Towards an ADC for the Liquid Argon Electronics Upgrade

Gustaaf Brooijmans

Upgrade Workshop, November 10, 2009

Current LAr FEB

- Existing FEB (radiation tolerant for LHC, but sLHC?)
 - Limits L1 latency to $\sim 2.5 \mu s$
 - Designed for L1 bandwidth up to ~100 kHz
 - Trigger sums on FEB \rightarrow limits granularity available to

L1Calo

Front-end crate location: radiation environment, limits on space, power consumption (cooling)

Tentative FEB2 Architecture

- Digitize at 40 MHz (no analog pipeline)
 - Doesn't change if bunch-crossing rate goes to 50 ns
- Move pipeline off-detector \rightarrow 100+ Gbps/board
 - Implies upgrading back-end
 - (Fall-back has digital pipeline on-detector)

Main ADC Requirements

- Dynamic range:
 - Currently 16 bits (achieved by 3x12), not likely to change
- Power:
 - 80 W per board (128 channels), not likely to change by

much

- Geometry:
 - ~50 cm "high" → ~8 mm/channel
 - Small ADC, serialized outputs

Commercial ADCs

- Most are unlikely to be sufficiently rad hard given flexible features (registers for mode setting etc.)
 - Irradiate to verify
- Developed new setup:
 - ADC board with minimal number of added components
 - Send output data over LVDS (max 50 cm)
 - Tested **ST-RHF1201**, designed for military applications (\$\$)
 - Interface board with: DAC to inject signals to ADC, LVDS receivers, optical link to DAQ in PC (~7m away)
 - New PCI express DAQ board with optical receiver

Nikiforos Nikiforou

Test setup

ST Irradiation Results

- We irradiated the ST (spec: rad tolerant to 300 kRad)
 ADC at Mass. General Hospital (protons) in early
 October 2009
 - ST: degradation in ramp slope: 5% at 300 kRad

ADC Development Work

- Scaling LHC radiation tolerance requirements, we need 1-2 MRad (but it may be less)
- Have started development of custom ADC
- Given the power, dynamic range, speed & geometrical constraints:
 - Pipelined ADC (1.5 bits/stage) with digital error correction
 - Incorporated gain selector
 - Serialized digital outputs
- Collaboration with Columbia EE group specializing in low voltage analog designs: Peter Kinget et al.

Nevis09 Chip

• First test-chip: OTA + S/H, crucial components of an

ADC stage

• Inject sinusoidal curve, check OTA & S/H outputs

Nevis09 Tests

- Test, irradiate and retest
 - Irradiations to 3, 5, 10 and 20 10¹³ p/cm²
 - This is approx. 1.5, 2.5, 5 and 10 MRad
- Spectral analysis
- S/H output analysis:
 - Amplitude
 - Rise/Fall time
- No change after irradiation

• Tests only accurate to ~11 bits...

Nevis10 Chip

- First chip with true ADC functionality:
 - Two 4-stage ADC pipelines, 1.5 bits/stage (no size scaling)
 - Gain selector structures for each pipeline
 - S/H for analog residue, to be measured by external ADC
 - Support structures:
 - 128-bit control register to set ADC working mode
 - I/O drivers for digital signals
 - Clock unit, bias circuitry
- Implemented in IBM CMOS 8RF (130 nm), 2.5 V transistors, 2x3mm chip (dominated by pads)

Nevis10 Goals

- Demonstrate 12-bit precision
- Measure power consumption
- Verify calibration strategy
- Determine sensitivity to bias voltage
- Check cross-talk
- Verify radiation tolerance
- Test gain selection architectures
- Learn!

Principle of Operation

- Residue is multiplied ×2, i.e. 1 bit/stage
 - But measure 1.5 bits...

ADC Stage

Digital Error Correction

- For each stage, two comparators, three possible codes
 - "1.5 bits"
 - Redundancy allows measurement of comparator offsets and gain calibration
- Inject signal close to comparator threshold, and force decision
 - Measure result of both possibilities using downstream ADC stages (previously calibrated) & compare
- Final output code based on calibration results
 - In nevis10 chip, just output everything

Gain Selection

- Would like to do this in analog domain: save power!
- Can use same comparators as in ADC stages, do analog gain selection

• However, for large signals not enough bandwidth!

Options:

- Analog gain selection with simple thresholds, but remembering previous two samples
 - Go to lower gain if steep slope
- Digitize all gains for first 2 (3?) stages, then choose
 - Requires multiplexing signal into "lower" part of ADC
- Fully digital approach: digitize all gains all the way, then do digital gain selection
 - Based on the fact that lower ADC stages are smaller anyway, so very small cost in power & space (in Nevis10, no size scaling yet)
- All three options will be tested with Nevis10 chip

Nevis10 Testing

- Board with socket for basic functionality tests, incl. yield, and irradiations
- Board with FPGA and 4-channel 12-bit ADC for detailed testing
 - Boards are being manufactured

Conclusions & Next Steps

- Nevis10 chip designed to test all analog aspects of FEB2 ADC development
 - Precision, gain selection, calibration, etc.
- Future:
 - Reference voltage circuitry
 - Calibration circuitry/engine
 - Gain selector
 - Output serializer
- Next chip possibly first full prototype (2012?)