncstatus[1..0] rx\_digitalreset[0] rx\_patterndetect[1..0] rx\_analogreset[0] rx\_ctrldetect[1..0] tx\_digitalreset[0] rx\_errdetect[1..0] Receiver and Transmitter gxb\_powerdown[0] rx disperr[1..0] What is the number of channels? cal blk clk Single (valid data rates: 622 Mbps - 3.125 Gbps) O Double (valid data rates: > 1 Gbps) 16 v bits What is the channel width? What would you like to base the setting on?

What is the data rate?

What is the input clock frequency?

What is the data rate division factor?

The effective data rate is **∨** MHz ✓ Create 'rx digitalreset' port for the digital portion of the receiver ✓ Create 'rx\_analogreset' port for the analog portion of the receiver ✓ Create 'tx\_digitalreset' port for the digital portion of the transmitter Cancel < Back Next > Finish

Figure 3–18. MegaWizard Plug-In Manager - ALT2GXB (General)

Table 3–12 describes the available options on page 3 of the MegaWizard Plug-In Manager for your ALT2GXB custom megafunction variation.

| Table 3–12. MegaWizard Plug-In Manager Options (Page 3 for Serial RapidlO Mode) (Part 1 of 3) |                                                                                                                                                                                                                                     |           |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| ALT2GXB Setting                                                                               | Description                                                                                                                                                                                                                         | Reference |
| Which protocol will you be using?                                                             | Determines the specific protocol or modes under which the transceiver operates. The possible selections are PCI Express (PIPE), GIGE, and Serial RapidIO. For the Serial RapidIO mode, you must select the Serial RapidIO protocol. | _         |
| Which subprotocol will you be using?                                                          | Not applicable to Serial RapidIO mode.                                                                                                                                                                                              |           |

| ALT2GXB Setting                                                     | Description                                                                                                                                                                                                                                                          | Reference                                                                                                                                                                             |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Enforce default settings for this protocol                          | Not applicable to Serial RapidIO mode.                                                                                                                                                                                                                               | _                                                                                                                                                                                     |
| What is the operation mode?                                         | The available operation modes are receiver only, transmitter only, and receiver and transmitter.                                                                                                                                                                     | _                                                                                                                                                                                     |
| What is the number of channels?                                     | This option determines how many duplicate channels this ALT2GXB instance contains.                                                                                                                                                                                   | _                                                                                                                                                                                     |
| What is the deserializer block width?                               | This option is unavailable in Serial RapidIO ALT2GXB instance.                                                                                                                                                                                                       | _                                                                                                                                                                                     |
| What is the channel width?                                          | This option determines the PLD-transceiver interface width. Only 16-bit interface width is supported.                                                                                                                                                                | Byte Serializer and Byte<br>Deserializer sections in<br>the Arria GX<br>Transceiver<br>Architecture chapter in<br>volume 2 of the<br>Arria GX Device<br>Handbook                      |
| What would you like to base the setting on?                         | This option is unavailable in Serial RapidIO mode.                                                                                                                                                                                                                   | _                                                                                                                                                                                     |
| What is the data rate?                                              | In Serial RapidIO mode, data rates of 1250 Mbps and 2500 Mbps are supported.                                                                                                                                                                                         | _                                                                                                                                                                                     |
| What is the input clock frequency?                                  | Determines the input reference clock frequency for the transceiver. The following input reference clock frequencies are supported for each data rate option: 1250 Mbps: 62.5 MHz, 78.125 MHz, 125 MHz, 156.25 MHz 2500 Mbps: 125 MHz, 156.25 MHz, 250 MHz, 312.5 MHz | Serial RapidlO Mode<br>section in the Arria GX<br>Transceiver Protocol<br>Support and Additional<br>Features chapter in<br>volume 2 of the<br>Arria GX Device<br>Handbook             |
| What is the data rate division factor?                              | This option is unavailable in Serial RapidIO ALT2GXB instance.                                                                                                                                                                                                       | _                                                                                                                                                                                     |
| Create rx_digitalreset port for the digital portion of the receiver | Receiver digital reset port. Resets the PCS logic of the receiver. Altera recommends using this port to implement the recommended reset sequence.                                                                                                                    | Reset Control and<br>Power Down section in<br>the Arria GX<br>Transceiver Protocol<br>Support and Additional<br>Features chapter in<br>volume 2 of the<br>Arria GX Device<br>Handbook |

| Table 3–12. MegaWizard Plug-In Manager Options (Page 3 for Serial RapidIO Mode) (Part 3 of 3) |                                                                                                                                                         |                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ALT2GXB Setting                                                                               | Description                                                                                                                                             | Reference                                                                                                                                                                             |
| Create rx_analogreset port for the analog portion of the receiver                             | Receiver analog reset port.                                                                                                                             | Reset Control and<br>Power Down section in<br>the Arria GX<br>Transceiver Protocol<br>Support and Additional<br>Features chapter in<br>volume 2 of the<br>Arria GX Device<br>Handbook |
| Create tx_digitalreset port for the digital portion of the transmitter                        | Transmitter digital reset port. Resets the PCS logic of the transmitter. Altera recommends using this port to implement the recommended reset sequence. | Reset Control and<br>Power Down section in<br>the Arria GX<br>Transceiver Protocol<br>Support and Additional<br>Features chapter in<br>volume 2 of the<br>Arria GX Device<br>Handbook |

Figure 3–19 shows page 4 of the ALT2GXB MegaWizard Plug-In Manager for Serial RapidIO mode.

Figure 3-19. MegaWizard Plug-In Manager - ALT2GXB (PLL/Ports)

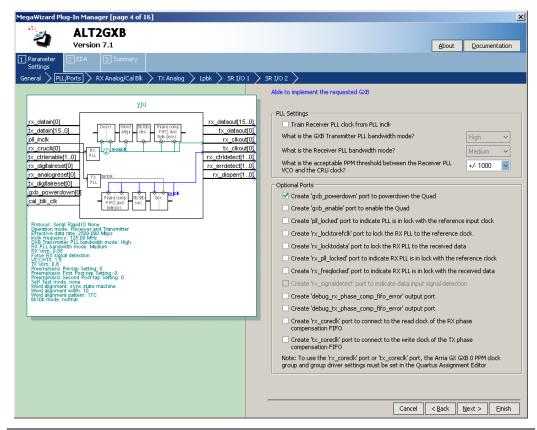



Table 3–13 describes the available options on page 4 of the MegaWizard Plug-In Manager for your ALT2GXB custom megafunction variation.

| ALT2GXB Setting                                                                      | Description                                                                                                                                                                                                                                         | Reference                                                                                                                                                                          |
|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Train Receiver PLL clock from PLL inclk                                              | If you select this option, the transmitter input reference clock (pll_inclk) drives the receiver PLL input reference clock also.  If you do not select this option, the signal on the rx_cruclk port drives the receiver PLL input reference clock. | _                                                                                                                                                                                  |
| What is the GXB Transmitter PLL bandwidth mode?                                      | This option is not available in Serial RapidIO mode because the transmitter PLL bandwidth is fixed at high.                                                                                                                                         | _                                                                                                                                                                                  |
| What is the Receiver PLL bandwidth mode?                                             | This option is not available in Serial RapidIO mode because the receiver PLL bandwidth is fixed at medium.                                                                                                                                          | _                                                                                                                                                                                  |
| What is the acceptable PPM threshold between the Receiver PLL VCO and the CRU clock? | This option determines the PPM difference that affects the automatic receiver CRU switchover between lock-to-data and lock-to-reference. (There are additional factors that affect the CRU's transition.)                                           | Clock Recovery Unit<br>(CRU) section in the<br>Arria GX Transceiver<br>Architecture chapter in<br>volume 2 of the Arria GX<br>Device Handbook                                      |
| Create gxb_powerdown port to power down the Quad                                     | Refer to the Arria GX Transceiver Protocol<br>Support and Additional Features chapter in<br>volume 2 of the Arria GX Device Handbook for<br>information about this port.                                                                            | Reset Control and Power<br>Down section in the<br>Arria GX Transceiver<br>Protocol Support and<br>Additional Features<br>chapter in volume 2 of the<br>Arria GX Device<br>Handbook |
| Create gxb_enable port to enable the Quad                                            | Refer to the <i>Arria GX Transceiver Protocol</i> Support and Additional Features chapter in volume 2 of the <i>Arria GX Device Handbook</i> for information about this port.                                                                       | Reset Control and Power<br>Down section in the<br>Arria GX Transceiver<br>Protocol Support and<br>Additional Features<br>chapter in volume 2 of the<br>Arria GX Device<br>Handbook |
| Create pll_locked port to indicate PLL is in lock with the reference input clock     | Refer to the <i>Arria GX Transceiver Protocol</i> Support and Additional Features chapter in volume 2 of the <i>Arria GX Device Handbook</i> for information about this port.                                                                       | Reset Control and Power<br>Down section in the<br>Arria GX Transceiver<br>Protocol Support and<br>Additional Features<br>chapter in volume 2 of the<br>Arria GX Device<br>Handbook |

| Table 3–13. MegaWizard Plug-In Manager Options (Page 4 for Serial RapidIO Mode)  |                                                                                                                                                                                                                                  |                                                                                                                                                                                    |  |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ALT2GXB Setting                                                                  | Description                                                                                                                                                                                                                      | Reference                                                                                                                                                                          |  |
| Create rx_locktorefclk port to lock the RX PLL to the reference clock            | Refer to the <i>Arria GX Transceiver Architecture</i> chapter in volume 2 of the <i>Arria GX Device Handbook</i> for information about this port.                                                                                | Clock Recovery Unit<br>(CRU) section in the Arria<br>GX Transceiver<br>Architecture chapter in<br>volume 2 of the Arria GX<br>Device Handbook                                      |  |
| Create rx_locktodata port to lock the RX PLL to the received data                | Refer to the <i>Arria GX Transceiver Architecture</i> chapter in volume 2 of the <i>Arria GX Device Handbook</i> for information about this port.                                                                                | Clock Recovery Unit<br>(CRU) section in the Arria<br>GX Transceiver<br>Architecture chapter in<br>volume 2 of the Arria GX<br>Device Handbook                                      |  |
| Create rx_pll_locked port to indicate RX PLL is in lock with the reference clock | Refer to the Arria GX Transceiver Protocol<br>Support and Additional Features chapter in<br>volume 2 of the Arria GX Device Handbook for<br>information about this port.                                                         | Reset Control and Power<br>Down section in the<br>Arria GX Transceiver<br>Protocol Support and<br>Additional Features<br>chapter in volume 2 of the<br>Arria GX Device<br>Handbook |  |
| Create rx_freqlocked port to indicate RX PLL is in lock with the received data   | Refer to the <i>Arria GX Transceiver Architecture</i> chapter in volume 2 of the <i>Arria GX Device Handbook</i> for information about this port.                                                                                | Clock Recovery Unit<br>(CRU) section in the Arria<br>GX Transceiver<br>Architecture chapter in<br>volume 2 of the Arria GX<br>Device Handbook                                      |  |
| Create rx_signaldetect port to indicate data input signal detection              | This option is unavailable in Serial RapidIO mode.                                                                                                                                                                               | _                                                                                                                                                                                  |  |
| Create debug_rx_phase_comp_fifo_err or output port                               | This optional output port indicates Receiver Phase Compensation FIFO overflow/underrun condition. Note that no ppm difference is allowed between FIFO read and write clocks. This port should be used for debug purpose only.    | Receiver Phase Compensation FIFO section in the Arria GX Transceiver Architecture chapter in volume 2 of the Arria GX Device Handbook                                              |  |
| Create debug_tx_phase_comp_fifo_err or output port                               | This optional output port indicates Transmitter Phase Compensation FIFO overflow/underrun condition. Note that no ppm difference is allowed between FIFO read and write clocks. This port should be used for debug purpose only. | Transmitter Phase Compensation FIFO section in the Arria GX Transceiver Architecture chapter in volume 2 of the Arria GX Device Handbook                                           |  |

| Table 3–13. MegaWizard Plug-In Manager Options (Page 4 for Serial RapidIO Mode)        |                                                                                                                                          |                                                                                                                                                           |  |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ALT2GXB Setting                                                                        | Description                                                                                                                              | Reference                                                                                                                                                 |  |
| Create rx_coreclk port to connect to the read clock of the RX phase compensation FIFO  | This optional input port allows you to clock the read side of the Receiver Phase Compensation FIFO with a non-transceiver PLD clock.     | PLD-Transceiver<br>Interface Clocking<br>section in the Arria GX<br>Transceiver Architecture<br>chapter in volume 2 of the<br>Arria GX Device<br>Handbook |  |
| Create tx_coreclk port to connect to the write clock of the TX phase compensation FIFO | This optional input port allows you to clock the write side of the Transmitter Phase Compensation FIFO with a non-transceiver PLD clock. | PLD-Transceiver Interface Clocking section in the Arria GX Transceiver Architecture chapter in volume 2 of the Arria GX Device Handbook                   |  |

Figure 3–20 shows page 5 of the ALT2GXB MegaWizard Plug-In Manager for Serial RapidIO mode.

MegaWizard Plug-In Manager [page 5 of 16] × ALT2GXB Version 7.1 About Documentation General > PLL/Ports > RX Analog/Cal Blk > TX Analog > Lpbk > SR I/O 1 > SR I/O 2 > Able to implement the requested GXB srio\_gxb Receiver Analog Settings rx\_datain[0] rx\_dataout[15..0] ☐ Enable static equalizer control tx\_datain[15..0] tx\_dataout[0] pll\_inclk rx\_clkout[0] rx\_cruclk[0] tx\_clkout[0] tx\_ctrlenable[1..0] rx\_syncstatus[1..0] rx\_digitalreset[0] rx\_patterndetect[1..0] rx\_analogreset[0] rx\_ctrldetect[1..0] tx\_digitalreset[0] rx\_errdetect[1..0] What is the equalizer DC gain? gxb\_powerdown[0] rx disperr[1..0] cal blk clk What is the Receiver Common Mode Voltage (RX Vcm)? 0.85 V Protocol: Serial RapidIO None
Operation mode: Receiver and Transmitter
Effective data race; 2000 g00 Meyo.
008 Transmitter Effective data race; 2000 g00 Meyo.
008 Transmitter PLL bandwidth mode: Loe
609 FLL transmitter Meyor
600 FLL transmitter
6 Force signal detection Use external Receiver termination 100 V Ohms What is the Receiver termination resistance? Calibration Block Settings ✓ Use calibration block Note: All calibration circuitries on a chip should be driven by the same clock and all channels using internal termination will be driven by the calibration block ☐ Create active low 'cal\_blk\_powerdown' port to powerdown the calibration block

Figure 3-20. MegaWizard Plug-In Manager - ALT2GXB (RX Analog/Cal Blk)

Cancel < Back Next > Finish

Table 3–14 describes the available options on page 5 of the MegaWizard Plug-In Manager for your ALT2GXB custom megafunction variation.

| Table 3–14. MegaWizard Plug-In Manager Options (Page 5 for Serial RapidIO Mode) |                                                                                                                                                                                    |                                                                                                                                                                                                 |  |  |  |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| ALT2GXB Setting                                                                 | Description Referenc                                                                                                                                                               |                                                                                                                                                                                                 |  |  |  |
| What is the Receiver<br>Common Mode Voltage (RX<br>Vcm)?                        | The receiver common mode voltage is set to 0.85 V.                                                                                                                                 | Receiver Buffer section<br>under Serial RapidIO<br>Mode in the Arria GX<br>Transceiver Protocol<br>Support and Additional<br>Features chapter in<br>volume 2 of the Arria GX<br>Device Handbook |  |  |  |
| Force signal detection                                                          | This option is unavailable in Serial RapidIO mode and is always forced selected.                                                                                                   | _                                                                                                                                                                                               |  |  |  |
| What is the signal detect and signal loss threshold?                            | This option is unavailable in Serial RapidIO mode as signal detection is forced.                                                                                                   | _                                                                                                                                                                                               |  |  |  |
| Use external receiver termination                                               | This option is available if you want to use an external termination resistor instead of the on-chip termination (OCT). If checked, this option turns off the receiver OCT.         | _                                                                                                                                                                                               |  |  |  |
| What is the receiver termination resistance?                                    | In Serial RapidIO mode, the only supported receiver termination resistance is 100 $\boldsymbol{\Omega}$ .                                                                          | Receiver Buffer section<br>under Serial RapidIO<br>Mode in the Arria GX<br>Transceiver Protocol<br>Support and Additional<br>Features chapter in<br>volume 2 of the Arria GX<br>Device Handbook |  |  |  |
| Use calibration block                                                           | This option allows you to select which instance of ALT2GXB instantiates the calibration block. Only one instance of ALT2GXB is required to instantiate the calibration block.      | Calibration Block section<br>in the Arria GX<br>Transceiver Protocol<br>Support and Additional<br>Features chapter in<br>volume 2 of the Arria GX<br>Device Handbook                            |  |  |  |
| Create active low cal_blk_powerdown to power down the calibration block         | Refer to the <i>Arria GX Transceiver Protocol Support</i> and <i>Additional Features</i> chapter in the <i>Arria GX Device Handbook, volume 2</i> for information about this port. | Calibration Block section<br>in the Arria GX<br>Transceiver Protocol<br>Support and Additional<br>Features chapter in<br>volume 2 of the Arria GX<br>Device Handbook                            |  |  |  |

Figure 3–21 shows page 6 of the ALT2GXB MegaWizard Plug-In Manager for Serial RapidIO mode.

MegaWizard Plug-In Manager [page 6 of 16] X ALT2GXB Version 7.1 About Documentation 1 Parameter Settings General > PLL/Ports > RX Analog/Cal Blk > TX Analog > Lpbk > SR I/O 1 > SR I/O 2 Able to implement the requested GXB srio\_gxb Transmitter Analog Settings rx\_datain[0] tx\_datain[15..0] rx\_dataout[15..0] What is the Transmitter Buffer Power (VCCH)? 1.5 V tx\_dataout[0] pll\_inclk rx\_clkout[0] rx\_cruclk[0] tx\_clkout[0] What is the Transmitter Common Mode Voltage (Vcm)? 0.6 V tx\_ctrlenable[1..0] rx\_syncstatus[1..0] rx\_digitalreset[0] rx\_patterndetect[1..0] rx\_analogreset[0] rx\_ctrldetect[1..0] Use external Transmitter termination tx\_digitalreset[0] rx\_errdetect[1..0] 100 V Ohms Select the Transmitter termination resistance: gxb\_powerdown[0] rx disperr[1..0] cal blk clk Protocol: Serial RapidIO None
Operation mode: Receiver and Transmitter
Coperation mode: Receiver and Transmitter
Coperation mode: Receiver and Reps
Coperation of the Coperati What is the Voltage Output Differential (VOD) control setting? 800 v mV Preemphasis second post-tap setting (% of VOD): Preemphasis pre-tap setting (% of VOD): Preemphasis first post-tap setting (% of VOD): 0 - 1-0 0 0 0

Figure 3-21. MegaWizard Plug-In Manager - ALT2GXB (TX Analog)

Cancel < Back Next > Finish

Table 3–15 describes the available options on page 6 of the MegaWizard Plug-In Manager for your ALT2GXB custom megafunction variation.

| Table 3–15. MegaWizard Plug-In Manager Options (Page 6 for Serial RapidIO Mode) |                                                                                                                                                                                                                                                        |                                                                                                                                                                               |  |  |  |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| ALT2GXB Setting Description Referen                                             |                                                                                                                                                                                                                                                        |                                                                                                                                                                               |  |  |  |
| What is the Transmitter Buffer<br>Power (VCCH)?                                 | In Serial RapidIO mode, the transmitter buffer power is fixed at 1.5 V. You must connect the VCCH power pins of Serial RapidIO transceiver bank to a 1.5-V power supply. You must select 1.5-V PCML I/O standard for the transmitter data output pins. | Transmitter Buffer section under Serial RapidIO Mode in the Arria GX Transceiver Protocol Support and Additional Features chapter in volume 2 of the Arria GX Device Handbook |  |  |  |
| What is the Transmitter Common Mode Voltage (Vcm)?                              | In Serial RapidIO mode, the transmitter common mode voltage is fixed at 0.6 V.                                                                                                                                                                         | Transmitter Buffer section under Serial RapidIO mode in the Arria GX Transceiver Protocol Support and Additional Features chapter in volume 2 of the Arria GX Device Handbook |  |  |  |
| Use external Transmitter termination                                            | This option is available if you want to use an external termination resistor instead of the on-chip termination (OCT). Checking this option turns off the transmitter OCT.                                                                             | _                                                                                                                                                                             |  |  |  |
| Select the Transmitter termination resistance                                   | In Serial RapidIO mode, the only supported receiver termination resistance is 100 $\boldsymbol{\Omega}$ .                                                                                                                                              | Transmitter Buffer section under Serial RapidIO mode in the Arria GX Transceiver Protocol Support and Additional Features chapter in volume 2 of the Arria GX Device Handbook |  |  |  |
| What is the Voltage Output<br>Differential (VOD) control<br>setting?            | In Serial RapidIO mode, the only supported peak differential output voltage is 800 mV.                                                                                                                                                                 | Transmitter Buffer section under Serial RapidIO Mode in the Arria GX Transceiver Protocol Support and Additional Features chapter in volume 2 of the Arria GX Device Handbook |  |  |  |
| Pre-emphasis pre-tap setting (% of VOD)                                         | In Serial RapidIO mode, this option is unavailable and is fixed to 0.                                                                                                                                                                                  | _                                                                                                                                                                             |  |  |  |

| Table 3–15. MegaWizard Plug-In Manager Options (Page 6 for Serial RapidlO Mode) |                                                                       |                                                                                                                                                                               |  |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ALT2GXB Setting                                                                 | Description                                                           | Reference                                                                                                                                                                     |  |
| Pre-emphasis first post-tap setting (% of VOD)                                  | In Serial RapidIO mode, this option is unavailable and is fixed to 0. | Transmitter Buffer section under Serial RapidIO Mode in the Arria GX Transceiver Protocol Support and Additional Features chapter in volume 2 of the Arria GX Device Handbook |  |
| Pre-emphasis second post-tap setting (% of VOD)                                 | In Serial RapidIO mode, this option is unavailable and is fixed to 0. | _                                                                                                                                                                             |  |

Figure 3–22 shows page 11 of the ALT2GXB MegaWizard Plug-In Manager for Serial RapidIO mode.

Figure 3–22. MegaWizard Plug-In Manager - ALT2GXB (Loopback)

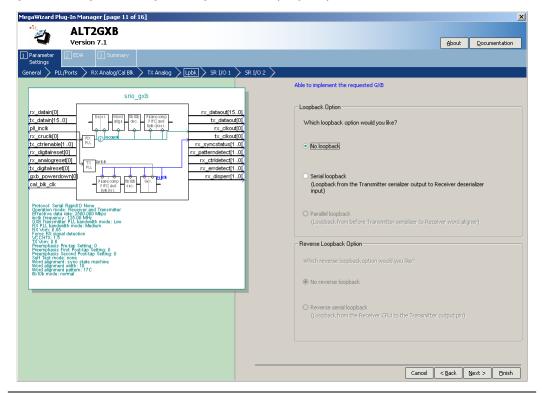



Table 3–16 describes the available options on page 11 of the MegaWizard Plug-In Manager for your ALT2GXB custom megafunction variation.

| Table 3–16. MegaWizard Plug-In Manager Options (Page 11 for Serial RapidlO Mode) |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                   |  |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ALT2GXB Setting                                                                  | Reference                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   |  |
| Which loopback option would you like?                                            | No loopback and serial loopback options are available in Serial RapidIO mode.  No loopback is the default mode. If you select serial loopback, the rx_seriallpbken port is available to control the serial loopback feature dynamically. A 1'b1 enables serial loopback and a 1'b0 disables loopback on a channel-by-channel basis. | Loopback Modes section<br>in the Arria GX<br>Transceiver Protocol<br>Support and Additional<br>Features chapter in<br>volume 2 of the Arria GX<br>Device Handbook |  |

Figure 3–23 shows page 13 of the ALT2GXB MegaWizard Plug-In Manager for Serial RapidIO mode.

MegaWizard Plug-In Manager [page 13 of 16] ALT2GXB Version 7.1 About <u>D</u>ocumentation General > PLL/Ports > RX Analog/Cal Blk > TX Analog > Lpbk > SR I/O 1 > SR I/O 2 Able to implement the requested GXB srio gxb Byte ordering block rx\_datain[0] rx\_dataout[15..0] tx\_datain[15..0] tx\_dataout[0] pll\_inclk rx clkoutf01 The sync status signal from the word aligner rx\_cruclk[0] tx\_ctrlenable[1..0] tx\_clkout[0] O The enabyteord signal from the PLD rx\_syncstatus[1..0] rx\_patterndetect[1..0] 1111111011 rx\_analogreset[0] rx\_ctrldetect[1..0] tx digitalreset[0] rx errdetect[1..0] 0000000000 rx\_disperr[1..0] gxb\_powerdown[0] 8b10b decoder/encoder ☑ Enable 8b10b decoder/encoder Create 'tx\_forcedisp' to enable force disparity and use 'tx\_dispval' to code up the incoming word using positive or negative disparity Rate match FIFO ☐ Enable rate match FIFO 1010001001 0101111100 1010110110 1010000011 Flip Receiver output data bits Flip Transmitter input data bits ☐ Enable Transmitter bit reversal Create 'rx invpolarity' to enable word aligner polarity inversion Create 'tx\_invpolarity' to allow Transmitter polarity inversion Cancel < Back Next > Finish

Figure 3-23. MegaWizard Plug-In Manager - ALT2GXB (SR I/O 1)

Table 3–17 describes the available options on page 13 of the MegaWizard Plug-In Manager for your ALT2GXB custom megafunction variation.

| ALT2GXB Setting                                                                                                                    | Description                                                                                                                           | Reference                                                                                                                         |  |
|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|
| Enable byte ordering block                                                                                                         | This option is unavailable in Serial RapidIO mode.                                                                                    | _                                                                                                                                 |  |
| Enable 8B/10B<br>decoder/encoder                                                                                                   | This option is unavailable in Serial RapidIO mode and is always forced selected to enable 8B/10B decoder/encoder.                     | _                                                                                                                                 |  |
| Create tx_forcedisp to enable Force disparity and use tx_dispval to code up the incoming word using positive or negative disparity | This option is unavailable in Serial RapidIO mode.                                                                                    | _                                                                                                                                 |  |
| Enable rate match FIFO                                                                                                             | This option is unavailable in Serial RapidIO mode as the rate matcher is not supported.                                               | _                                                                                                                                 |  |
| Flip Receiver output data bits                                                                                                     | This option reverses the bit order of the data at the receiver-PLD interface at a byte level.                                         | _                                                                                                                                 |  |
| Flip Transmitter input data bits                                                                                                   | This option reverses the bit order of the data bits at the input of the transmitter at a byte level.                                  | _                                                                                                                                 |  |
| Enable Transmitter bit reversal                                                                                                    | This option is unavailable in Serial RapidIO mode.                                                                                    | _                                                                                                                                 |  |
| Create rx_invpolarity to<br>enable word aligner polarity<br>inversion                                                              | This optional port allows you to dynamically reverse the polarity of the received data at the input of the word aligner.              | Word Aligner section n<br>the Arria GX Transceiver<br>Architecture chapter in<br>volume 2 of the Arria GX<br>Device Handbook      |  |
| Create tx_invpolarity to<br>allow Transmitter polarity<br>inversion                                                                | This optional port allows you to dynamically reverse the polarity of the data to be transmitted at the transmitter PCS-PMA interface. | 8B/10B Encoder section<br>n the Arria GX<br>Transceiver Architecture<br>chapter in volume 2 of the<br>Arria GX Device<br>Handbook |  |

Figure 3–24 shows page 14 of the MegaWizard Plug-In Manager for the Serial RapidIO protocol set up.




Figure 3–24. MegaWizard Plug-In Manager - ALT2GXB (SR I/O 2)

Table 3–18 describes the available options on page 14 of the MegaWizard Plug-In Manager for your ALT2GXB custom megafunction variation.

| Table 3–18. MegaWizard Plug-In Manager Options (Page 14 for Serial RapidlO Mode) (Part 1 of 3) |                                                    |   |  |  |
|------------------------------------------------------------------------------------------------|----------------------------------------------------|---|--|--|
| ALT2GXB Setting Description Reference                                                          |                                                    |   |  |  |
| Use manual word alignment mode                                                                 | This option is unavailable in Serial RapidIO mode. | _ |  |  |
| Use manual bit slipping mode.                                                                  | _                                                  |   |  |  |

| ALT2GXB Setting                                                       | Description                                                                                                                                                     | Reference                                                                                                                                                                                 |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Use the built-in<br>'synchronization state<br>machine'                | This option is forced selected in Serial RapidIO mode                                                                                                           | Word Aligner section under<br>Serial RapidIO Mode in the<br>Arria GX Transceiver<br>Protocol Support and<br>Additional Features<br>chapter in volume 2 of the<br>Arria GX Device Handbook |
| Number of bad data words<br>before loss of synch state                | Refer to the Arria GX Transceiver Protocol Support and Additional Features chapter in volume 2 of the Arria GX Device Handbook for information about this port. | Word Aligner section under<br>Serial RapidIO Mode in the<br>Arria GX Transceiver<br>Protocol Support and<br>Additional Features<br>chapter in volume 2 of the<br>Arria GX Device Handbook |
| Number of consecutive valid<br>words before synch state is<br>reached | Refer to the Arria GX Transceiver Protocol Support and Additional Features chapter in volume 2 of the Arria GX Device Handbook for information about this port. | Word Aligner section under<br>Serial RapidIO mode in the<br>Arria GX Transceiver<br>Protocol Support and<br>Additional Features<br>chapter in volume 2 of the<br>Arria GX Device Handbook |
| Number of valid patterns<br>before synch state is reached             | Refer to the Arria GX Transceiver Protocol Support and Additional Features chapter in volume 2 of the Arria GX Device Handbook for information about this port. | Word Aligner section under<br>Serial RapidIO Mode in the<br>Arria GX Transceiver<br>Protocol Support and<br>Additional Features<br>chapter in volume 2 of the<br>Arria GX Device Handbook |
| What is the word alignment pattern length?                            | Refer to the Arria GX Transceiver Protocol Support and Additional Features chapter in volume 2 of the Arria GX Device Handbook for information about this port. | Word Aligner section under<br>Serial RapidIO mode in the<br>Arria GX Transceiver<br>Protocol Support and<br>Additional Features<br>chapter in volume 2 of the<br>Arria GX Device Handbook |
| What is the word alignment pattern?                                   | Refer to the Arria GX Transceiver Protocol Support and Additional Features chapter in volume 2 of the Arria GX Device Handbook for information about this port. | Word Aligner section under<br>Serial RapidIO Mode in the<br>Arria GX Transceiver<br>Protocol Support and<br>Additional Features<br>chapter in volume 2 of the<br>Arria GX Device Handbook |

| ALT2GXB Setting                                                                                  | Description                                                                                                                                                               | Reference                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Enable run-length violation checking with a run length of                                        | This option activates the run-length violation circuit. You can program the run length at which the circuit triggers the rx_rlv signal.                                   | Word Aligner section n the<br>Arria GX Transceiver<br>Architecture chapter in<br>volume 2 of the Arria GX<br>Device Handbook                                                              |
| Enable word aligner output reverse bit ordering                                                  | This option is unavailable in Serial RapidIO mode.                                                                                                                        | _                                                                                                                                                                                         |
| Create rx_syncstatus output port for pattern detector and word aligner                           | Refer to the AArria GX Transceiver Protocol<br>Support and Additional Features chapter in<br>volume 2 of the Arria GX Device Handbook for<br>information about this port. | Word Aligner section under<br>Serial RapidIO Mode in the<br>Arria GX Transceiver<br>Protocol Support and<br>Additional Features<br>chapter in volume 2 of the<br>Arria GX Device Handbook |
| Create rx_patterndetectoutput port to indicate pattern detected                                  | Refer to the AArria GX Transceiver Protocol<br>Support and Additional Features chapter in<br>volume 2 of the Arria GX Device Handbook for<br>information about this port. | Word Aligner section under<br>Serial RapidIO Mode in the<br>Arria GX Transceiver<br>Protocol Support and<br>Additional Features<br>chapter in volume 2 of the<br>Arria GX Device Handbook |
| Create rx_ctrldetect<br>output port to indicate 8B/10B<br>decoder has detected a<br>control code | Refer to the <i>Arria GX Transceiver Architecture</i> chapter in volume 2 of the <i>Arria GX Device Handbook</i> for information about this port.                         | 8B/10B Decoder section n<br>the Arria GX Transceiver<br>Architecture chapter in<br>volume 2 of the Arria GX<br>Device Handbook                                                            |
| Create rx_errdetect port to indicate 8B/10B decoder has detected an error code                   | Refer to the <i>Arria GX Transceiver Architecture</i> chapter in volume 2 of the <i>Arria GX Device Handbook</i> for information about this port.                         | 8B/10B Decoder section in<br>the Arria GX Transceiver<br>Protocol Support and<br>Additional Features<br>chapter in volume 2 of the<br>Arria GX Device Handbook                            |
| Create rx_disperr port to indicate 8B/10B decoder has detected a disparity error                 | Refer to the <i>Arria GX Transceiver Architecture</i> chapter in volume 2 of the <i>Arria GX Device Handbook</i> for information about this port.                         | 8B/10B Decoder section in<br>the Arria GX Transceiver<br>Protocol Support and<br>Additional Features<br>chapter in volume 2 of the<br>Arria GX Device Handbook                            |
| Create rx_revbyteorderwa to enable receiver symbol swap                                          | This option is unavailable in Serial RapidIO mode.                                                                                                                        | _                                                                                                                                                                                         |

Figure 3–25 shows page 15 of the MegaWizard Plug-In Manager for the Serial RapidIO protocol selection. The **Generate simulation model** option creates a behavioral model (.vo or .vho) of the transceiver instance for third-party simulators. The **Generate a netlist for synthesis area and timing estimation** option creates a netlist file (.syn) for third-party synthesis tools.

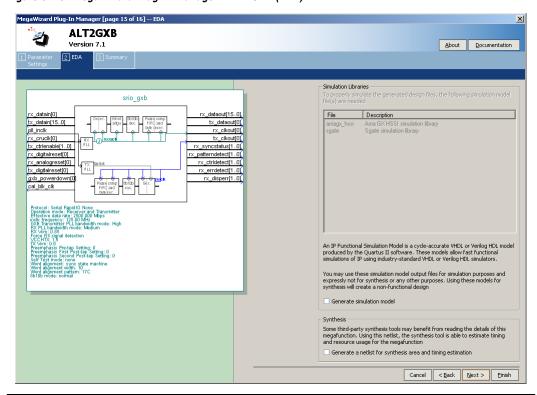



Figure 3-25. MegaWizard Plug-In Manager - ALT2GXB (EDA)

Figure 3–26 shows page 16 (last page) of the MegaWizard Plug-In Manager for the Serial RapidIO protocol set up. You can select optional files on this page. After you make your selections, click **Finish** to generate the files.

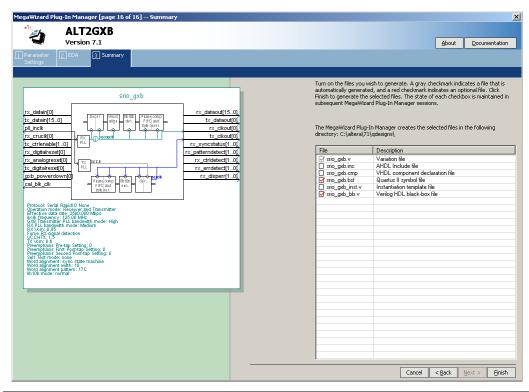



Figure 3-26. MegaWizard Plug-In Manager - ALT2GXB (Summary)

## Referenced Documents

This chapter references the following documents:

- Arria GX Architecture chapter in volume 1 of the Arria GX Device Handbook
- Arria GX Transceiver Architecture chapter in volume 2 of the Arria GX Device Handbook
- Arria GX Transceiver Protocol Support and Additional Features chapter in volume 2 of the Arria GX Device Handbook

# Document Revision History

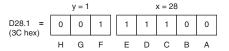
Table 3–19 shows the revision history for this chapter.

| Table 3–19. Document Revision History |                                           |                    |  |
|---------------------------------------|-------------------------------------------|--------------------|--|
| Date and<br>Document<br>Version       | Changes Made                              | Summary of Changes |  |
| August 2007,                          | Added the "Referenced Documents" section. | _                  |  |
| v1.2                                  | Minor text edits.                         | _                  |  |
| June 2007,<br>v1.1                    | Added GIGE information.                   | _                  |  |
| May 2007, v1.0                        | Initial Release.                          | _                  |  |



## 4. Specifications and Additional Information

AGX52004-1.0


## 8B/10B Code

This section provides information about the data and control codes for  $Arria^{TM}$  GX devices.

#### **Code Notation**

The 8B/10B data and control codes are referred to as Dx.y and Kx.y, respectively. The 8-bit byte – H G F E D C B A, where H is the most significant bit (MSB) and A is the significant bit (LSB) – is broken up into two groups, x and y, where x is the five lower bits (E D C B A) and y is the three upper bits (H G F). Figure 4–1 shows the designation for 3C hex.

Figure 4–1. Sample Notation for 3C hex



There are 256 Dx.y and 12 Kx.y valid 8-bit codes. These codes have two 10-bit equivalent codes associated with each 8-bit code. The 10-bit codes have either a neutral disparity or a non-neutral disparity. With neutral disparity, two neutral disparity 10-bit codes are associated with an 8-bit code. With non-neutral disparity 10-bit code, a positive and a negative disparity code are associated with the 8-bit code.

The positive disparity 10-bit code is associated in the RD+ column. The negative disparity 10-bit code is associated in the RD+ column.

### **Disparity Calculation**

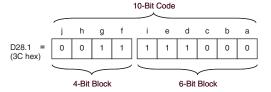

Running disparity is calculated based on the sub-blocks of the 10-bit code. The 10-bit code is divided into two sub-blocks, a 6-bit sub-block (abcdei) and a 4-bit sub-block (fghj), as shown in Figure 4–2.

Figure 4–2. 10-Bit Grouping of 6-bit & 4-Bit Sub-Blocks



The running disparity at the beginning of the 6-bit sub-block is the running disparity at the end of the previous 10-bit code. The running disparity of the 4-bit sub-block is the running disparity at the end of the 6-bit sub-block. The running disparity at the end of the 4-bit sub-block is the running disparity of the 10-bit code (refer to Figure 4–3).

Figure 4-3. Running Disparity Between Sub-Blocks



The running disparity calculation rules are as follows:

- The current running disparity at the end of a sub-block is positive if any of the following is true:
  - The sub-block contains more ones than zeros
  - The 6-bit sub-block is 6'b000111
  - The 4-bit sub-block is 4'b0011
- The current running disparity at the end of a sub-block is negative if any of the following is true:
  - The sub-block contains more zeros than ones
  - The 6-bit sub-block is 6'b111000
  - The 4-bit sub-block is 4'b1100

If those conditions are not met, the running disparity at the end of the sub-block is the same as at the beginning of the sub-block.

### **Supported Codes**

The 8B/10B scheme defines the 12 control codes listed in Table 4–1 for synchronization, alignment, and general application purposes.

| Table 4–1. Supported K Codes |             |              |                       |                 |
|------------------------------|-------------|--------------|-----------------------|-----------------|
| V Code                       | Octal Value | 8-Bit Code   | 10-Bit Code RD-       | 10-Bit Code RD+ |
| K Code                       |             | HGF_EDCBA    | HGF_EDCBA abcdei_fghj |                 |
| K28.0                        | 1C          | 8'b000_11100 | 10'b001111_0100       | 10'b110000_1011 |
| K28.1                        | 3C          | 8'b001_11100 | 10'b001111_1001       | 10'b110000_0110 |
| K28.2                        | 5C          | 8'b010_11100 | 10'b001111_0101       | 10'b110000_1010 |
| K28.3                        | 7C          | 8'b011_11100 | 10'b001111_0011       | 10'b110000_1100 |
| K28.4                        | 9C          | 8'b100_11100 | 10'b001111_0010       | 10'b110000_1101 |
| K28.5 (1)                    | BC          | 8'b101_11100 | 10'b001111_1010       | 10'b110000_0101 |
| K28.6                        | DC          | 8'b110_11100 | 10'b001111_0110       | 10'b110000_1001 |
| K28.7                        | FC          | 8'b111_11100 | 10'b001111_1000       | 10'b110000_0111 |
| K23.7                        | F7          | 8'b111_10111 | 10'b111010_1000       | 10'b000101_0111 |
| K27.7                        | FB          | 8'b111_11011 | 10'b110110_1000       | 10'b001001_0111 |
| K29.7                        | FD          | 8'b111_11101 | 10'b101110_1000       | 10'b010001_0111 |
| K30.7                        | FE          | 8'b111_11110 | 10'b011110_1000       | 10'b100001_0111 |

Note to Table 4–1:

Table 4–2 shows the valid data code-groups.

| Table 4–2. Valid Data Code-Groups (Part 1 of 9) |             |            |             |             |
|-------------------------------------------------|-------------|------------|-------------|-------------|
| Code Cueur Neme                                 |             | Octet Bits | Current RD- | Current RD+ |
| Code-Group Name                                 | Octet Value | HGF EDCBA  | abcde       | ei fghj     |
| D0.0                                            | 00          | 000 00000  | 100111 0100 | 011000 1011 |
| D1.0                                            | 01          | 000 00001  | 011101 0100 | 100010 1011 |
| D2.0                                            | 02          | 000 00010  | 101101 0100 | 010010 1011 |
| D3.0                                            | 03          | 000 00011  | 110001 1011 | 110001 0100 |
| D4.0                                            | 04          | 000 00100  | 110101 0100 | 001010 1011 |
| D5.0                                            | 05          | 000 00101  | 101001 1011 | 101001 0100 |
| D6.0                                            | 06          | 000 00110  | 011001 1011 | 011001 0100 |
| D7.0                                            | 07          | 000 00111  | 111000 1011 | 000111 0100 |

<sup>(1)</sup> K28.5 is a comma code used for word alignment and indicates an IDLE state.

| Table 4–2. Valid Data | Code-Groups (Part | 2 of 9)    |             |             |
|-----------------------|-------------------|------------|-------------|-------------|
| Code Crown Nome       | Oatat Value       | Octet Bits | Current RD- | Current RD+ |
| Code-Group Name       | Octet Value       | HGF EDCBA  | abcdei fghj |             |
| D8.0                  | 08                | 000 01000  | 111001 0100 | 000110 1011 |
| D9.0                  | 09                | 000 01001  | 100101 1011 | 100101 0100 |
| D10.0                 | 0A                | 000 01010  | 010101 1011 | 010101 0100 |
| D11.0                 | 0B                | 000 01011  | 110100 1011 | 110100 0100 |
| D12.0                 | 0C                | 000 01100  | 001101 1011 | 001101 0100 |
| D13.0                 | 0D                | 000 01101  | 101100 1011 | 101100 0100 |
| D14.0                 | 0E                | 000 01110  | 011100 1011 | 011100 0100 |
| D15.0                 | 0F                | 000 01111  | 010111 0100 | 101000 1011 |
| D16.0                 | 10                | 000 10000  | 011011 0100 | 100100 1011 |
| D17.0                 | 11                | 000 10001  | 100011 1011 | 100011 0100 |
| D18.0                 | 12                | 000 10010  | 010011 1011 | 010011 0100 |
| D19.0                 | 13                | 000 10011  | 110010 1011 | 110010 0100 |
| D20.0                 | 14                | 000 10100  | 001011 1011 | 001011 0100 |
| D21.0                 | 15                | 000 10101  | 101010 1011 | 101010 0100 |
| D22.0                 | 16                | 000 10110  | 011010 1011 | 011010 0100 |
| D23.0                 | 17                | 000 10111  | 111010 0100 | 000101 1011 |
| D24.0                 | 18                | 000 11000  | 110011 0100 | 001100 1011 |
| D25.0                 | 19                | 000 11001  | 100110 1011 | 100110 0100 |
| D26.0                 | 1A                | 000 11010  | 010110 1011 | 010110 0100 |
| D27.0                 | 1B                | 000 11011  | 110110 0100 | 001001 1011 |
| D28.0                 | 1C                | 000 11100  | 001110 1011 | 001110 0100 |
| D29.0                 | 1D                | 000 11101  | 101110 0100 | 010001 1011 |
| D30.0                 | 1E                | 000 11110  | 011110 0100 | 100001 1011 |
| D31.0                 | 1F                | 000 11111  | 101011 0100 | 010100 1011 |
| D0.1                  | 20                | 001 00000  | 100111 1001 | 011000 1001 |
| D1.1                  | 21                | 001 00001  | 011101 1001 | 100010 1001 |
| D2.1                  | 22                | 001 00010  | 101101 1001 | 010010 1001 |
| D3.1                  | 23                | 001 00011  | 110001 1001 | 110001 1001 |
| D4.1                  | 24                | 001 00100  | 110101 1001 | 001010 1001 |
| D5.1                  | 25                | 001 00101  | 101001 1001 | 101001 1001 |
| D6.1                  | 26                | 001 00110  | 011001 1001 | 011001 1001 |
| D7.1                  | 27                | 001 00111  | 111000 1001 | 000111 1001 |
| D8.1                  | 28                | 001 01000  | 111001 1001 | 000110 1001 |

| Oada Orana Nama | Ostat Value | Octet Bits | Current RD- | Current RD+ |  |
|-----------------|-------------|------------|-------------|-------------|--|
| Code-Group Name | Octet Value | HGF EDCBA  | abcd        | abcdei fghj |  |
| D9.1            | 29          | 001 01001  | 100101 1001 | 100101 1001 |  |
| D10.1           | 2A          | 001 01010  | 010101 1001 | 010101 1001 |  |
| D11.1           | 2B          | 001 01011  | 110100 1001 | 110100 1001 |  |
| D12.1           | 2C          | 001 01100  | 001101 1001 | 001101 1001 |  |
| D13.1           | 2D          | 001 01101  | 101100 1001 | 101100 1001 |  |
| D14.1           | 2E          | 001 01110  | 011100 1001 | 011100 1001 |  |
| D15.1           | 2F          | 001 01111  | 010111 1001 | 101000 1001 |  |
| D16.1           | 30          | 001 10000  | 011011 1001 | 100100 1001 |  |
| D17.1           | 31          | 001 10001  | 100011 1001 | 100011 1001 |  |
| D18.1           | 32          | 001 10010  | 010011 1001 | 010011 1001 |  |
| D19.1           | 33          | 001 10011  | 110010 1001 | 110010 1001 |  |
| D20.1           | 34          | 001 10100  | 001011 1001 | 001011 1001 |  |
| D21.1           | 35          | 001 10101  | 101010 1001 | 101010 1001 |  |
| D22.1           | 36          | 001 10110  | 011010 1001 | 011010 1001 |  |
| D23.1           | 37          | 001 10111  | 111010 1001 | 000101 1001 |  |
| D24.1           | 38          | 001 11000  | 110011 1001 | 001100 1001 |  |
| D25.1           | 39          | 001 11001  | 100110 1001 | 100110 1001 |  |
| D26.1           | 3A          | 001 11010  | 010110 1001 | 010110 1001 |  |
| D27.1           | 3B          | 001 11011  | 110110 1001 | 001001 1001 |  |
| D28.1           | 3C          | 001 11100  | 001110 1001 | 001110 1001 |  |
| D29.1           | 3D          | 001 11101  | 101110 1001 | 010001 1001 |  |
| D30.1           | 3E          | 001 11110  | 011110 1001 | 100001 1001 |  |
| D31.1           | 3F          | 001 11111  | 101011 1001 | 010100 1001 |  |
| D0.2            | 40          | 010 00000  | 100111 0101 | 011000 0101 |  |
| D1.2            | 41          | 010 00001  | 011101 0101 | 100010 0101 |  |
| D2.2            | 42          | 010 00010  | 101101 0101 | 010010 0101 |  |
| D3.2            | 43          | 010 00011  | 110001 0101 | 110001 0101 |  |
| D4.2            | 44          | 010 00100  | 110101 0101 | 001010 0101 |  |
| D5.2            | 45          | 010 00101  | 101001 0101 | 101001 0101 |  |
| D6.2            | 46          | 010 00110  | 011001 0101 | 011001 0101 |  |
| D7.2            | 47          | 010 00111  | 111000 0101 | 000111 0101 |  |
| D8.2            | 48          | 010 01000  | 111001 0101 | 000110 0101 |  |
| D9.2            | 49          | 010 01001  | 100101 0101 | 100101 0101 |  |

| Table 4–2. Valid Data Code-Groups (Part 4 of 9) |             |            |             |             |
|-------------------------------------------------|-------------|------------|-------------|-------------|
| Onda Ourana Nama                                | Ostat Wales | Octet Bits | Current RD- | Current RD+ |
| Code-Group Name                                 | Octet Value | HGF EDCBA  | abcd        | ei fghj     |
| D10.2                                           | 4A          | 010 01010  | 010101 0101 | 010101 0101 |
| D11.2                                           | 4B          | 010 01011  | 110100 0101 | 110100 0101 |
| D12.2                                           | 4C          | 010 01100  | 001101 0101 | 001101 0101 |
| D13.2                                           | 4D          | 010 01101  | 101100 0101 | 101100 0101 |
| D14.2                                           | 4E          | 010 01110  | 011100 0101 | 011100 0101 |
| D15.2                                           | 4F          | 010 01111  | 010111 0101 | 101000 0101 |
| D16.2                                           | 50          | 010 10000  | 011011 0101 | 100100 0101 |
| D17.2                                           | 51          | 010 10001  | 100011 0101 | 100011 0101 |
| D18.2                                           | 52          | 010 10010  | 010011 0101 | 010011 0101 |
| D19.2                                           | 53          | 010 10011  | 110010 0101 | 110010 0101 |
| D20.2                                           | 54          | 010 10100  | 001011 0101 | 001011 0101 |
| D21.2                                           | 55          | 010 10101  | 101010 0101 | 101010 0101 |
| D22.2                                           | 56          | 010 10110  | 011010 0101 | 011010 0101 |
| D23.2                                           | 57          | 010 10111  | 111010 0101 | 000101 0101 |
| D24.2                                           | 58          | 010 11000  | 110011 0101 | 001100 0101 |
| D25.2                                           | 59          | 010 11001  | 100110 0101 | 100110 0101 |
| D26.2                                           | 5A          | 010 11010  | 010110 0101 | 010110 0101 |
| D27.2                                           | 5B          | 010 11011  | 110110 0101 | 001001 0101 |
| D28.2                                           | 5C          | 010 11100  | 001110 0101 | 001110 0101 |
| D29.2                                           | 5D          | 010 11101  | 101110 0101 | 010001 0101 |
| D30.2                                           | 5E          | 010 11110  | 011110 0101 | 100001 0101 |
| D31.2                                           | 5F          | 010 11111  | 101011 0101 | 010100 0101 |
| D0.3                                            | 60          | 011 00000  | 100111 0011 | 011000 1100 |
| D1.3                                            | 61          | 011 00001  | 011101 0011 | 100010 1100 |
| D2.3                                            | 62          | 011 00010  | 101101 0011 | 010010 1100 |
| D3.3                                            | 63          | 011 00011  | 110001 1100 | 110001 0011 |
| D4.3                                            | 64          | 011 00100  | 110101 0011 | 001010 1100 |
| D5.3                                            | 65          | 011 00101  | 101001 1100 | 101001 0011 |
| D6.3                                            | 66          | 011 00110  | 011001 1100 | 011001 0011 |
| D7.3                                            | 67          | 011 00111  | 111000 1100 | 000111 0011 |
| D8.3                                            | 68          | 011 01000  | 111001 0011 | 000110 1100 |
| D9.3                                            | 69          | 011 01001  | 100101 1100 | 100101 0011 |
| D10.3                                           | 6A          | 011 01010  | 010101 1100 | 010101 0011 |

| Cada Cuaum Nama | Ostat Value | Octet Bits | Current RD- | Current RD+ |  |
|-----------------|-------------|------------|-------------|-------------|--|
| Code-Group Name | Octet Value | HGF EDCBA  | abcd        | abcdei fghj |  |
| D11.3           | 6B          | 011 01011  | 110100 1100 | 110100 0011 |  |
| D12.3           | 6C          | 011 01100  | 001101 1100 | 001101 0011 |  |
| D13.3           | 6D          | 011 01101  | 101100 1100 | 101100 0011 |  |
| D14.3           | 6E          | 011 01110  | 011100 1100 | 011100 0011 |  |
| D15.3           | 6F          | 011 01111  | 010111 0011 | 101000 1100 |  |
| D16.3           | 70          | 011 10000  | 011011 0011 | 100100 1100 |  |
| D17.3           | 71          | 011 10001  | 100011 1100 | 100011 0011 |  |
| D18.3           | 72          | 011 10010  | 010011 1100 | 010011 0011 |  |
| D19.3           | 73          | 011 10011  | 110010 1100 | 110010 0011 |  |
| D20.3           | 74          | 011 10100  | 001011 1100 | 001011 0011 |  |
| D21.3           | 75          | 011 10101  | 101010 1100 | 101010 0011 |  |
| D22.3           | 76          | 011 10110  | 011010 1100 | 011010 0011 |  |
| D23.3           | 77          | 011 10111  | 111010 0011 | 000101 1100 |  |
| D24.3           | 78          | 011 11000  | 110011 0011 | 001100 1100 |  |
| D25.3           | 79          | 011 11001  | 100110 1100 | 100110 0011 |  |
| D26.3           | 7A          | 011 11010  | 010110 1100 | 010110 0011 |  |
| D27.3           | 7B          | 011 11011  | 110110 0011 | 001001 1100 |  |
| D28.3           | 7C          | 011 11100  | 001110 1100 | 001110 0011 |  |
| D29.3           | 7D          | 011 11101  | 101110 0011 | 010001 1100 |  |
| D30.3           | 7E          | 011 11110  | 011110 0011 | 100001 1100 |  |
| D31.3           | 7F          | 011 11111  | 101011 0011 | 010100 1100 |  |
| D0.4            | 80          | 100 00000  | 100111 0010 | 011000 1101 |  |
| D1.4            | 81          | 100 00001  | 011101 0010 | 100010 1101 |  |
| D2.4            | 82          | 100 00010  | 101101 0010 | 010010 1101 |  |
| D3.4            | 83          | 100 00011  | 110001 1101 | 110001 0010 |  |
| D4.4            | 84          | 100 00100  | 110101 0010 | 001010 1101 |  |
| D5.4            | 85          | 100 00101  | 101001 1101 | 101001 0010 |  |
| D6.4            | 86          | 100 00110  | 011001 1101 | 011001 0010 |  |
| D7.4            | 87          | 100 00111  | 111000 1101 | 000111 0010 |  |
| D8.4            | 88          | 100 01000  | 111001 0010 | 000110 1101 |  |
| D9.4            | 89          | 100 01001  | 100101 1101 | 100101 0010 |  |
| D10.4           | 8A          | 100 01010  | 010101 1101 | 010101 0010 |  |
| D11.4           | 8B          | 100 01011  | 110100 1101 | 110100 0010 |  |

| Table 4–2. Valid Data Code-Groups (Part 6 of 9) |             |            |             |             |
|-------------------------------------------------|-------------|------------|-------------|-------------|
| Cada Croup Nama                                 | Ostat Valua | Octet Bits | Current RD- | Current RD+ |
| Code-Group Name                                 | Octet Value | HGF EDCBA  | abcdo       | ei fghj     |
| D12.4                                           | 8C          | 100 01100  | 001101 1101 | 001101 0010 |
| D13.4                                           | 8D          | 100 01101  | 101100 1101 | 101100 0010 |
| D14.4                                           | 8E          | 100 01110  | 011100 1101 | 011100 0010 |
| D15.4                                           | 8F          | 100 01111  | 010111 0010 | 101000 1101 |
| D16.4                                           | 90          | 100 10000  | 011011 0010 | 100100 1101 |
| D17.4                                           | 91          | 100 10001  | 100011 1101 | 100011 0010 |
| D18.4                                           | 92          | 100 10010  | 010011 1101 | 010011 0010 |
| D19.4                                           | 93          | 100 10011  | 110010 1101 | 110010 0010 |
| D20.4                                           | 94          | 100 10100  | 001011 1101 | 001011 0010 |
| D21.4                                           | 95          | 100 10101  | 101010 1101 | 101010 0010 |
| D22.4                                           | 96          | 100 10110  | 011010 1101 | 011010 0010 |
| D23.4                                           | 97          | 100 10111  | 111010 0010 | 000101 1101 |
| D24.4                                           | 98          | 100 11000  | 110011 0010 | 001100 1101 |
| D25.4                                           | 99          | 100 11001  | 100110 1101 | 100110 0010 |
| D26.4                                           | 9A          | 100 11010  | 010110 1101 | 010110 0010 |
| D27.4                                           | 9B          | 100 11011  | 110110 0010 | 001001 1101 |
| D28.4                                           | 9C          | 100 11100  | 001110 1101 | 001110 0010 |
| D29.4                                           | 9D          | 100 11101  | 101110 0010 | 010001 1101 |
| D30.4                                           | 9E          | 100 11110  | 011110 0010 | 100001 1101 |
| D31.4                                           | 9F          | 100 11111  | 101011 0010 | 010100 1101 |
| D0.5                                            | A0          | 101 00000  | 100111 1010 | 011000 1010 |
| D1.5                                            | A1          | 101 00001  | 011101 1010 | 100010 1010 |
| D2.5                                            | A2          | 101 00010  | 101101 1010 | 010010 1010 |
| D3.5                                            | А3          | 101 00011  | 110001 1010 | 110001 1010 |
| D4.5                                            | A4          | 101 00100  | 110101 1010 | 001010 1010 |
| D5.5                                            | A5          | 101 00101  | 101001 1010 | 101001 1010 |
| D6.5                                            | A6          | 101 00110  | 011001 1010 | 011001 1010 |
| D7.5                                            | A7          | 101 00111  | 111000 1010 | 000111 1010 |
| D8.5                                            | A8          | 101 01000  | 111001 1010 | 000110 1010 |
| D9.5                                            | A9          | 101 01001  | 100101 1010 | 100101 1010 |
| D10.5                                           | AA          | 101 01010  | 010101 1010 | 010101 1010 |
| D11.5                                           | AB          | 101 01011  | 110100 1010 | 110100 1010 |
| D12.5                                           | AC          | 101 01100  | 001101 1010 | 001101 1010 |

| Table 4–2. Valid Data | a Code-Groups (Pari | t 7 of 9)  |             |             |
|-----------------------|---------------------|------------|-------------|-------------|
| 0-4-0                 | 0-4-4 V-1           | Octet Bits | Current RD- | Current RD+ |
| Code-Group Name       | Octet Value         | HGF EDCBA  | abcd        | ei fghj     |
| D13.5                 | AD                  | 101 01101  | 101100 1010 | 101100 1010 |
| D14.5                 | AE                  | 101 01110  | 011100 1010 | 011100 1010 |
| D15.5                 | AF                  | 101 01111  | 010111 1010 | 101000 1010 |
| D16.5                 | В0                  | 101 10000  | 011011 1010 | 100100 1010 |
| D17.5                 | B1                  | 101 10001  | 100011 1010 | 100011 1010 |
| D18.5                 | B2                  | 101 10010  | 010011 1010 | 010011 1010 |
| D19.5                 | В3                  | 101 10011  | 110010 1010 | 110010 1010 |
| D20.5                 | B4                  | 101 10100  | 001011 1010 | 001011 1010 |
| D21.5                 | B5                  | 101 10101  | 101010 1010 | 101010 1010 |
| D22.5                 | B6                  | 101 10110  | 011010 1010 | 011010 1010 |
| D23.5                 | B7                  | 101 10111  | 111010 1010 | 000101 1010 |
| D24.5                 | B8                  | 101 11000  | 110011 1010 | 001100 1010 |
| D25.5                 | B9                  | 101 11001  | 100110 1010 | 100110 1010 |
| D26.5                 | BA                  | 101 11010  | 010110 1010 | 010110 1010 |
| D27.5                 | BB                  | 101 11011  | 110110 1010 | 001001 1010 |
| D28.5                 | BC                  | 101 11100  | 001110 1010 | 001110 1010 |
| D29.5                 | BD                  | 101 11101  | 101110 1010 | 010001 1010 |
| D30.5                 | BE                  | 101 11110  | 011110 1010 | 100001 1010 |
| D31.5                 | BF                  | 101 11111  | 101011 1010 | 010100 1010 |
| D0.6                  | C0                  | 110 00000  | 100111 0110 | 011000 0110 |
| D1.6                  | C1                  | 110 00001  | 011101 0110 | 100010 0110 |
| D2.6                  | C2                  | 110 00010  | 101101 0110 | 010010 0110 |
| D3.6                  | C3                  | 110 00011  | 110001 0110 | 110001 0110 |
| D4.6                  | C4                  | 110 00100  | 110101 0110 | 001010 0110 |
| D5.6                  | C5                  | 110 00101  | 101001 0110 | 101001 0110 |
| D6.6                  | C6                  | 110 00110  | 011001 0110 | 011001 0110 |
| D7.6                  | C7                  | 110 00111  | 111000 0110 | 000111 0110 |
| D8.6                  | C8                  | 110 01000  | 111001 0110 | 000110 0110 |
| D9.6                  | C9                  | 110 01001  | 100101 0110 | 100101 0110 |
| D10.6                 | CA                  | 110 01010  | 010101 0110 | 010101 0110 |
| D11.6                 | СВ                  | 110 01011  | 110100 0110 | 110100 0110 |
| D12.6                 | CC                  | 110 01100  | 001101 0110 | 001101 0110 |
| D13.6                 | CD                  | 110 01101  | 101100 0110 | 101100 0110 |

| Table 4–2. Valid Data Code-Groups (Part 8 of 9) |             |            |             |             |
|-------------------------------------------------|-------------|------------|-------------|-------------|
| Codo Group Nama                                 | Octet Value | Octet Bits | Current RD- | Current RD+ |
| Code-Group Name                                 |             | HGF EDCBA  | abcdo       | ei fghj     |
| D14.6                                           | CE          | 110 01110  | 011100 0110 | 011100 0110 |
| D15.6                                           | CF          | 110 01111  | 010111 0110 | 101000 0110 |
| D16.6                                           | D0          | 110 10000  | 011011 0110 | 100100 0110 |
| D17.6                                           | D1          | 110 10001  | 100011 0110 | 100011 0110 |
| D18.6                                           | D2          | 110 10010  | 010011 0110 | 010011 0110 |
| D19.6                                           | D3          | 110 10011  | 110010 0110 | 110010 0110 |
| D20.6                                           | D4          | 110 10100  | 001011 0110 | 001011 0110 |
| D21.6                                           | D5          | 110 10101  | 101010 0110 | 101010 0110 |
| D22.6                                           | D6          | 110 10110  | 011010 0110 | 011010 0110 |
| D23.6                                           | D7          | 110 10111  | 111010 0110 | 000101 0110 |
| D24.6                                           | D8          | 110 11000  | 110011 0110 | 001100 0110 |
| D25.6                                           | D9          | 110 11001  | 100110 0110 | 100110 0110 |
| D26.6                                           | DA          | 110 11010  | 010110 0110 | 010110 0110 |
| D27.6                                           | DB          | 110 11011  | 110110 0110 | 001001 0110 |
| D28.6                                           | DC          | 110 11100  | 001110 0110 | 001110 0110 |
| D29.6                                           | DD          | 110 11101  | 101110 0110 | 010001 0110 |
| D30.6                                           | DE          | 110 11110  | 011110 0110 | 100001 0110 |
| D31.6                                           | DF          | 110 11111  | 101011 0110 | 010100 0110 |
| D0.7                                            | E0          | 111 00000  | 100111 0001 | 011000 1110 |
| D1.7                                            | E1          | 111 00001  | 011101 0001 | 100010 1110 |
| D2.7                                            | E2          | 111 00010  | 101101 0001 | 010010 1110 |
| D3.7                                            | E3          | 111 00011  | 110001 1110 | 110001 0001 |
| D4.7                                            | E4          | 111 00100  | 110101 0001 | 001010 1110 |
| D5.7                                            | E5          | 111 00101  | 101001 1110 | 101001 0001 |
| D6.7                                            | E6          | 111 00110  | 011001 1110 | 011001 0001 |
| D7.7                                            | E7          | 111 00111  | 111000 1110 | 000111 0001 |
| D8.7                                            | E8          | 111 01000  | 111001 0001 | 000110 1110 |
| D9.7                                            | E9          | 111 01001  | 100101 1110 | 100101 0001 |
| D10.7                                           | EA          | 111 01010  | 010101 1110 | 010101 0001 |
| D11.7                                           | EB          | 111 01011  | 110100 1110 | 110100 1000 |
| D12.7                                           | EC          | 111 01100  | 001101 1110 | 001101 0001 |
| D13.7                                           | ED          | 111 01101  | 101100 1110 | 101100 1000 |
| D14.7                                           | EE          | 111 01110  | 011100 1110 | 011100 1000 |

| Table 4–2. Valid Data Code-Groups (Part 9 of 9) |             |            |             |             |
|-------------------------------------------------|-------------|------------|-------------|-------------|
| Code Croup Name                                 |             | Octet Bits | Current RD- | Current RD+ |
| Code-Group Name                                 | Octet Value | HGF EDCBA  | abcdo       | ei fghj     |
| D15.7                                           | EF          | 111 01111  | 010111 0001 | 101000 1110 |
| D16.7                                           | F0          | 111 10000  | 011011 0001 | 100100 1110 |
| D17.7                                           | F1          | 111 10001  | 100011 0111 | 100011 0001 |
| D18.7                                           | F2          | 111 10010  | 010011 0111 | 010011 0001 |
| D19.7                                           | F3          | 111 10011  | 110010 1110 | 110010 0001 |
| D20.7                                           | F4          | 111 10100  | 001011 0111 | 001011 0001 |
| D21.7                                           | F5          | 111 10101  | 101010 1110 | 101010 0001 |
| D22.7                                           | F6          | 111 10110  | 011010 1110 | 011010 0001 |
| D23.7                                           | F7          | 111 10111  | 111010 0001 | 000101 1110 |
| D24.7                                           | F8          | 111 11000  | 110011 0001 | 001100 1110 |
| D25.7                                           | F9          | 111 11001  | 100110 1110 | 100110 0001 |
| D26.7                                           | FA          | 111 11010  | 010110 1110 | 010110 0001 |
| D27.7                                           | FB          | 111 11011  | 110110 0001 | 001001 1110 |
| D28.7                                           | FC          | 111 11100  | 001110 1110 | 001110 0001 |
| D29.7                                           | FD          | 111 11101  | 101110 0001 | 010001 1110 |
| D30.7                                           | FE          | 111 11110  | 011110 0001 | 100001 1110 |
| D31.7                                           | FF          | 111 11111  | 101011 0001 | 010100 1110 |

## Document Revision History

Table 4–3 shows the revision history for this document.

| Table 4–3. Document Revision History                      |                 |     |  |  |
|-----------------------------------------------------------|-----------------|-----|--|--|
| Date and Document Version Changes Made Summary of Changes |                 |     |  |  |
| May 2007 v1.0                                             | Initial Release | N/A |  |  |