

June 18, 2002

RTXC Kernel Services
Reference, Volume 1

Levels, Threads, Exceptions, Pipes,
Event Sources, Counters, and
Alarms

Quadros
Systems Inc.

®

June 18, 2002

Disclaimer

Quadros Systems, Inc. makes no representations or warranties with
respect to the contents or use of this manual, and specifically disclaims
any express or implied warranties of merchantability or fitness for any
particular purpose. Quadros Systems, Inc. reserves the right to revise
this publication and to make changes to its content, at any time, without
obligation to notify any person or entity of such revisions or changes.

Quadros Systems, Inc. makes no representations or warranties with
respect to any Quadros software, and specifically disclaims any express
or implied warranties of merchantability or fitness for any particular
purpose. Quadros Systems, Inc. reserves the right to make changes to
any and all parts of Quadros software, at any time, without any
obligation to notify any person or entity of such changes.

Trademarks

Quadros is a registered trademark of Quadros Systems, Inc. RTXC,
RTXC Quadros, and RTXC DSP are trademarks of Quadros Systems, Inc.

Other product and company names mentioned in this document may
be the trademarks or registered trademarks of their respective owners.

Copyright © 2002 Quadros Systems, Inc. All rights reserved. No part of
this publication may be reproduced, photocopied, stored on a retrieval
system, or transmitted without the express written consent of the
publisher.

Quadros Systems, Inc.
10450 Stancliff, Suite 110
Houston, TX 77099-4336
USA

RTXC Kernel Services Reference, Volume 1
Part Number: RTXC-KSRV1-0602
June 2002
RTXC Kernel, Version 1.0

Contents v

June 18, 2002

Contents

C H A P T E R 1 Introduction To RTXC/ss Kernel Services..1

Using This Manual..2
Kernel Service Description Format..2
Prototypes ..2
General Form of Kernel Service Call4
Arguments to Kernel Services..5
Kernel Service Return Codes ...5
Diagnostic Mode and Fatal Errors ...5
Kernel Service Classes ..7

RTXC/ss Component Services ..8
Thread Management Services..8
Exception Services...11
Pipe Services..12
Event Source Management Services....................................14
Counter Management Services..16
Alarm Management Services ...18
Special Services ...20

C H A P T E R 2 Thread Services...21

XX_ClearThreadGateBits..23
XX_DecrThreadGate ...26
XX_DefThreadArg...28
XX_DefThreadEntry ..30
XX_DefThreadEnvArg ..32
KS_DefThreadName ...34
XX_DefThreadProp ...36
TS_DisableThreadScheduler ..38
TS_EnableThreadScheduler ...39
TS_GetThreadArg..40
TS_GetThreadBaseLevel ...42

vi RTXC Kernel Services Reference, Volume 1

June 18, 2002

KS_GetThreadClassProp .. 44
TS_GetThreadCurrentLevel ... 47
XX_GetThreadEnvArg .. 48
XX_GetThreadGate... 50
TS_GetThreadGateLoadPreset... 52
XX_GetThreadGatePreset .. 54
TS_GetThreadID... 55
KS_GetThreadName... 56
XX_GetThreadProp .. 58
XX_IncrThreadGate.. 60
KS_LookupThread .. 62
TS_LowerThreadLevel .. 64
XX_ORThreadGateBits... 66
XX_PresetThreadGate .. 68
TS_RaiseThreadLevel ... 70
XX_ScheduleThread ... 72
XX_ScheduleThreadArg ... 75
XX_SetThreadGate ... 78
XX_SetThreadGatePreset ... 80
INIT_ThreadClassProp... 82
XX_UnscheduleThread .. 84

C H A P T E R 3 Exception Services.. 87

KS_CloseException ... 88
KS_DefExceptionName .. 90
XX_DefExceptionProp .. 92
INIT_ExceptionClassProp .. 94
KS_GetExceptionClassProp.. 96
KS_GetExceptionName .. 98
XX_GetExceptionProp .. 100
KS_LookupException.. 102
KS_OpenException ... 104
KS_UseException.. 107

C H A P T E R 4 Pipe Services... 109

KS_ClosePipe .. 110
XX_DefPipeAction.. 112
XX_DefPipeProp... 115
KS_DefPipeName ... 118
XX_GetEmptyPipeBuf .. 120

Contents vii

June 18, 2002

XX_GetFullPipeBuf...122
XX_GetPipeBufSize ..124
KS_GetPipeClassProp ...126
KS_GetPipeName..128
XX_GetPipeProp ...130
XX_JamFullGetEmptyPipeBuf ...132
XX_JamFullPipeBuf ..136
KS_LookupPipe ...138
KS_OpenPipe...140
INIT_PipeClassProp..142
XX_PutEmptyGetFullPipeBuf..144
XX_PutEmptyPipeBuf...147
XX_PutFullGetEmptyPipeBuf..149
XX_PutFullPipeBuf...152
KS_UsePipe ...154

C H A P T E R 5 Event Source Services...157

XX_ClearEventSourceAttr...158
KS_CloseEventSource ...160
KS_DefEventSourceName ..162
XX_DefEventSourceProp..164
INIT_EventSourceClassProp ..167
XX_GetEventSourceAcc..169
KS_GetEventSourceClassProp ...171
KS_GetEventSourceName ..173
XX_GetEventSourceProp ..175
KS_LookupEventSource..177
KS_OpenEventSource ...179
XX_ProcessEventSourceTick..181
XX_SetEventSourceAcc...183
XX_SetEventSourceAttr ..185
KS_UseEventSource..187

C H A P T E R 6 Counter Services ...189

XX_ClearCounterAttr..190
KS_CloseCounter ..192
INIT_CounterClassProp ...194
KS_DefCounterName ...196
XX_DefCounterProp ...198
XX_GetCounterAcc ...202

viii RTXC Kernel Services Reference, Volume 1

June 18, 2002

KS_GetCounterClassProp .. 204
KS_GetCounterName... 206
XX_GetCounterProp... 208
XX_GetElapsedCounterTicks... 210
KS_LookupCounter... 214
KS_OpenCounter.. 216
XX_SetCounterAcc ... 218
XX_SetCounterAttr... 220
KS_UseCounter... 222

C H A P T E R 7 Alarm Services .. 225

XX_AbortAlarm .. 226
INIT_AlarmClassProp.. 228
XX_ArmAlarm .. 230
XX_CancelAlarm... 232
KS_CloseAlarm ... 234
XX_DefAlarmAction... 236
XX_DefAlarmActionArm ... 238
KS_DefAlarmName .. 240
XX_DefAlarmProp.. 242
KS_DefAlarmSema... 244
KS_GetAlarmClassProp ... 246
KS_GetAlarmName .. 248
XX_GetAlarmProp.. 250
KS_GetAlarmSema... 252
XX_GetAlarmTicks ... 254
KS_LookupAlarm.. 256
KS_OpenAlarm ... 258
XX_RearmAlarm... 260
KS_TestAlarm ... 262
KS_TestAlarmT... 265
KS_TestAlarmW ... 268
KS_UseAlarm.. 270

C H A P T E R 8 Special Services .. 273

XX_AllocSysRAM ... 274
XX_DefFatalErrorHandler ... 276
XX_GetFatalErrorHandler ... 278
XX_GetFreeSysRAMSize ... 279
KS_GetSysProp ... 280

Contents ix

June 18, 2002

KS_GetVersion ..282
INIT_SysProp ..284

A P P E N D I X A Fatal Error Codes ..287

I N D E X ..291

x RTXC Kernel Services Reference, Volume 1

June 18, 2002

List of Tables xi

June 18, 2002

List of Tables

Table 1-1 Kernel Service Description Format...3
Table 1-2 Kernel Service Return Value Types ...6
Table 1-3 Thread Services Summary ..8
Table 1-4 Exception Services Summary ..11
Table 1-5 Pipe Services Summary ..12
Table 1-6 Event Source Services Summary ...14
Table 1-7 Counter Services Summary ..16
Table 1-8 Alarm Services Summary ...18
Table 1-9 Special Services Summary ..20
Table 2-1 Thread Class Attributes and Masks ..45
Table 3-1 Exception Class Attributes and Masks..96
Table 4-1 Pipe Class Attributes and Masks...127
Table 5-1 Event Source Attributes and Masks ..164
Table 5-2 Event Source Class Attributes and Masks171
Table 6-1 Counter Attributes and Masks ..198
Table 6-2 Counter Class Attributes and Masks ..204
Table 7-1 Alarm Class Attributes and Masks ...246
Table 8-1 System Attributes and Masks..284

xii RTXC Kernel Services Reference, Volume 1

June 18, 2002

List of Examples xiii

June 18, 2002

List of Examples

Example 2-1 Clear Thread Gate Bits...24
Example 2-2 Decrement Thread Gate ..27
Example 2-3 Define Thread Argument Pointer...29
Example 2-4 Define Thread Entry Point ..31
Example 2-5 Define Thread Environment Arguments Pointer............................33
Example 2-6 Define Dynamic Thread Name ...35
Example 2-7 Thread Properties Structure ..36
Example 2-8 Define Thread Properties ..37
Example 2-9 Disable Thread Scheduling ...38
Example 2-10 Enable Thread Scheduling ..39
Example 2-11 Get Thread Argument..41
Example 2-12 Read Thread Base Execution Priority Level......................................43
Example 2-13 Object Class Properties Structure ...44
Example 2-14 Read Thread Object Class Properties ...46
Example 2-15 Read Thread Execution Priority Level...47
Example 2-16 Read Thread Environment Arguments Pointer...............................49
Example 2-17 Read Thread Gate...51
Example 2-18 Read and Preset Thread Gate ..53
Example 2-19 Read Thread Gate Preset ...54
Example 2-20 Read Current Thread ID..55
Example 2-21 Read Thread Name ..57
Example 2-22 Read Thread Properties ...59
Example 2-23 Increment Thread Gate ...61
Example 2-24 Look Up Thread by Name ...63
Example 2-25 Lower Current Thread Execution Priority Level65
Example 2-26 Set Thread Gate Bits ..67
Example 2-27 Set Thread Gate with Thread Gate Preset ..69
Example 2-28 Raise Current Thread Execution Priority Level................................71
Example 2-29 Schedule Thread Execution ...73
Example 2-30 Schedule Thread Execution with New Argument............................77

xiv RTXC Kernel Services Reference, Volume 1

June 18, 2002

Example 2-31 Set Thread Gate and Thread Gate Preset... 79
Example 2-32 Set Thread Gate Preset.. 81
Example 2-33 Initialize Thread Object Class... 83
Example 2-34 Unschedule Thread Execution.. 85
Example 3-1 Close Exception.. 89
Example 3-2 Define Exception Name .. 91
Example 3-3 Exception Properties Structure... 92
Example 3-4 Define Exception Properties ... 93
Example 3-5 Initialize Exception Object Class .. 95
Example 3-6 Read Exception Object Class Properties .. 97
Example 3-7 Read Exception Name ... 98
Example 3-8 Read Exception Properties .. 101
Example 3-9 Look Up Exception by Name .. 103
Example 3-10 Allocate and Name Exception ... 105
Example 3-11 Read Exception Handle and Register It ... 108
Example 4-1 Close Pipe Upon Receiving Signal ... 111
Example 4-2 Define Pipe End Action Operation... 114
Example 4-3 Pipe Properties Structure.. 115
Example 4-4 Define Pipe Properties .. 117
Example 4-5 Define Dynamic Pipe Name ... 119
Example 4-6 Get Empty Buffer from Pipe... 121
Example 4-7 Get Full Buffer from Pipe ... 123
Example 4-8 Read Pipe Buffer Size.. 125
Example 4-9 Read Pipe Object Class Properties ... 127
Example 4-10 Read Pipe Name .. 129
Example 4-11 Read Pipe Properties ... 131
Example 4-12 Perform Fast Buffer Exchange at Front of Pipe 134
Example 4-13 Put Full Buffer at Front of Pipe.. 137
Example 4-14 Look Up Pipe by Name ... 139
Example 4-15 Allocate Dynamic Pipe .. 141
Example 4-16 Initialize Pipe Object Class ... 143
Example 4-17 Perform Consumer Fast Buffer Exchange on Pipe....................... 146
Example 4-18 Return Empty Buffer to Pipe .. 148
Example 4-19 Perform Fast Producer Buffer Exchange on Pipe 151
Example 4-20 Put Full Buffer into Pipe... 153
Example 4-21 Read Pipe Handle and Register It .. 155
Example 5-1 Clear Event Source Attribute .. 159
Example 5-2 Close Event Source .. 161
Example 5-3 Assign Event Source Name... 163
Example 5-4 Event Source Properties Structure ... 164

List of Examples xv

June 18, 2002

Example 5-5 Define Event Source Properties ..165
Example 5-6 Initialize Event Source Object Class Properties.............................168
Example 5-7 Read Event Source Accumulator...170
Example 5-8 Read Event Source Object Class Properties172
Example 5-9 Read Event Source Name ..174
Example 5-10 Read Event Source Properties ...176
Example 5-11 Look Up Event Source by Name ...178
Example 5-12 Allocate and Name Event Source ..180
Example 5-13 Process Source Event for Clock Tick ..182
Example 5-14 Set Event Source Accumulator..184
Example 5-15 Set Event Source Attribute Bits ...186
Example 5-16 Read Event Source Handle and Register It188
Example 6-1 Clear Counter Attribute ...191
Example 6-2 Close Counter...193
Example 6-3 Initialize Counter Object Class Properties195
Example 6-4 Assign Counter Name ...197
Example 6-5 Counter Properties Structure ..198
Example 6-6 Define Counter Properties ..201
Example 6-7 Read Counter Accumulator...203
Example 6-8 Read Counter Object Class Properties..205
Example 6-9 Read Counter Name...207
Example 6-10 Read Counter Properties ...209
Example 6-11 Obtain Elapsed Counter Ticks between Two Events212
Example 6-12 Look Up Counter by Name..215
Example 6-13 Allocate and Name Counter ..217
Example 6-14 Set Counter Accumulator ..219
Example 6-15 Set Counter Attribute Bits ...221
Example 6-16 Read Counter Handle and Register It ..223
Example 7-1 Abort Alarm..227
Example 7-2 Initialize Alarm Object Class ..229
Example 7-3 Arm Alarm..231
Example 7-4 Cancel Alarm..233
Example 7-5 Close Alarm ..235
Example 7-6 Define Alarm End Action Operation ..237
Example 7-7 Arm Alarm and Define Alarm Expiration Action Operation........239
Example 7-8 Define Alarm Name...241
Example 7-9 Alarm Properties Structure ...242
Example 7-10 Define Alarm Properties..243
Example 7-11 Define Alarm Semaphore..245
Example 7-12 Read Alarm Object Class Properties...247

xvi RTXC Kernel Services Reference, Volume 1

June 18, 2002

Example 7-13 Read Alarm Name ... 248
Example 7-14 Read Alarm Properties .. 251
Example 7-15 Read Alarm Semaphore .. 253
Example 7-16 Read Number of Counter Ticks Remaining on Alarm................. 255
Example 7-17 Look Up Alarm by Name .. 257
Example 7-18 Allocate and Name Alarm... 259
Example 7-19 Rearm and Restart Alarm from Zone 3 ... 261
Example 7-20 Test Alarm.. 263
Example 7-21 Test Alarm—Wait Number of Ticks for Expiration 267
Example 7-22 Test Alarm—Wait for Expiration.. 269
Example 7-23 Read Alarm Handle and Register It ... 271
Example 8-1 Allocate System RAM from Zone 3.. 275
Example 8-2 Define Fatal Error Function.. 277
Example 8-3 Read Fatal Error Function... 278
Example 8-4 Read Amount of Available System RAM from Zone 3 279
Example 8-5 System Properties Structure ... 280
Example 8-6 Read System Properties .. 280
Example 8-7 Read Version Number... 283
Example 8-8 Initialize Kernel Properties ... 286

Chapter 1: Introduction To RTXC/ss Kernel Services 1

June 18, 2002

C H A P T E R 1 Introduction To RTXC/ss Kernel

Services

In This Chapter
We discuss the contents of this manual, then list the RTXC/ss kernel
services by class and briefly describe each service.

Using This Manual...2
Kernel Service Description Format ...2
Prototypes ..2
General Form of Kernel Service Call ...4
Arguments to Kernel Services ... 5
Kernel Service Return Codes ... 5
Diagnostic Mode and Fatal Errors .. 5
Kernel Service Classes ...7

RTXC/ss Component Services...8
Thread Management Services...8
Exception Services ..11
Pipe Services .. 12
Event Source Management Services... 14
Counter Management Services ... 16
Alarm Management Services .. 18
Special Services ...20

2 RTXC Kernel Services Reference, Volume 1

Using This Manual

June 18, 2002

Using This Manual

Note: The RTXC Kernel Services Reference, Volume 1
contains information needed by users of both the Single
Stack and the Dual Mode configurations of the RTXC
Kernel. If you purchase the Single Stack configuration
(RTXC/ss only) of the RTXC Kernel, you receive only
Volume 1 of this book.

The RTXC Kernel Services Reference, Volume 2 contains
information needed by users of the Dual Mode
configuration of the RTXC Kernel. If you purchase the Dual
Mode configuration (both RTXC/ss and RTXC/ms), you
receive both Volume 1 and Volume 2.

Kernel services are the functions performed by a real time kernel.
This manual describes the complete set of kernel services available
in the RTXC Kernel. This section describes the types of information
and the organization of that information in this manual.

Kernel Service Description Format

The remaining chapters of this manual describe each kernel service
in detail. The chapters separate the services into classes or
subclasses, and the descriptions are in alphabetical order of the
service name minus the service prefix within each class or subclass.
Each description includes a complete explanation of the kernel
service function, according to the topics listed in Table 1-1 on page 3.

Prototypes

The Synopsis section of each service description shows the formal
ANSI C declaration and argument prototype for that service. These
prototypes come from the rtxcapi.h file, which is included with
each RTXC RTOS Software Development Kit (SDK). Because the
RTXC Kernel is designed with portability in mind, the API defined in
the rtxcapi.h file is essentially identical for all RTXC RTOS SDKs.
However, there are differences between some of the processors on

Chapter 1: Introduction To RTXC/ss Kernel Services 3

Using This Manual

June 18, 2002

which the RTXC Kernel operates that lead to variations in the size of
certain parameters used by the kernel services.

Similarly, there may be syntactical differences between C compilers
from different manufacturers. For example, one C compiler may use
the key words near and far to permit different memory models due
to the processor’s architecture, whereas a compiler targeted to a
different processor may not require the near and far keywords.

Table 1-1. Kernel Service Description Format

Name Brief Functional Description

Zones The zonal prefixes supported by the service (IS_, TS_,
KS_), if more than one.a

Synopsis The formal ANSI C declaration including argument
prototyping.

Inputs A brief description of each input argument.

Description A complete description of what the service does, the
data types it uses, and so on.

Outputs A description of each argument modified by the
service and each possible return value from the
service.

Example One or more typical uses of the service. The examples
assume the syntax of ANSI Standard C.b

SELFTASK is used in many of the examples to denote
the Current Task. It is defined in rtxcapi.h as
(TASK)0.

SELFTHREAD is used in many of the examples to
denote the Current Thread. It is defined in
rtxcapi.h as (THREAD)0.

The putline function moves the content of a character
buffer to an assumed console device.

4 RTXC Kernel Services Reference, Volume 1

Using This Manual

June 18, 2002

General Form of Kernel Service Call

The general form of an RTXC Kernel service function call is:

XX_name ([arg1][, arg2]...[, argn])

where the service prefix character string XX_ is one of the following:

Some services are callable from all three zones, others from zones 2
and 3, and still others from Zone 2 or Zone 3 only. The detailed
descriptions of the services in this book include the zones from
which the service can be called if it can be called from more than one.

Following the service prefix is the name of the RTXC Kernel service.
The service prefix should prevent the name from being misidentified
by a linker with some similarly-named function in the runtime
library of the compiler. In general, name is composed as follows:

<Verb><Class>[noun|property][suffix]

See Also A list of related kernel services, if any, that could be
examined in conjunction with the current function.

Special Notes Additional notes and technical comments, if any.

a. Services that support more than one zone are listed with an XX_
prefix. The XX_ prefix is not a valid prefix, only a placeholder.

b. The code examples in this manual often refer to functions or enti-
ties outside the given code fragment used in the example. The
functions or entities so referenced may be real or assumed within
the actual context of the code example but are not shown. The pur-
pose of such references is to add coherence to the example rather
than to imply a particular methodology or usage.

IS_ Identifies a service callable from an exception handler in Zone 1.

TS_ Identifies a thread-based service callable from Zone 2.

KS_ Identifies a service callable from Zone 3.

Table 1-1. Kernel Service Description Format (continued)

Name Brief Functional Description

Chapter 1: Introduction To RTXC/ss Kernel Services 5

Using This Manual

June 18, 2002

where the strings within the angle brackets (<>) are mandatory and
those within the brackets ([]) are optional. The vertical bar (|)
indicates an OR. Therefore, the general composition of name is a
verb, followed by the object class, followed by an optional noun or
object property, followed by an optional suffix.

The optional suffix is one or more upper-case characters and is used
as a qualifier for the service:

Arguments to Kernel Services

The RTXC Kernel service descriptions show the function prototypes
with generalized RTXC arguments. Similarly, the descriptions show
the values returned from kernel service functions symbolically as
described in Table 1-2 on page 6.

Kernel Service Return Codes

Many of the RTXC Kernel services return a value that conveys
information about the service’s operation. This value is the kernel
service return code (KSRC) value. The Outputs section of each service
description lists and describes the KSRC values for the service.

Diagnostic Mode and Fatal Errors

The RTXC Kernel provides a diagnostic mode of operation to speed
up the development process. When the application is generated in
diagnostic mode, the RTXC Kernel performs numerous validity tests
on the arguments being passed in kernel service calls. When an
argument fails its validity test, the kernel passes a fatal error code to
the system error function. The Errors section of each service

W Indicates an unconditional wait version of the service. For example,
the KS_AllocBlkW service is the unconditional wait version of
the KS_AllocBlk service.

T Indicates a tick-limited wait version of the service. For example, the
KS_AllocBlkT service is the tick-limited wait version of the
KS_AllocBlk service.

M Indicates a service to be performed on multiple semaphore objects.
For example, KS_SignalSemaM signals multiple semaphores.

6 RTXC Kernel Services Reference, Volume 1

Using This Manual

June 18, 2002

description lists and describes the fatal errors that may be generated
by the service. For a complete list of the error codes and the services
that generate those codes, see Appendix A, “Fatal Error Codes.”

Table 1-2. Kernel Service Return Value Types

Symbol Description

TASK Task handle

THREAD Thread handle

PRIORITY Priority of a task or a message

TSLICE Number of TICKS in the time quantum for a time-
sliced task

SEMA Semaphore handle

SEMACOUNT Number of signals that a semaphore has received

MBOX Mailbox handle

MSGENV Message envelope

QUEUE Queue handle

PART Memory partition handle

BLKSIZE Size of a block of memory in a partition

MUTX Mutex handle

EVNTSRC Event Source handle

COUNTER Counter handle

ALARM Alarm handle

TICKS Units of time maintained by the system time base

EXCPTN Exception handle

Chapter 1: Introduction To RTXC/ss Kernel Services 7

Using This Manual

June 18, 2002

Kernel Service Classes

The RTXC/ss component kernel services are divided into the
following basic classes and subclasses:

Thread Management

Exception Management

Pipe Management

Event Source Management

Counter Management

Alarm Management

The RTXC/ms component kernel services are divided into the
following basic classes and subclasses:

Task Management

Intertask Communication and Synchronization

Semaphores

Queues

Mailboxes

Messages

Memory Partition Management

Mutex Management

The RTXC Kernel also includes a number of kernel services that are
independent of the object classes and are available for use in either
component. These services are called Special Services.

The remaining sections describe each class and subclass. Each
section includes a table listing all of the services within that class or
subclass. The table contains a brief description of each service and a

KSRC Kernel Service Return Code

Table 1-2. Kernel Service Return Value Types (continued)

Symbol Description

8 RTXC Kernel Services Reference, Volume 1

RTXC/ss Component Services

June 18, 2002

cross-reference to the detailed description of the service in the
reference chapters of this book.

RTXC/ss Component Services
The RTXC/ss component of the RTXC Kernel features a single stack
model with a low-latency thread scheduler and a small footprint,
making it ideally suited for applications requiring high frequency
interrupt processing, such as in digital signal processing. The
following sections describe the object classes supported in the RTXC/
ss component and their related kernel services.

Thread Management Services

The Thread Management services, listed in Table 1-3, allow for
complete control of threads and their respective interactions,
including scheduling threads and maintaining information about
thread scheduling requests. For detailed descriptions, see Chapter 2,
“Thread Services.”

Table 1-3. Thread Services Summary

Service Description Zones Ref.

XX_ClearThreadGateBits Clear bits in a thread gate. 23

XX_DecrThreadGate Decrement the thread gate. 26

XX_DefThreadArg Define a new argument pointer for the
thread.

28

XX_DefThreadEntry Define or redefine a thread’s entry point. 30

XX_DefThreadEnvArg Define the thread’s environment
arguments.

32

KS_DefThreadName Define the name of a previously opened
dynamic thread.

34

XX_DefThreadProp Define the thread’s properties. 36

Chapter 1: Introduction To RTXC/ss Kernel Services 9

RTXC/ss Component Services

June 18, 2002

TS_DisableThreadScheduler Disable thread scheduling. 38

TS_EnableThreadScheduler Enable thread scheduling. 39

TS_GetThreadArg Get the argument pointer for a thread. 40

TS_GetThreadBaseLevel Get a thread’s base execution priority
level.

42

KS_GetThreadClassProp Get the Thread object class properties. 44

TS_GetThreadCurrentLevel Get the Current Thread’s execution
priority level.

47

XX_GetThreadEnvArg Get the pointer to the thread’s
environment arguments.

48

XX_GetThreadGate Get the value of the thread’s thread gate. 50

TS_GetThreadGateLoadPreset Get the value of the Current Thread’s
thread gate and then load the thread gate
with the value of the thread gate preset.

52

XX_GetThreadGatePreset Read the content of the thread gate preset. 54

TS_GetThreadID Read the Current Thread’s ID. 55

KS_GetThreadName Get the thread’s name. 56

XX_GetThreadProp Get the properties of the specified thread. 58

XX_IncrThreadGate Increment a thread gate. 60

KS_LookupThread Look up a thread by its name to get its
handle.

62

TS_LowerThreadLevel Lower the Current Thread’s execution
priority level.

64

XX_ORThreadGateBits Set the bits in a thread gate using logical
OR.

66

Table 1-3. Thread Services Summary (continued)

Service Description Zones Ref.

10 RTXC Kernel Services Reference, Volume 1

RTXC/ss Component Services

June 18, 2002

XX_PresetThreadGate Set the new thread gate value to the
current thread gate preset value.

68

TS_RaiseThreadLevel Raise the Current Thread’s execution
priority level.

70

XX_ScheduleThread Schedule execution of a thread. 72

XX_ScheduleThreadArg Schedule execution of a thread and define
a new argument.

75

XX_SetThreadGate Set new thread gate and thread gate preset
values.

78

XX_SetThreadGatePreset Set a new thread gate preset value. 80

INIT_ThreadClassProp Initialize the Thread object class
properties.

82

XX_UnscheduleThread Unschedule execution of a thread. 84

Table 1-3. Thread Services Summary (continued)

Service Description Zones Ref.

Chapter 1: Introduction To RTXC/ss Kernel Services 11

RTXC/ss Component Services

June 18, 2002

Exception Services

The Exception services, listed in Table 1-4, provide a method of
performing certain operations to facilitate the design and use of
exception handlers. For detailed descriptions, see Chapter 3,
“Exception Services.”

Table 1-4. Exception Services Summary

Service Description Zones Ref.

KS_CloseException End the use of a dynamic exception. 88

KS_DefExceptionName Define the name of a previously opened
exception.

90

XX_DefExceptionProp Define the properties of an exception. 92

INIT_ExceptionClassProp Initialize the Exception object class
properties.

94

KS_GetExceptionClassProp Get the Exception object class properties. 96

KS_GetExceptionName Get the name of an exception. 98

XX_GetExceptionProp Get the properties of an exception. 100

KS_LookupException Look up an exception’s name to get its
handle.

102

KS_OpenException Allocate and name a dynamic exception. 104

KS_UseException Look up a dynamic exception by name and
mark it for use.

107

12 RTXC Kernel Services Reference, Volume 1

RTXC/ss Component Services

June 18, 2002

Pipe Services

The Pipe services, listed in Table 1-5, move data between a single
producer and a single consumer and maintain information about pipe
states. For detailed descriptions, see Chapter 4, “Pipe Services.”

Table 1-5. Pipe Services Summary

Service Description Zones Ref.

KS_ClosePipe End the use of a dynamic pipe. 110

XX_DefPipeAction Define action to perform following
XX_PutFullPipeBuf or
XX_PutEmptyPipeBuf services.

112

XX_DefPipeProp Define the properties of a pipe. 115

KS_DefPipeName Define the name of a previously opened
dynamic pipe.

118

XX_GetEmptyPipeBuf Get an empty buffer from a specified pipe. 120

XX_GetFullPipeBuf Get a full buffer from a specified pipe. 122

XX_GetPipeBufSize Get the maximum usable size of buffers in
the specified pipe.

124

KS_GetPipeClassProp Get the Pipe class properties. 126

KS_GetPipeName Get the pipe’s name. 128

XX_GetPipeProp Get the pipe’s properties. 130

XX_JamFullGetEmptyPipeBuf Put a full buffer at the front of a pipe and
then get an empty buffer from the same
pipe.

132

XX_JamFullPipeBuf Put a full buffer at the front of a pipe. 136

KS_LookupPipe Look up a pipe by name to get its handle. 138

KS_OpenPipe Allocate and name a dynamic pipe. 140

Chapter 1: Introduction To RTXC/ss Kernel Services 13

RTXC/ss Component Services

June 18, 2002

INIT_PipeClassProp Initialize the Pipe object class properties. 142

XX_PutEmptyGetFullPipeBuf Put an empty buffer into a pipe and then
get a full buffer from the same pipe.

144

XX_PutEmptyPipeBuf Return an empty buffer to a pipe. 147

XX_PutFullGetEmptyPipeBuf Put a full buffer into a pipe and then get an
empty buffer from the same pipe.

149

XX_PutFullPipeBuf Put a full buffer into a pipe. 152

KS_UsePipe Look up a dynamic pipe by name and mark
it for use.

154

Table 1-5. Pipe Services Summary (continued)

Service Description Zones Ref.

14 RTXC Kernel Services Reference, Volume 1

RTXC/ss Component Services

June 18, 2002

Event Source Management Services

The Event Source Management directives, listed in Table 1-6, when
used with the Counter services listed in Table 1-7 on page 16, provide
a way of maintaining accumulators of the number of events
occurring on various event sources in the system. For detailed
descriptions, see Chapter 5, “Event Source Services.”

Table 1-6. Event Source Services Summary

Service Description Zones Ref.

XX_ClearEventSourceAttr Clear one or more event source
attributes.

158

KS_CloseEventSource End the use of a dynamic event source. 160

KS_DefEventSourceName Define the name of a previously opened
event source.

162

XX_DefEventSourceProp Define the event source’s properties. 164

INIT_EventSourceClassProp Initialize the Event Source object class
properties.

167

XX_GetEventSourceAcc Get the event sources’s accumulator. 169

KS_GetEventSourceClassProp Get the Event Source object class
properties.

171

KS_GetEventSourceName Get the event source’s name. 173

XX_GetEventSourceProp Get the event source’s properties. 175

KS_LookupEventSource Look up an event source by its name to
get its handle.

177

KS_OpenEventSource Allocate and name a dynamic event
source.

179

XX_ProcessEventSourceTick Process a tick on an event source. 181

Chapter 1: Introduction To RTXC/ss Kernel Services 15

RTXC/ss Component Services

June 18, 2002

XX_SetEventSourceAcc Set the event source’s accumulator to a
specified value.

183

XX_SetEventSourceAttr Set one or more event source attributes. 185

KS_UseEventSource Look up a dynamic event source by name
and mark it for use.

187

Table 1-6. Event Source Services Summary (continued)

Service Description Zones Ref.

16 RTXC Kernel Services Reference, Volume 1

RTXC/ss Component Services

June 18, 2002

Counter Management Services

The Counter Management directives, listed in Table 1-7, when used
with the Event Source services listed in Table 1-6 on page 14, provide
a way of maintaining and accumulating tick counts based on the
number of events occurring on various event sources in the system
so that tasks and threads may perform operations with respect to
those counters. For detailed descriptions, see Chapter 6, “Counter
Services.”

Table 1-7. Counter Services Summary

Service Description Zones Ref.

XX_ClearCounterAttr Clear one or more attributes for a counter. 190

KS_CloseCounter End the use of a dynamic counter. 192

INIT_CounterClassProp Initialize the Counter object class
properties.

194

KS_DefCounterName Define the name of a previously opened
dynamic counter.

196

XX_DefCounterProp Define the counter’s properties. 198

XX_GetCounterAcc Get the counter’s tick accumulator. 202

KS_GetCounterClassProp Get the Counter object class properties. 204

KS_GetCounterName Get the counter’s name. 206

XX_GetCounterProp Get the counter’s properties. 208

XX_GetElapsedCounterTicks Compute the number of counter ticks that
have elapsed between two events.

210

KS_LookupCounter Look up a counter by name to get its
handle.

214

KS_OpenCounter Allocate and name a dynamic counter. 216

Chapter 1: Introduction To RTXC/ss Kernel Services 17

RTXC/ss Component Services

June 18, 2002

XX_SetCounterAcc Set the accumulator of a counter to a
specified value.

218

XX_SetCounterAttr Set one or more attributes for a counter. 220

KS_UseCounter Look up a dynamic counter by name and
mark it for use.

222

Table 1-7. Counter Services Summary (continued)

Service Description Zones Ref.

18 RTXC Kernel Services Reference, Volume 1

RTXC/ss Component Services

June 18, 2002

Alarm Management Services

The alarm-based directives, listed in Table 1-8, provide for the
synchronization of tasks with events. They provide a generalized
method of handling events relative to ticks that accumulate on an
associated counter, allowing for time-based alarms as well as alarms
based on other kinds of real-world events. For detailed descriptions,
see Chapter 7, “Alarm Services.”

Table 1-8. Alarm Services Summary

Service Description Zones Ref.

XX_AbortAlarm Abort an active alarm. 226

INIT_AlarmClassProp Initialize the Alarm object class properties. 228

XX_ArmAlarm Arm and start an alarm. 230

XX_CancelAlarm Make an active alarm inactive. 232

KS_CloseAlarm End the use of a dynamic alarm. 234

XX_DefAlarmAction End the use of a dynamic alarm. 236

XX_DefAlarmActionArm Define the action to perform when an alarm
expires and then arm and start the alarm.

238

KS_DefAlarmName Define the name of a previously opened alarm. 240

XX_DefAlarmProp Define the properties of a alarm. 242

KS_DefAlarmSema Associate a semaphore with a alarm event. 244

KS_GetAlarmClassProp Get the Alarm object class properties. 246

KS_GetAlarmName Get the name of a alarm. 248

XX_GetAlarmProp Get the properties of a alarm. 250

KS_GetAlarmSema Get the handle of the semaphore associated with
a alarm event.

252

Chapter 1: Introduction To RTXC/ss Kernel Services 19

RTXC/ss Component Services

June 18, 2002

XX_GetAlarmTicks Get the number of counter ticks remaining until
the expiration of an active alarm.

254

KS_LookupAlarm Look up a alarm’s name to get its handle. 256

KS_OpenAlarm Allocate and name a dynamic alarm. 258

XX_RearmAlarm Rearm and restart an active alarm. 260

KS_TestAlarm Get the time, in ticks, remaining on an active
alarm.

262

KS_TestAlarmT Wait a specified number of ticks for an alarm to
expire.

265

KS_TestAlarmW Wait for a alarm to expire. 268

KS_UseAlarm Look up a dynamic alarm by name and mark it
for use.

270

Table 1-8. Alarm Services Summary (continued)

Service Description Zones Ref.

20 RTXC Kernel Services Reference, Volume 1

RTXC/ss Component Services

June 18, 2002

Special Services

The Special services, listed in Table 1-9, perform special functions
not based on the object classes. For detailed descriptions, see
Chapter 8, “Special Services.”

Table 1-9. Special Services Summary

Service Description Zones Ref.

XX_AllocSysRAM Allocate a block of system RAM. 274

XX_DefFatalErrorHandler Establish the system error function. 276

XX_GetFatalErrorHandler Get the system error function. 278

XX_GetFreeSysRAMSize Get the size of free system RAM. 279

KS_GetSysProp Get the system properties. 280

KS_GetVersion Get the version number of the RTXC Kernel. 282

INIT_SysProp Initialize the RTXC system properties. 284

Chapter 2: Thread Services 21

June 18, 2002

C H A P T E R 2 Thread Services

In This Chapter
We describe the Thread kernel services in detail. The Thread kernel
services schedule threads and maintain information about thread
states.

XX_ClearThreadGateBits.. 23

XX_DecrThreadGate...26

XX_DefThreadArg...28

XX_DefThreadEntry..30

XX_DefThreadEnvArg .. 32

KS_DefThreadName .. 34

XX_DefThreadProp... 36

TS_DisableThreadScheduler.. 38

TS_EnableThreadScheduler ...39

TS_GetThreadArg.. 40

TS_GetThreadBaseLevel ..42

KS_GetThreadClassProp..44

TS_GetThreadCurrentLevel..47

XX_GetThreadEnvArg ..48

XX_GetThreadGate .. 50

TS_GetThreadGateLoadPreset .. 52

XX_GetThreadGatePreset .. 54

TS_GetThreadID..55

KS_GetThreadName .. 56

XX_GetThreadProp .. 58

XX_IncrThreadGate... 60

22 RTXC Kernel Services Reference, Volume 1

June 18, 2002

KS_LookupThread.. 62

TS_LowerThreadLevel ... 64

XX_ORThreadGateBits .. 66

XX_PresetThreadGate ... 68

TS_RaiseThreadLevel... 70

XX_ScheduleThread..72

XX_ScheduleThreadArg..75

XX_SetThreadGate..78

XX_SetThreadGatePreset .. 80

INIT_ThreadClassProp .. 82

XX_UnscheduleThread .. 84

Chapter 2: Thread Services 23

XX_ClearThreadGateBits

June 18, 2002

XX_ClearThreadGateBits
Clear bits in a thread gate.

Zones IS_ClearThreadGateBits
 TS_ClearThreadGateBits
 KS_ClearThreadGateBits

Synopsis KSRC XX_ClearThreadGateBits (THREAD thread,
GATEKEY gatekey)

Inputs

Description The XX_ClearThreadGateBits kernel service clears bits in the
thread gate of the specified thread according to the bits in gatekey. If
the content of the thread gate is zero (0) before the service call, there
is no change to the thread gate and control returns to the Current
Thread without scheduling thread. If the resulting content of the
thread gate is zero (0), the service schedules thread. At the same time
the service schedules thread, it also loads the value of thread’s thread
gate preset into the thread gate.

If an interrupt service routine (ISR) calls this service and the result
requires scheduling thread, execution of thread cannot occur until
the current ISR and all other ISRs are completed.

A preemption of the Current Thread may occur if thread is of a
higher priority level than the Current Thread. In such a case,
execution of thread is immediate. If thread is of the same or a lower
priority level than that of the Current Thread, its execution does not
occur until the termination of the Current Thread or at an even later
time depending on the scheduling protocol in use for the given
priority level.

thread The handle of the thread containing the thread gate whose
bits are to be cleared. The thread handle can be that of the
Current Thread or it can be zero (0), representing the Current
Thread.

gatekey A mask value containing the bits to clear in thread’s thread
gate.

24 RTXC Kernel Services Reference, Volume 1

XX_ClearThreadGateBits

June 18, 2002

A gatekey value of zero (0) causes no change to thread’s thread gate
value and results in a normal return.

Output This service returns a KSRC value as follows:

RC_GOOD if the service was successful.

RC_GATE_ALREADY_ZERO if the gate contained a value of zero
(0) before clearing.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_THREAD if the specified thread ID is not valid.

FE_UNINITIALIZED_THREAD if the specified thread has not yet
been initialized.

Example In Example 2-1, the Current Thread sets the gate for the thread
specified in THREADA to 0xC00 and then clears the gate bits with two
separate service calls. THREADA is scheduled only when both bits
have been cleared.

Example 2-1. Clear Thread Gate Bits

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kthread.h" /* THREADA */

/* set THREADA's gate */
TS_SetThreadGate (THREADA, (GATEKEY)0xC00);

... perform some operations.

/* clear single bit in Thread's Gate */
TS_ClearThreadGateBits (THREADA, (GATEKEY)0x800);

... perform some operations.

/* clear single bit to schedule THREADA */
TS_ClearThreadGateBits (THREADA, (GATEKEY)0x400);

... THREADA was scheduled, continue

Chapter 2: Thread Services 25

XX_ClearThreadGateBits

June 18, 2002

See Also XX_ORThreadGateBits, page 66

26 RTXC Kernel Services Reference, Volume 1

XX_DecrThreadGate

June 18, 2002

XX_DecrThreadGate
Decrement the thread gate.

Zones IS_DecrThreadGate
 TS_DecrThreadGate
 KS_DecrThreadGate

Synopsis KSRC XX_DecrThreadGate (THREAD thread)

Input

Description The XX_DecrThreadGate kernel service decrements by one the
thread gate of the specified thread. If the resulting content of the
thread gate is zero (0), the service schedules thread.

If an ISR calls this service and the result requires scheduling the
thread, execution of the thread cannot occur until the current ISR
and all other ISRs are completed.

A preemption of the Current Thread may occur if the thread whose
gate becomes zero (0) after being decremented is of a higher priority
level than the Current Thread. In such a case, execution of thread is
immediate. If thread is of the same or a lower priority level than that
of the Current Thread, its execution does not occur until the
termination of the Current Thread or at an even later time
depending on the scheduling protocol in use for the given priority
level.

Output This service returns a KSRC value as follows:

RC_GOOD if the service was successful.

RC_GATE_UNDERFLOW if gate contained a value less than or equal
to zero (0) before decrement.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_THREAD if the specified thread ID is not valid.

thread The handle of the thread containing the thread gate to
decrement. The thread handle can be that of the Current
Thread or it can be zero (0), representing the Current Thread.

Chapter 2: Thread Services 27

XX_DecrThreadGate

June 18, 2002

FE_UNINITIALIZED_THREAD if the specified thread has not yet
been initialized.

Example In Example 2-2, the Current Thread sets the gate of the thread
specified in THREADA to 2, and then decrements the gate value to
zero with two separate Kernel service calls. THREADA is scheduled
only when the gate value is zero.

Example 2-2. Decrement Thread Gate

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kthread.h" /* THREADA */

/* set THREADA's gate */
TS_SetThreadGate (THREADA, (GATEKEY)2);

/* decrement Thread's Gate */
TS_DecrThreadGate (THREADA);

... perform some operations.

/* decrement Thread's Gate, which will schedule Thread */
TS_DecrThreadGate (THREADA);

... THREADA was scheduled, continue

See Also XX_IncrThreadGate, page 60

28 RTXC Kernel Services Reference, Volume 1

XX_DefThreadArg

June 18, 2002

XX_DefThreadArg
Define a new argument pointer for the thread.

Zones IS_DefThreadArg
 TS_DefThreadArg
 KS_DefThreadArg

Synopsis void XX_DefThreadArg (THREAD thread, void *parg)

Inputs

Description The XX_DefThreadArg kernel service establishes a pointer, parg,
to an argument containing one or more parameters to be used by the
specified thread. Each time thread executes, it automatically receives
the pointer to its arguments. The parg pointer may point to a scalar
datum or a structure. The RTXC Kernel places no restrictions on the
size or content of the argument structure.

Output This service does not return a value.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_THREAD if the specified thread ID is not valid.

FE_UNINITIALIZED_THREAD if the specified thread has not yet
been initialized.

Example In Example 2-3 on page 29, the Current Thread defines the
argument for the thread specified in THREADA and then schedules
THREADA.

thread The handle of the thread receiving the new argument
definition.

parg A pointer to the argument for the specified thread.

Chapter 2: Thread Services 29

XX_DefThreadArg

June 18, 2002

Example 2-3. Define Thread Argument Pointer

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kthread.h" /* THREADA */

char buffer[80]; /* argument for THREADA */

/* define arguments for THREADA */
TS_DefThreadArg (THREADA, (void *)&buffer);

/* schedule THREADA */
TS_ScheduleThead (THREADA);

... continue

See Also XX_ScheduleThreadArg, page 75

30 RTXC Kernel Services Reference, Volume 1

XX_DefThreadEntry

June 18, 2002

XX_DefThreadEntry
Define or redefine a thread’s entry point.

Zones IS_DefThreadEntry
 TS_DefThreadEntry
 KS_DefThreadEntry

Synopsis void XX_DefThreadEntry (THREAD thread,
void (*pentry) (void *, void *))

Inputs

Description The XX_DefThreadEntry kernel service establishes a pointer,
pentry, to the entry point of the specified thread. The next time thread
gets control of the CPU, it begins execution at the address defined by
pentry.

Output This service does not return a value.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_THREAD if the specified thread ID is not valid.

FE_UNINITIALIZED_THREAD if the specified thread has not yet
been initialized.

FE_NULL_THREADENTRY if the specified Thread entry address is
null.

Example In Example 2-4 on page 31, the Current Thread changes the entry
point of the thread specified in THREADA to newentry, and then
schedules THREADA.

thread The handle of the thread being defined.

pentry Address of thread’s new entry point.

Chapter 2: Thread Services 31

XX_DefThreadEntry

June 18, 2002

Example 2-4. Define Thread Entry Point

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kthread.h" /* THREADA */

extern void newentry (void *, void *);

/* define new entry point for THREADA */
TS_DefThreadEntry (THREADA, newentry);

/* schedule THREADA with its new entry */
TS_ScheduleThread (THREADA);

... continue

32 RTXC Kernel Services Reference, Volume 1

XX_DefThreadEnvArg

June 18, 2002

XX_DefThreadEnvArg
Define the thread’s environment arguments.

Zones TS_DefThreadEnvArg
 KS_DefThreadEnvArg

Synopsis void XX_DefThreadEnvArg (THREAD thread, void *parg)

Inputs

Description The XX_DefThreadEnvArg kernel service establishes a pointer,
parg, to a structure containing parameters that define the
environment of the specified thread. Because threads inherently
have no context saved or restored by RTXC/ss or RTXC/ms between
execution cycles, the environment arguments structure serves as a
place to save those parameters that are specific to a thread’s
operation. The RTXC Kernel places no restrictions on the size or
content of the environment arguments structure.

Note: To use this service, you must enable the Environment
Arguments attribute of the Thread class during system
generation.

Output This service does not return a value.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_THREAD if the specified thread ID is not valid.

FE_UNINITIALIZED_THREAD if the specified thread has not yet
been initialized.

Example In Example 2-5 on page 33, the Current Thread defines the
environment arguments for the thread specified in THREADA and
then schedules THREADA.

thread The handle of the thread being defined.

parg A pointer to a Thread environment arguments structure.

Chapter 2: Thread Services 33

XX_DefThreadEnvArg

June 18, 2002

Example 2-5. Define Thread Environment Arguments Pointer

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kthread.h" /* THREADA */

struct {
 int count;
 char buffer[80];
} envargA; /* environment argument for THREADA */

/* define environment arguments for THREADA */
TS_DefThreadEnvArg (THREADA, (void *)&envargA);

/* schedule THREADA */
TS_ScheduleThead (THREADA);

... continuue

See Also KS_GetThreadClassProp, page 44
XX_GetThreadEnvArg, page 48

34 RTXC Kernel Services Reference, Volume 1

KS_DefThreadName

June 18, 2002

KS_DefThreadName
Define the name of a previously opened dynamic thread.

Synopsis KSRC KS_DefThreadName (THREAD thread,
const char *pname)

Inputs

Description The KS_DefThreadName kernel service names or renames the
specified dynamic thread. The service uses the null-terminated string
pointed to by pname for the new name. The kernel only stores pname
internally, which means that the same array cannot be used to build
multiple dynamic thread names. Static threads cannot be named or
renamed under program control.

Note: To use this service, you must enable the Dynamics
attribute of the Thread class during system generation.

This service does not check for duplicate thread names.

Output This service returns a KSRC value as follows:

RC_GOOD if the service completes successfully.

RC_STATIC_OBJECT if the thread being named is static.

RC_OBJECT_NOT_FOUND if the Dynamics attribute of the Thread
class is not enabled.

RC_OBJECT_NOT_INUSE if the dynamic thread being named is
still in the free pool of dynamic threads.

Error This service may generate the following fatal error code:

FE_ILLEGAL_THREAD if the specified thread ID is not valid.

thread The handle of the thread being defined.

pname A pointer to a null-terminated name string.

Chapter 2: Thread Services 35

KS_DefThreadName

June 18, 2002

Example Example 2-6 assigns the name NewThread to the thread specified in
dynthread variable so other users may reference it by name.

Example 2-6. Define Dynamic Thread Name

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

THREAD dynthread;

if (KS_DefThreadName (dynthread, "NewTask") != RC_GOOD)
{
 ... Probably is a static thread. Deal with it here.
}

... else the naming operation was successful. Continue

See Also KS_GetThreadName, page 56

36 RTXC Kernel Services Reference, Volume 1

XX_DefThreadProp

June 18, 2002

XX_DefThreadProp
Define the thread’s properties.

Zones TS_DefThreadProp
 KS_DefThreadProp

Synopsis void XX_DefThreadProp (THREAD thread,
THREADPROP *pthreadprop)

Inputs

Description The XX_DefThreadProp kernel service defines the properties of
the specified thread by using the values contained in the
THREADPROP structure pointed to by pthreadprop. You may use this
service on static or dynamically allocated threads. It is typically used
to define a static thread during system startup.

Example 2-7 shows the organization of the THREADPROP structure.

Example 2-7. Thread Properties Structure

typedef struct _threadprop
{
 KATTR attributes; /* thread attributes */
 TLEVEL level; /* thread base level */
 TORDER order; /* thread order */
 void (*threadentry)(void *, void *);
 /* current entry point address */
} THREADPROP;

The entry point of the thread is specified in threadentry in the
THREADPROP structure. At the initial definition of thread’s properties,
threadentry should contain thread’s initial entry point. Afterwards,
the content of threadentry is subject to change through the use of this
kernel service as well as the more direct XX_DefThreadEntry
kernel service.

thread The handle of the thread being defined.

pthreadprop A pointer to a Thread properties structure.

Chapter 2: Thread Services 37

XX_DefThreadProp

June 18, 2002

Warning: The values for level and order are provided for
information only and must never be changed. Altering these
values after their initial definition may cause errors or
undesirable thread behavior.

Output This service does not return a value.

Error This service may generate one of the following fatal error codes:

FE_ILLEGAL_THREAD if the specified thread ID is not valid.

FE_NULL_THREADENTRY if the specified Thread entry address is
null.

Example During system initialization, the startup routine must create and
initialize the Thread object class and define the properties of all the
static Threads before the start of Thread scheduling, as illustrated in
Example 2-8.

Example 2-8. Define Thread Properties

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

extern const KCLASSPROP threadclassprop;
extern const THREADPROP threadprop[];

int objnum;
KSRC ksrc;

 /* initialize the THREAD class/object data */
 if ((ksrc = INIT_ThreadClassProp (&threadclassprop))
 != RC_GOOD)
 return ksrc;

 for (objnum = 1; objnum <= threadclassprop.n_statics; objnum++)
 {
 TS_DefThreadProp (objnum, &threadprop[objnum]);
 }

See Also XX_GetThreadProp, page 58

38 RTXC Kernel Services Reference, Volume 1

TS_DisableThreadScheduler

June 18, 2002

TS_DisableThreadScheduler
Disable thread scheduling.

Synopsis void TS_DisableThreadScheduler (void)

Inputs This service has no inputs.

Description The TS_DisableThreadScheduler kernel service disables
further scheduling of threads by the RTXC/ss Scheduler until such
time as the Current Thread re-enables thread scheduling.

Output This service does not return a value.

Example In Example 2-9, the Current Thread disables Thread scheduling
during some critical code section, then re-enables Thread
scheduling when the critical section is complete.

Example 2-9. Disable Thread Scheduling

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

/* disable Thread scheduling */
TS_DisableThreadScheduler ();

... execute critical code

/* enable Thread scheduling */
TS_EnableThreadScheduler ();

... continue

See Also TS_EnableThreadScheduler, page 39

Chapter 2: Thread Services 39

TS_EnableThreadScheduler

June 18, 2002

TS_EnableThreadScheduler
Enable thread scheduling.

Synopsis void TS_EnableThreadScheduler (void)

Inputs This service has no inputs.

Description The TS_EnableThreadScheduler kernel service enables
scheduling of threads by the RTXC/ss Scheduler after being
previously disabled. The service returns the priority level of the
Scheduler to the Current Thread’s base execution level.

Output This service does not return a value.

Example In Example 2-10, after performing some critical function with
Thread scheduling disabled, the Current Thread re-enables Thread
scheduling.

Example 2-10. Enable Thread Scheduling

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

/* disable Thread scheduling */
TS_DisableThreadScheduler ();

... execute critical code

/* enable Thread scheduling */
TS_EnableThreadScheduler ();

... continue

See Also TS_DisableThreadScheduler, page 38

40 RTXC Kernel Services Reference, Volume 1

TS_GetThreadArg

June 18, 2002

TS_GetThreadArg
Get the argument pointer for a thread.

Synopsis void * TS_GetThreadArg(THREAD thread)

Inputs

Description The TS_GetThreadArg kernel service locates and returns the
current value of the thread argument for the specified thread. This
service would not typically be used by the Current Thread because each
time a thread executes, it automatically receives the pointer to its
argument. Therefore, the specified thread typically different than the
current thread.

Output This service returns the value of the thread argument. The returned
pointer may be a scalar datum or a structure. If it is a structure, the RTXC
Kernel places no restrictions on the size or content of the argument
structure.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_THREAD if the specified thread ID is not valid.

FE_UNINITIALIZED_THREAD if the specified thread has not yet
been initialized.

Example In Example 2-11 on page 41, the Current Thread retrieves the
argument for the thread specified in THREADA, verifies it as being
non-zero, and if so, schedules THREADA. If the thread argument is
zero, it takes a different path.

thread The handle of the thread containing the argument
definition.

Chapter 2: Thread Services 41

TS_GetThreadArg

June 18, 2002

Example 2-11. Get Thread Argument

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kproject.h" /* */
#include "kthread.h" /* THREADA */

/* get argument for THREADA */
if (TS_GetThreadArg(THREADA) <> (void *)0);
{
 /* schedule THREADA */
 TS_ScheduleThead(THREADA);

... continue
}
else
{
 do something else…
}

See Also XX_DefThreadArg, page 28

42 RTXC Kernel Services Reference, Volume 1

TS_GetThreadBaseLevel

June 18, 2002

TS_GetThreadBaseLevel
Get a thread’s base execution priority level.

Synopsis TLEVEL TS_GetThreadBaseLevel (THREAD thread)

Input

Description The TS_GetThreadBaseLevel kernel service reads the base
execution priority level of the specified thread and returns it to the
caller.

Output This service returns a TLEVEL type value containing thread’s base
execution priority level.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_THREAD if the specified thread ID is not valid.

FE_UNINITIALIZED_THREAD if the specified thread has not yet
been initialized.

Example Example 2-12 on page 43, the Current Thread reads the base
execution level of the thread specified in THREADA and raises the
Current Thread’s level if it is less than THREADA’s base execution
level. Remember that higher priority levels are numerically smaller
than lower priority levels.

thread The handle of the thread whose base execution level is being
read. The value of thread may be zero (0), representing the
Current Thread.

Chapter 2: Thread Services 43

TS_GetThreadBaseLevel

June 18, 2002

Example 2-12. Read Thread Base Execution Priority Level

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kthread.h" /* THREADA */

TLEVEL tlevel;

/* get THREADA's base execution level */
tlevel = TS_GetThreadBaseLevel (THREADA);

/* check current priority level against THREADA's */
if (TS_GetThreadCurrentLevel () > tlevel)
{
 /* THREADA priority is higher than Current Thread, */
 /* so raise Current Thread's level. */
 TS_RaiseThreadLevel (tlevel);
}

... continue

See Also TS_GetThreadCurrentLevel, page 47

44 RTXC Kernel Services Reference, Volume 1

KS_GetThreadClassProp

June 18, 2002

KS_GetThreadClassProp
Get the Thread object class properties.

Synopsis const KCLASSPROP * KS_GetThreadClassProp (int *pint)

Input

Description The KS_GetThreadClassProp kernel service obtains a pointer
to the KCLASSPROP structure that was used during system
initialization by the INIT_ThreadClassProp service to initialize
the Thread object class properties.

If the pint pointer contains a non-zero address, the current number
of unused dynamic threads is stored in the indicated address. If pint
contains a null pointer ((int *)0), the service ignores the
parameter. If the Thread object class properties do not include the
Dynamics attribute, the service stores a value of zero (0) at the
address contained in pint.

Example 2-13 shows the organization of the KCLASSPROP structure.

Example 2-13. Object Class Properties Structure

typedef struct
{
 KATTR attributes;
 KOBJECT n_statics; /* number of static objects */
 KOBJECT n_dynamics; /* number of dynamic objects */
 short objsize; /* used for calculating offsets */
 short totalsize; /* used to alloc object array RAM */
 ksize_t namelen; /* length of the name string */
 const char *pstaticnames;
} KCLASSPROP;

The attributes element of the Thread property structure supports the
class property attributes and corresponding masks listed in Table 2-1
on page 45.

pint A pointer to an integer variable in which to store the current
number of unused dynamic threads.

Chapter 2: Thread Services 45

KS_GetThreadClassProp

June 18, 2002

Output If successful, this service returns a pointer to a KCLASSPROP
structure.

If the Thread class is not initialized, the service returns a null pointer
((KCLASSPROP *)0).

If pint is not null ((int *)0), the service returns the number of
available dynamic threads in the variable pointed to by pint.

Example In Example 2-14 on page 46, the Current Thread needs access to the
information contained in the KCLASSPROP structure for the Thread
object class.

Table 2-1. Thread Class Attributes and Masks

Attribute Mask

Static Names ATTR_STATIC_NAMES

Dynamics ATTR_DYNAMICS

Thread Gates ATTR_THREAD_GATES

Environment Arguments ATTR_THREAD_ENV

Thread Arguments ATTR_THREAD_ARG

46 RTXC Kernel Services Reference, Volume 1

KS_GetThreadClassProp

June 18, 2002

Example 2-14. Read Thread Object Class Properties

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

KCLASSPROP *pthreadclassprop;
int free_dyn;

/* Get the thread kernel object class properties */
if ((pthreadclassprop = KS_GetThreadClassProp (&free_dyn))
 == (KCLASSPROP *)0)
{
 putline ("Thread Class not initialized");
}
else
{
 ...thread object class properties are available for use
 "free_dyn" contains the number of available dynamic threads
}

See Also INIT_ThreadClassProp, page 82

Chapter 2: Thread Services 47

TS_GetThreadCurrentLevel

June 18, 2002

TS_GetThreadCurrentLevel
Get the Current Thread’s execution priority level.

Synopsis TLEVEL TS_GetThreadCurrentLevel (void)

Inputs This service has no inputs.

Description The TS_GetThreadCurrentLevel kernel service reads the
Current Thread’s execution priority level.

Output This service returns a TLEVEL type value containing the Current
Thread’s execution priority level.

Example Example 2-15, the Current Thread compares its current level with
the base execution level of the thread specified in THREADA and, if its
level is less than THREADA, raises its level to that of THREADA.
Remember that higher priority levels are numerically smaller than
lower priority levels.

Example 2-15. Read Thread Execution Priority Level

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kthread.h" /* THREADA */

TLEVEL tlevel;

/* get THREADA's base execution level */
tlevel = TS_GetThreadBaseLevel (THREADA);

/* see if current priority level is lower than THREADA's */
if (TS_GetThreadCurrentLevel () > tlevel)
{
 /* Yes, it is, so raise current Thread's level. */
 TS_RaiseThreadLevel (tlevel);
}

... continue

See Also TS_GetThreadBaseLevel, page 42

48 RTXC Kernel Services Reference, Volume 1

XX_GetThreadEnvArg

June 18, 2002

XX_GetThreadEnvArg
Get the pointer to the thread’s environment arguments.

Zones TS_GetThreadEnvArg
 KS_GetThreadEnvArg

Synopsis void * XX_GetThreadEnvArg (THREAD thread)

Input

Note: The Current Thread already has the pointer to its
environment arguments (if defined), having received it as
one of two parameters passed to it by the RTXC/ss
Scheduler. It would be unnecessary for the Current Thread
to use this service when referring to itself. Instead, the value
of thread would more likely be the handle of a thread other
than that of the Current Thread.

Description The XX_GetThreadEnvArg kernel service reads the pointer to the
environment arguments structure for the specified thread and
returns that pointer to the caller.

Note: To use this service, you must enable the Environment
Arguments attribute of the Thread class during system
generation.

Output This service returns a pointer to thread’s environment structure as
follows:

a valid non-null pointer if the service was successful

a null (0) pointer if the thread’s environment arguments have not
been defined.

thread The handle of the thread whose environment arguments
pointer is being read.

Chapter 2: Thread Services 49

XX_GetThreadEnvArg

June 18, 2002

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_THREAD if the specified thread ID is not valid.

FE_UNINITIALIZED_THREAD if the specified thread has not yet
been initialized.

Example Example 2-16, the Current Thread reads the environment
arguments for the thread specified in THREADA and performs some
operation if count is non-zero.

Example 2-16. Read Thread Environment Arguments Pointer

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kthread.h" /* THREADA */

typedef struct {
 int count;
 char buffer[80];
} envargA; /* environment argument for THREADA */

envargA *envarg;

/* get THREADA's environment arguments */
envarg = (envargA *)TS_GetThreadEnvArg (THREADA);

/* test the count */
if (envarg->count != 0)
{
 ... perform some operation
}

... continue

See Also XX_DefThreadEnvArg, page 32

50 RTXC Kernel Services Reference, Volume 1

XX_GetThreadGate

June 18, 2002

XX_GetThreadGate
Get the value of the thread’s thread gate.

Zones TS_GetThreadGate
 KS_GetThreadGate

Synopsis GATEKEY XX_GetThreadGate (THREAD thread)

Input

Description The XX_GetThreadGate kernel service reads the thread gate
content of the specified thread and returns it to the caller. No change
occurs to the value of the thread gate.

Output This service returns the thread gate’s content as a GATEKEY type
value.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_THREAD if the specified thread ID is not valid.

FE_UNINITIALIZED_THREAD if the specified thread has not yet
been initialized.

Example In Example 2-17 on page 51, the Current Thread reads its own
thread gate value and performs some operation gatevalue times.

thread The handle of the thread containing the thread gate to read.
The thread handle can be that of the Current Thread, which
is assumed if the thread handle is zero (0).

Chapter 2: Thread Services 51

XX_GetThreadGate

June 18, 2002

Example 2-17. Read Thread Gate

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

GATEKEY gatevalue;
int i;

gatevalue = TS_GetThreadGate (SELFTHREAD);

for (i = 1; i <= gatevalue; i++)
{
 ... perform some operation
}

... continue

See Also XX_SetThreadGate, page 78

52 RTXC Kernel Services Reference, Volume 1

TS_GetThreadGateLoadPreset

June 18, 2002

TS_GetThreadGateLoadPreset
Get the value of the Current Thread’s thread gate and then load the
thread gate with the value of the thread gate preset.

Synopsis GATEKEY TS_GetThreadGateLoadPreset (void)

Inputs This service has no inputs.

Description The TS_GetThreadGateLoadPreset kernel service reads the
value of the Current Thread’s thread gate and returns it to the
Current Thread. At the same time, the service also gets the value of
the Current Thread’s thread gate preset and moves it into the
associated thread gate.

If the Current Thread has been rescheduled at the time of its request
for this service, the service removes the scheduling request, allowing
the thread to continue to operate if it chooses.

Output This service returns the value of the Current Thread’s thread gate.

Example In Example 2-18 on page 53, the Current Thread reads its thread gate
value and simultaneously presets its thread gate in preparation for
the next execution cycle. It uses the thread gate value it reads as the
counter for the number of times to execute an internal loop before
returning control of the CPU.

Chapter 2: Thread Services 53

TS_GetThreadGateLoadPreset

June 18, 2002

Example 2-18. Read and Preset Thread Gate

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kthread.h" /* THREADA */

void threada (void *env, void *arg)
{
 GATEKEY loopct;
 int i;

 /* preset thread gate (preset = 2) */
 loopct = TS_GetThreadGateLoadPreset ();

 for (i=0; i<=loopct; i++)
 {
 …do some thing
 }
 return
}

54 RTXC Kernel Services Reference, Volume 1

XX_GetThreadGatePreset

June 18, 2002

XX_GetThreadGatePreset
Read the content of the thread gate preset.

Zones TS_GetThreadGatePreset
 KS_GetThreadGatePreset

Synopsis GATEKEY XX_GetThreadGatePreset (THREAD thread)

Inputs

Description The XX_GetThreadGatePreset kernel service reads the content
of the thread gate preset of the specified thread and returns the
content to the caller. No change occurs to the value of the thread gate
or the thread gate preset.

Output This service returns the content of the thread gate preset as a
GATEKEY type value.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_THREAD if the specified thread ID is not valid.

FE_UNINITIALIZED_THREAD if the specified thread has not yet
been initialized.

Example In Example 2-19, the Current Thread reads its own thread gate
preset value.

Example 2-19. Read Thread Gate Preset

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

GATEKEY presetvalue;

presetvalue = TS_GetThreadGatePreset (SELFTHREAD);

... continue

thread The handle of the thread containing the thread gate to read.
The thread handle can be that of the Current Thread, which
is assumed if the thread handle is zero (0).

Chapter 2: Thread Services 55

TS_GetThreadID

June 18, 2002

TS_GetThreadID
Read the Current Thread’s ID.

Synopsis THREAD TS_GetThreadID (void)

Inputs This service has no inputs.

Description The TS_GetThreadID kernel service reads the Current Thread’s
ID and returns it to the Current Thread.

Output This service returns the Current Thread’s ID as a THREAD type value.

Example Example 2-20, the Current Thread reads its own thread ID.

Example 2-20. Read Current Thread ID

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

THREAD thread;

thread = TS_GetThreadID ();

... continue

56 RTXC Kernel Services Reference, Volume 1

KS_GetThreadName

June 18, 2002

KS_GetThreadName
Get the thread’s name.

Synopsis char * KS_GetThreadName (THREAD thread)

Input

Description The KS_GetThreadName kernel service obtains a pointer to the
null-terminated string containing the name of the specified thread.
The thread may be static or dynamic.

Note: To use this service on static threads, you must enable
the Static Names attribute of the Thread class during system
generation.

Output If thread has a name, this service returns a pointer to its null-
terminated name string.

If thread has no name, the service returns a null pointer
((char *)0).

Error This service may generate the following fatal error code:

FE_ILLEGAL_THREAD if the specified thread ID is not valid.

Example In Example 2-21 on page 57, the Current Task reports the name of
the dynamic thread specified in dynthread.

thread The handle of the thread being queried.

Chapter 2: Thread Services 57

KS_GetThreadName

June 18, 2002

Example 2-21. Read Thread Name

#include <stdio.h> /* standard i/o */
#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

static char buf[128];
THREAD dynthread;
char *pname;

if ((pname = KS_GetThreadName (dynthread)) == (char *)0)
 sprintf (buf, "Thread %d has no name", dynthread);
else
 sprintf (buf, "Thread %d name is %s", dynthread, pname);

putline (buf);

See Also KS_DefThreadName, page 34

58 RTXC Kernel Services Reference, Volume 1

XX_GetThreadProp

June 18, 2002

XX_GetThreadProp
Get the properties of the specified thread.

Zones TS_GetThreadProp
 KS_GetThreadProp

Synopsis void XX_GetThreadProp (THREAD thread,
THREADPROP *pthreadprop)

Inputs

Description The XX_GetThreadProp kernel service obtains all of the property
values of the specified thread in a single call. The thread input
argument may specify a static or a dynamic thread. The service
stores the property values in the THREADPROP structure pointed to by
pthreadprop and returns to the caller.

The THREADPROP structure has the following organization:

typedef struct _threadprop
{
 KATTR attributes; /* thread attributes */
 TLEVEL level; /* thread base level */
 TORDER order; /* thread order */
 void (*threadentry)(void *, void *);
 /* current entry point address */
} THREADPROP;

The entry point of the thread is specified by threadentry in the
THREADPROP structure. At the initialization of the thread, threadentry
should contain thread’s initial entry point. The content of threadentry
is subject to change through the use of the XX_DefThreadProp
kernel service as well as the more direct XX_DefThreadEntry
kernel service.

thread The handle of the thread being queried. The thread
handle can be that of the Current Thread, which is
assumed if the thread handle is zero (0).

pthreadprop A pointer to a Thread properties structure in which to
store the thread’s properties.

Chapter 2: Thread Services 59

XX_GetThreadProp

June 18, 2002

Output This service returns thread’s properties in the property structure
pointed to by pthreadprop.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_THREAD if the specified thread ID is not valid.

FE_UNINITIALIZED_THREAD if the specified thread has not yet
been initialized.

Example In Example 2-22, the Current Thread changes the entry point for the
thread specified in THREADA. The Current Thread first obtains the
current properties of THREADA, then modifies the entry point in the
THREADPROP structure. It then uses the XX_DefThreadProp
service to redefine the properties for THREADA. The same results can
be obtain using the XX_DefThreadEntry service.

Example 2-22. Read Thread Properties

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kthread.h" /* THREADA */

extern void newentry (void *, void *);

THREADPROP threadprop;

/* get current Thread Properties */
TS_GetThreadProp (THREADA, &threadprop);

/* modify just the entry element */
threadprop.threadentry = newentry;

/* define the new Thread properties */
TS_DefThreadProp (THREADA, &threadprop);

... continue

See Also XX_DefThreadProp, page 36

60 RTXC Kernel Services Reference, Volume 1

XX_IncrThreadGate

June 18, 2002

XX_IncrThreadGate
Increment a thread gate.

Zones IS_IncrThreadGate
 TS_IncrThreadGate
 KS_IncrThreadGate

Synopsis KSRC XX_IncrThreadGate (THREAD thread)

Input

Description The XX_IncrThreadGate kernel service adds one (1) to the
contents of the thread gate of the specified thread. Following the
addition, the service schedules thread. The value of the thread gate
remains as incremented until another request to increment the
thread gate occurs or until thread executes and reads the thread gate
and simultaneously resets it using the
TS_GetThreadGateLoadPreset kernel service.

Incrementing the thread gate does not cause a rollover of the thread
gate should thread fail to run or to read and reset the content of the
thread gate. The value of the thread gate contents is limited to the
maximum unsigned integer value capable of being stored in the
thread gate as a value of the GATEKEY type.

If an ISR calls this service, thread is scheduled for execution.
However, execution of thread cannot occur until the current ISR and
all other ISRs are completed.

A preemption of the Current Thread occurs if thread is of a higher
priority level than the Current Thread. In such a case, execution of
thread is immediate. If thread is of the same or lower priority level,
its execution does not occur until the termination of the Current
Thread or at an even later time depending on the order number of
the thread and the scheduling protocol in use for the given priority
level.

thread The handle of the thread containing the thread gate to
increment. The thread handle can be that of the Current
Thread or it can be zero (0), representing the Current Thread.

Chapter 2: Thread Services 61

XX_IncrThreadGate

June 18, 2002

A task incrementing a thread gate is always preempted because
thread is scheduled at Zone 2, which is of higher priority than the
task operation at Zone 3.

Output This service returns a KSRC value as follows:

RC_GOOD if the service was successful.

RC_GATE_OVERFLOW if the gate content is clipped at its
maximum unsigned value.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_THREAD if the specified thread ID is not valid.

FE_UNINITIALIZED_THREAD if the specified thread has not yet
been initialized.

Example In Example 2-23, the Current Thread increments the thread gate of
the thread specified in THREADA.

Example 2-23. Increment Thread Gate

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kthread.h" /* THREADA */

/* increment THREADA's Gate */
if (TS_IncrThreadGate (THREADA) != RC_GOOD)
{
 ...must have had a gate overflow. Something may be wrong.
}
else
{
 ...thread gate incremented, THREADA scheduled, continue
}

See Also XX_DecrThreadGate, page 26
XX_GetThreadGate, page 50
XX_SetThreadGate, page 78

62 RTXC Kernel Services Reference, Volume 1

KS_LookupThread

June 18, 2002

KS_LookupThread
Look up a thread by its name to get its handle.

Synopsis KSRC KS_LookupThread (const char *pname,
THREAD *pthread)

Inputs

Description The KS_LookupThread kernel service obtains the handle of a
static or dynamic thread whose name matches the null-terminated
string pointed to by pname. The lookup process terminates when it
finds a match between the specified string and a static or dynamic
thread name or when it finds no match. The service searches
dynamic names, if any, first. If a match is found, the service stores
the thread handle in the variable pointed to by pthread.

Note: To use this service on dynamic threads, you must
enable the Dynamics attribute of the Thread class during
system generation.

To use this service on static threads, you must enable the
Static Names attribute of the Thread class during system
generation.

This service has no effect on the registration of the specified
thread by the Current Task.

The time required to perform this operation varies with the
number of thread names in use.

Output This service returns a KSRC value as follows:

RC_GOOD if the search succeeds. The service stores the matching
thread’s handle in the variable pointed to by pthread.

pname A pointer to the null-terminated name string for the thread.

pthread A pointer to a variable in which to store the matching thread’s
handle, if found.

Chapter 2: Thread Services 63

KS_LookupThread

June 18, 2002

RC_OBJECT_NOT_FOUND if the service finds no matching thread
name.

Example In Example 2-24, the Current Task needs to use the DynThread2
dynamic thread. If the thread name is found, the example outputs
the thread handle to the console in a brief message.

Example 2-24. Look Up Thread by Name

#include <stdio.h> /* standard i/o */
#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

THREAD dynthread;
static char buf[128];

/* lookup the thread name to see if it exists */
if (KS_LookupThread ("DynThread2", &dynthread) != RC_GOOD)
{
 putline ("Thread DynThread2 name not found");
}
else /* thread exists */
{
 sprintf (buf, "DynThread2 is thread %d", dynthread);
 putline (buf);
}

See Also KS_DefThreadName, page 34
KS_GetThreadName, page 56

64 RTXC Kernel Services Reference, Volume 1

TS_LowerThreadLevel

June 18, 2002

TS_LowerThreadLevel
Lower the Current Thread’s execution priority level.

Synopsis KSRC TS_LowerThreadLevel (TLEVEL newlevel)

Input

Description The TS_LowerThreadLevel kernel service lowers the Current
Thread’s execution priority level to the value specified in newlevel. If
newlevel is zero (0), the service returns the Current Thread to its base
execution priority level. If newlevel specifies an execution priority
level less than the Current Thread’s base execution priority level, the
thread’s base execution priority level is substituted for the value of
newlevel and the operation proceeds but with a notification of the
condition.

Note: The priority of a level decreases as its numerical value
increases.

This service may cause a preemption of the Current Thread
if newlevel or the base execution priority level of the Current
Thread is a lower execution priority than a thread scheduled
by the Current Thread during the time when it is at a
priority level higher than its base execution priority level.

Output This service returns a KSRC value as follows:

RC_GOOD if the service was successful.

RC_REQUESTED_LEVEL_TOO_LOW if the new execution priority
level is lower than the base execution priority level of the thread.

Error This service may generate the following fatal error code:

FE_ILLEGAL_LEVEL if the specified level is not valid.

newlevel The new temporary execution priority level for the Current
Thread.

Chapter 2: Thread Services 65

TS_LowerThreadLevel

June 18, 2002

Example In Example 2-25, the Current Thread raises its current execution
level to the maximum level, executes some critical function, and then
lowers its level back to its previously defined value.

Example 2-25. Lower Current Thread Execution Priority Level

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

TLEVEL tlevel, higherlevel;

/* get Current Thread's execution level */
tlevel = TS_GetThreadCurrentLevel ();

/* raise execution level to a higher level */
TS_RaiseThreadLevel (higherlevel);

... perform some critical operation

/* restore execution level to previously defined value */
TS_LowerThreadLevel (tlevel);

... continue

See Also TS_RaiseThreadLevel, page 70

66 RTXC Kernel Services Reference, Volume 1

XX_ORThreadGateBits

June 18, 2002

XX_ORThreadGateBits
Set the bits in a thread gate using logical OR.

Zones IS_ORThreadGateBits
 TS_ORThreadGateBits
 KS_ORThreadGateBits

Synopsis KSRC XX_ORThreadGateBits (THREAD thread,
GATEKEY gatekey)

Inputs

Description The XX_ORThreadGateBits kernel service sets bits in the thread
gate of the specified thread. Because the service uses a logical OR
operation to set bits in the thread gate, the operation results in the
thread gate having a non-zero value if gatekey is non-zero. As a result,
the service schedules thread. The value of the thread gate remains
intact until thread reads it and simultaneously resets it using the
TS_GetThreadGateLoadPreset kernel service, or until a
XX_IncrThreadGate or XX_ORThreadGateBits kernel
service occurs before thread can execute.

If the content of gatekey is zero (0), there is no change to the thread
gate and control returns to the caller without scheduling thread.

If an ISR calls this service, it causes the scheduling of thread.
However, execution of thread cannot occur until the current ISR and
all other ISRs are completed.

A preemption of the Current Thread may occur if thread is of a
higher priority level than the Current Thread. In such a case,
execution of thread is immediate. If thread is of the same or lower
priority level, its execution does not occur until the termination of
the Current Thread or at an even later time depending on the order

thread The handle of the thread containing the thread gate to
change. The thread handle can be that of the Current Thread
or it can be zero (0), representing the Current Thread.

gatekey A mask containing the bits to set in the thread gate of the
specified thread. A value of zero (0) is treated as a non-
operation.

Chapter 2: Thread Services 67

XX_ORThreadGateBits

June 18, 2002

number of the thread and the scheduling protocol in use for the
given priority level.

Output This service returns a KSRC value as follows:

RC_GOOD if the service was successful.

RC_GATE_OVERSIGNAL if gate contains bits that are set (already
a one (1)) before the OR operation. This return code is not
necessarily an error condition but the service reports it in case
the caller needs to take action should it occur.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_THREAD if the specified thread ID is not valid.

FE_UNINITIALIZED_THREAD if the specified thread has not yet
been initialized.

Example In Example 2-26, the Current Thread ORs a bit into the gate of the
thread specified in THREADA, which has the additional effect of
scheduling THREADA.

Example 2-26. Set Thread Gate Bits

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kthread.h" /* THREADA */

/* OR bit in thread gate */
TS_ORThreadGateBits (THREADA, (GATEKEY)0x800);

... THREADA was scheduled, continue

See Also XX_ClearThreadGateBits, page 23
XX_GetThreadGatePreset, page 54

68 RTXC Kernel Services Reference, Volume 1

XX_PresetThreadGate

June 18, 2002

XX_PresetThreadGate
Set the new thread gate value to the current thread gate preset value.

Zones TS_PresetThreadGate
 KS_PresetThreadGate

Synopsis void XX_PresetThreadGate(THREAD thread)

Inputs

Description The XX_PresetThreadGate kernel service moves the content of
the specified thread’s thread gate preset into that thread’s thread gate
value. The new thread gate value is put into effect immediately.
There is no effect on the thread gate preset value.

Note: This service does not cause thread to be scheduled.

Output This service does not return a value.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_THREAD if the specified thread ID is not valid.

FE_UNINITIALIZED_THREAD if the specified thread has not
yet been initialized.

Example In Example 2-27 on page 69, the Current Thread changes its thread
gate to its thread gate preset values in preparation for taking some
new operational path on its next execution cycle.

thread The handle of the thread containing the thread gate to be set.
The thread handle can be that of the Current Thread or it can
be zero (0), representing the Current Thread.

Chapter 2: Thread Services 69

XX_PresetThreadGate

June 18, 2002

Example 2-27. Set Thread Gate with Thread Gate Preset

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kproject.h"

TS_PresetThreadGate(SELFTHREAD);

... continue

See Also XX_GetThreadGate, page 50
TS_GetThreadGateLoadPreset, page 52
XX_GetThreadGatePreset, page 54
XX_SetThreadGate, page 78
XX_SetThreadGatePreset, page 80

70 RTXC Kernel Services Reference, Volume 1

TS_RaiseThreadLevel

June 18, 2002

TS_RaiseThreadLevel
Raise the Current Thread’s execution priority level.

Synopsis KSRC TS_RaiseThreadLevel (TLEVEL newlevel)

Input

Description The TS_RaiseThreadLevel kernel service temporarily raises the
Current Thread’s execution priority level to the value specified in
newlevel. If the value of newlevel is zero (0), the service causes no
change to the thread’s priority level and returns a value indicative of
the condition. If newlevel specifies an execution priority level less
than the Current Thread’s base execution priority level, the base
execution priority level is substituted for the value of newlevel and the
operation proceeds but with a notification of the condition.

After raising its execution priority, the thread must lower its
execution priority level to the original level before completing
operation by calling the TS_LowerThreadLevel service.

Output This service returns a KSRC value as follows:

RC_GOOD if the service was successful.

RC_ILLEGAL_LEVEL if the new execution priority level is zero
(0).

RC_REQUESTED_LEVEL_TOO_LOW if the new execution priority
level is lower than the Current Thread’s base execution priority
level.

Error This service may generate the following fatal error code:

FE_ILLEGAL_LEVEL if the specified level is not valid.

Example In Example 2-28 on page 71, the Current Thread raises its current
execution level to level 2, executes some function, and then lowers its
level back to its previously defined value.

newlevel The new execution priority level for the Current Thread. It
can be the handle of the level at the desired priority.

Chapter 2: Thread Services 71

TS_RaiseThreadLevel

June 18, 2002

Example 2-28. Raise Current Thread Execution Priority Level

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

TLEVEL tlevel;

/* get current Thread's execution level */
tlevel = TS_GetThreadCurrentLevel ();

/* raise execution level to 2 */
TS_RaiseThreadLevel ((TLEVEL)2);

... perform some critical operation

/* restore execution level to previously defined value */
TS_LowerThreadLevel (tlevel);

... continue

See Also TS_LowerThreadLevel, page 64

72 RTXC Kernel Services Reference, Volume 1

XX_ScheduleThread

June 18, 2002

XX_ScheduleThread
Schedule execution of a thread.

Zones IS_ScheduleThread
 TS_ScheduleThread
 KS_ScheduleThread

Synopsis KSRC XX_ScheduleThread (THREAD thread)

Input

Description The XX_ScheduleThread kernel service schedules the specified
thread for execution.

If the Current Thread calls this service, thread preempts the Current
Thread if thread has an execution priority level higher than the
Current Thread. Otherwise, there is no preemption and thread
begins execution after the completion of the Current Thread’s
operation, but not necessarily immediately afterwards.

If the Current Task (in Zone 3) calls this service, thread preempts the
Current Task regardless of execution priority because thread executes
in Zone 2.

If an ISR calls this service, the ISR must be completely serviced as
well as any other ISRs and threads of higher execution priority levels
before thread may begin its execution. If the Current Thread (Zone
2) is interrupted and is of lower execution priority than thread, the
Current Thread is preempted to allow thread to start immediately.

Note: This service does not define or redefine thread’s
argument pointer or environment argument pointer. As a
consequence, the RTXC/ss Scheduler passes those two
values as they exist at the time of thread’s next execution
cycle.

thread The handle of the thread to schedule. A thread value of zero
(0) is legal, allowing the Current Thread to schedule itself.

Chapter 2: Thread Services 73

XX_ScheduleThread

June 18, 2002

Warning: If a thread has been scheduled more than once
since its last execution cycle, it is considered to be over
scheduled. Regardless of the number of schedule requests in
an over-scheduled condition, only one will cause the thread
to execute. The condition is not necessarily an error but the
RTXC Kernel reports the condition in case the caller needs to
take special action.

Output This service returns a KSRC value as follows:

RC_GOOD if the service was successful.

RC_OVER_SCHEDULED if the service attempts to schedule a
thread and the thread has already been scheduled.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_THREAD if the specified thread ID is not valid.

FE_UNINITIALIZED_THREAD if the specified thread has not yet
been initialized.

Example In Example 2-29, the Current Thread schedules the thread specified
in THREADA to execute.

Example 2-29. Schedule Thread Execution

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kthread.h" /* THREADA */

if (TS_ScheduleThread (THREADA) != RC_GOOD)
{
 ... THREADA already scheduled
}
else
{
 ... THREADA was scheduled, continue
}

... continue

74 RTXC Kernel Services Reference, Volume 1

XX_ScheduleThread

June 18, 2002

See Also TS_DisableThreadScheduler, page 38
TS_EnableThreadScheduler, page 39
XX_ScheduleThreadArg, page 75

Chapter 2: Thread Services 75

XX_ScheduleThreadArg

June 18, 2002

XX_ScheduleThreadArg
Schedule execution of a thread and define a new argument.

Zones IS_ScheduleThreadArg
 TS_ScheduleThreadArg
 KS_ScheduleThreadArg

Synopsis KSRC XX_ScheduleThreadArg (THREAD thread,
void *parg)

Inputs

Description The XX_ScheduleThreadArg kernel service schedules the
specified thread for execution using the arguments pointed to by
parg.

If the Current Thread calls this service, thread preempts the Current
Thread if thread has an execution priority level higher than the
Current Thread. Otherwise, there is no preemption and thread
begins execution after the completion of the Current Thread’s
operation.

If the Current Task (in Zone 3) calls this service, thread preempts the
Current Task regardless of execution priority because thread executes
in Zone 2.

If an ISR calls this service, the ISR must be completely serviced as
well as any other ISRs and threads of higher execution priority levels
before thread may begin its execution. If the Current Thread (Zone
2) is interrupted and is of lower execution priority than thread, the
Current Thread is preempted to allow thread to start immediately.

Note: The parg argument can be a pointer or it can be a
scalar datum. If the former, it should not be a null pointer
((void *)0). If used as a scalar, parg can be any legal value.

thread The handle of the thread to schedule. A thread value of zero
(0) is legal, allowing the Current Thread can schedule itself.

parg A pointer to the execution argument of the specified thread.

76 RTXC Kernel Services Reference, Volume 1

XX_ScheduleThreadArg

June 18, 2002

Warning: If a thread has been scheduled more than once
since its last execution cycle, it is considered to be over
scheduled. Regardless of the number of schedule requests in
an over-scheduled condition, only one will cause the thread
to execute. The condition is not necessarily an error but the
RTXC Kernel reports the condition in case the caller needs to
take special action.

Output This service returns a KSRC value as follows:

RC_GOOD if the service was successful.

RC_OVER_SCHEDULED if the service attempts to schedule a
thread and the thread has already been scheduled.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_THREAD if the specified thread ID is not valid.

FE_UNINITIALIZED_THREAD if the specified thread has not yet
been initialized.

Example In Example 2-30 on page 77, the Current Thread schedules the
thread specified in THREADA to execute and defines a new argument.

Chapter 2: Thread Services 77

XX_ScheduleThreadArg

June 18, 2002

Example 2-30. Schedule Thread Execution with New Argument

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kthread.h" /* THREADA */

char newbuf[80];

if (TS_ScheduleThreadArg (THREADA, (void *)&newbuf[0]) != RC_GOOD)
{
... THREADA already scheduled
}
else
{
... THREADA was scheduled, continue
}

... continue

See Also XX_ScheduleThread, page 72

78 RTXC Kernel Services Reference, Volume 1

XX_SetThreadGate

June 18, 2002

XX_SetThreadGate
Set new thread gate and thread gate preset values.

Zones TS_SetThreadGate
 KS_SetThreadGate

Synopsis void XX_SetThreadGate (THREAD thread,
GATEKEY gatekey)

Inputs

Description The XX_SetThreadGate kernel service moves the content of
gatekey into the specified thread’s thread gate and thread gate preset.
The new thread gate value is put into effect immediately. The new
thread gate preset value does not have any effect until the next time
thread is scheduled as the result of a call to the
XX_ClearThreadGateBits, XX_DecrThreadGate, or
TS_GetThreadGateLoadPreset services.

Note: This service does not cause thread to be scheduled.

Output This service does not return a value.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_THREAD if the specified thread ID is not valid.

FE_UNINITIALIZED_THREAD if the specified thread has not yet
been initialized.

thread The handle of the thread containing the thread gate to being
set. The thread handle can be that of the Current Thread,
which is assumed if the thread handle is zero (0).

gatekey The new value to store in the thread gate and thread gate
preset of the specified thread.

Chapter 2: Thread Services 79

XX_SetThreadGate

June 18, 2002

Example In Example 2-31, the Current Thread changes its thread gate and
thread gate preset values in preparation for taking some new
operational path on its next execution cycle.

Example 2-31. Set Thread Gate and Thread Gate Preset

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

TS_SetThreadGate (SELFTHREAD, (GATEKEY)5);

... continue

See Also XX_ClearThreadGateBits, page 23
XX_DecrThreadGate, page 26
XX_GetThreadGate, page 50
XX_IncrThreadGate, page 60
XX_ORThreadGateBits, page 66

80 RTXC Kernel Services Reference, Volume 1

XX_SetThreadGatePreset

June 18, 2002

XX_SetThreadGatePreset
Set a new thread gate preset value.

Zones TS_SetThreadGatePreset
 KS_SetThreadGatePreset

Synopsis void XX_SetThreadGatePreset (THREAD thread,
GATEKEY gatekey)

Inputs

Description The XX_SetThreadGatePreset kernel service moves the
content of gatekey into the specified thread’s thread gate preset. The
new thread gate preset value does not have any effect until the next
time thread is scheduled as the result of a call to the
XX_ClearThreadGateBits, XX_DecrThreadGate, or
TS_GetThreadGateLoadPreset services.

Output This service does not returns a value.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_THREAD if the specified thread ID is not valid.

FE_UNINITIALIZED_THREAD if the specified thread has not yet
been initialized.

Example In Example 2-32 on page 81, the Current Thread changes its thread
gate preset value in preparation for taking some new operational
path on its next execution cycle.

thread The handle of the thread containing the thread gate being set.
The thread handle can be that of the Current Thread, which
is assumed if the thread handle is zero (0).

gatekey The new value to store in the thread gate preset of the
specified thread.

Chapter 2: Thread Services 81

XX_SetThreadGatePreset

June 18, 2002

Example 2-32. Set Thread Gate Preset

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

TS_SetThreadGatePreset (SELFTHREAD, (GATEKEY)5);

... continue

See Also XX_GetThreadGatePreset, page 54

82 RTXC Kernel Services Reference, Volume 1

INIT_ThreadClassProp

June 18, 2002

INIT_ThreadClassProp
Initialize the Thread object class properties.

Synopsis KSRC INIT_ThreadClassProp
(const KCLASSPROP *pclassprop)

Input

Description During the RTXC Kernel initialization procedure (usually performed
in Zone 3), you must define the kernel objects needed by the RTXC
Kernel to perform the application. The INIT_ThreadClassProp
kernel service allocates space for the Thread object class in system
RAM. The amount of RAM to allocate, and all other properties of the
class, should be specified in the structure pointed to by pclassprop.

The KCLASSPROP structure has the following organization:

typedef struct
{
 KATTR attributes;
 KOBJECT n_statics; /* number of static objects */
 KOBJECT n_dynamics; /* number of dynamic objects */
 short objsize; /* used for calculating offsets */
 short totalsize; /* used to alloc object array RAM */
 ksize_t namelen; /* length of the name string */
 const char *pstaticnames;
} KCLASSPROP;

The attributes element of the Thread property structure supports the
attributes and corresponding masks listed in Table 2-1 on page 45.

Output This service returns a KSRC value as follows:

RC_GOOD if the service completes successfully.

RC_NO_RAM if the initialization fails because there is insufficient
system RAM available.

Example During system initialization, the startup code must initialize the
Thread object class before using any kernel service for that class. In
Example 2-33 on page 83, the system generation process produced a

pclassprop A pointer to a Thread object class properties structure.

Chapter 2: Thread Services 83

INIT_ThreadClassProp

June 18, 2002

KCLASSPROP structure containing the information about the kernel
class necessary for its initialization. That structure is referenced
externally to the code.

Example 2-33. Initialize Thread Object Class

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

extern const SYSPROP sysprop;
extern const KCLASSPROP threadclassprop;
extern const THREADPROP threadprop[];

KSRC rtxcinit (void)
{
 KOBJECT objnum;
 KSRC ksrc;

 /* initialize the RTXCdsp workspace and class/object data */
 if ((ksrc = INIT_SysProp (&sysprop)) != RC_GOOD)
 return ksrc;

 /* initialize the THREAD class/object data */
 if ((ksrc = INIT_ThreadClassProp (&threadclassprop)) != RC_GOOD)
 return ksrc;

 for (objnum = 1; objnum <= threadclassprop.n_statics; objnum++)
 {
 KS_DefThreadProp (objnum, &threadprop[objnum]);
 }

 ... continue with system initialization

See Also KS_GetThreadClassProp, page 44

84 RTXC Kernel Services Reference, Volume 1

XX_UnscheduleThread

June 18, 2002

XX_UnscheduleThread
Unschedule execution of a thread.

Zones IS_ScheduleThread
 TS_ScheduleThread

Synopsis void XX_UnscheduleThread (THREAD thread)

Input

Description The XX_UnscheduleThread kernel service unschedules the
execution of the specified thread.

Regardless of the zone from which the code entity calls this service,
the specified thread is unscheduled. It does not receive control of the
processor until such time as it is again scheduled and the RTXC/ss
Scheduler grants it control of the processor.

Note: This service has no effect on a thread that is already
executing.

Output This service returns no value.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_THREAD if the specified thread ID is not valid.

FE_UNINITIALIZED_THREAD if the specified thread has not yet
been initialized.

Example In Example 2-34 on page 85, the Current Thread unschedules the
execution of the thread specified in THREADA.

thread The handle of the thread to unschedule. A thread value of
zero (0) is legal, allowing the Current Thread to unschedule
itself.

Chapter 2: Thread Services 85

XX_UnscheduleThread

June 18, 2002

Example 2-34. Unschedule Thread Execution

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kthread.h" /* THREADA */

TS_UnscheduleThread (THREADA);

... continue

See Also XX_ScheduleThread

86 RTXC Kernel Services Reference, Volume 1

XX_UnscheduleThread

June 18, 2002

Chapter 3: Exception Services 87

June 18, 2002

C H A P T E R 3 Exception Services

In This Chapter
We describe the Exception kernel services in detail. The Exception
services perform a limited number of special operations while CPU
control is in an interrupt service routine.

KS_CloseException...88

KS_DefExceptionName... 90

XX_DefExceptionProp..92

INIT_ExceptionClassProp ..94

KS_GetExceptionClassProp .. 96

KS_GetExceptionName..98

XX_GetExceptionProp..100

KS_LookupException ... 102

KS_OpenException .. 104

KS_UseException ... 107

88 RTXC Kernel Services Reference, Volume 1

KS_CloseException

June 18, 2002

KS_CloseException
End the use of a dynamic exception.

Synopsis KSRC KS_CloseException (EXCPTN xeptn)

Input

Description The KS_CloseException kernel service ends the Current Task’s
use of the dynamic exception specified in xeptn. When closing the
exception, the kernel detaches the caller’s use of it. If the caller is the
last user of the exception, the service releases the exception to the
free pool of dynamic exceptions for reuse. If there is at least one
other task still using the exception, the kernel does not release the
exception to the free pool but the service completes successfully.

Note: To use this service, you must enable the Dynamics
attribute of the Exception class during system generation.

Output This service returns a KSRC value as follows:

RC_GOOD if the service is successful.

RC_STATIC_OBJECT if the specified exception is not dynamic.

RC_OBJECT_NOT_INUSE if the specified exception does not
correspond to an active dynamic exception.

RC_OBJECT_INUSE if the Current Task’s use of the specified
exception is closed but the exception remains open for use by
other tasks.

Note: RC_OBJECT_INUSE does not necessarily indicate an
error condition. The calling task must interpret its meaning.

Error This service may generate the following fatal error code:

FE_ILLEGAL_EXCEPTION if the specified exception ID is not valid.

xeptn The handle of the exception to be closed.

Chapter 3: Exception Services 89

KS_CloseException

June 18, 2002

Example Example 3-1 waits on a signal from another task indicating that it is
time to close a dynamic exception. The handle of the dynamic
exception is specified in dynxeptn. When the signal is received, the
Current Task closes the associated exception.

Example 3-1. Close Exception

#include "rtxcapi.h" /* RTXC Kernel Services prototypes */

EXCPTN dynxeptn;
SEMA dynsema;

KS_TestSemaW (dynsema); /* wait for signal */

/* then close exception */
if (KS_CloseException (dynxeptn) != RC_GOOD)
{
 ...something is wrong. Deal with it here;
}

See Also KS_OpenException, page 104
XX_DefExceptionProp, page 92

90 RTXC Kernel Services Reference, Volume 1

KS_DefExceptionName

June 18, 2002

KS_DefExceptionName
Define the name of a previously opened exception.

Synopsis KSRC KS_DefExceptionName (EXCPTN xeptn,
const char *pname)

Inputs

Description The KS_DefExceptionName kernel service names or renames
the dynamic exception specified in xeptn. The service uses the null-
terminated string pointed to by pname for the exception’s new name.

Static exceptions cannot be named or renamed under program
control.

Note: To use this service, you must enable the Dynamics
attribute of the Exception class during system generation.

This service does not check for duplicate exception names.

Output This service returns a KSRC value as follows:

RC_GOOD if the service completes successfully.

RC_STATIC_OBJECT if the exception being named is static.

RC_OBJECT_NOT_FOUND if the Dynamics attribute of the
exception class is not enabled.

RC_OBJECT_NOT_INUSE if the specified exception does not
correspond to an active dynamic exception.

Error This service may generate the following fatal error code:

FE_ILLEGAL_EXCEPTION if the specified exception ID is not valid.

xeptn The handle of the exception being defined.

pname A pointer to a null-terminated name string.

Chapter 3: Exception Services 91

KS_DefExceptionName

June 18, 2002

Example Example 3-2 assigns the name NewExeptn to the previously opened
exception specified in the dynxeptn variable so other users may
reference it by name.

Example 3-2. Define Exception Name

#include "rtxcapi.h" /* RTXC Kernel Services prototypes */

EXCPTN dynxeptn;

if (KS_DefExceptionName (dynxeptn, "NewExeptn") != RC_GOOD)
{
 ... Probably is a static exception. Deal with it here
}

... naming operation was successful. Continue

See Also KS_OpenException, page 104
KS_GetExceptionName, page 98
KS_LookupException, page 102
KS_UseException, page 107

92 RTXC Kernel Services Reference, Volume 1

XX_DefExceptionProp

June 18, 2002

XX_DefExceptionProp
Define the properties of an exception.

Zones TS_DefExceptionProp
 KS_DefExceptionProp

Synopsis void XX_DefExceptionProp (EXCPTN xeptn,
const EXCPTNPROP *pxeptnprop)

Inputs

Description The XX_DefExceptionProp kernel service defines the properties
of the exception specified in xeptn using the values contained in the
EXCPTNPROP structure pointed to by pxeptnprop.

Example 3-3 shows the organization of the EXCPTNPROP structure.

Example 3-3. Exception Properties Structure

typedef struct
{
 KATTR attributes; /* attributes */
 unsigned char level; /* processor interrupt level (IPL) */
 unsigned char vector; /* vector number*/
 void (*handler)(void); /* ISR Prologue address */
} EXCPTNPROP;

Output This service does not return a value.

Error This service may generate one of the following fatal error codes:

FE_ILLEGAL_EXCEPTION if the specified exception ID is not
valid.

FE_NULL_EXCEPTIONHANDLER if the specified exception
handler address is null.

xeptn The handle of the exception being defined.

pxeptnprop A pointer to an exception properties structure.

Chapter 3: Exception Services 93

XX_DefExceptionProp

June 18, 2002

Example Example 3-4 on page 93 allocates a dynamic exception with the
following properties: The interrupt level is 5, the vector for the
interrupt is 64. The exception function is Handler.

Example 3-4. Define Exception Properties

#include "rtxcapi.h" /* RTXC Kernel Services prototypes */
#include "ktask.h" /* TASK5 */

EXCPTN dynxeptn;
static EXCPTNPROP xeptnprop;
extern void Handler (void);

if (KS_OpenException ((char *)0, &dynxeptn) != RC_GOOD)
{
 ... something wrong. Deal with it here
}

/* define the properties of the dynamic exception */
xeptnprop.attributes = 0;
xeptnprop.level = 5;
xeptnprop.vector = 64;
xeptnprop.handler = Handler;
KS_DefExceptionProp (dynxeptn, &xeptnprop);

 ...continue processing

See Also XX_GetExceptionProp, page 100
INIT_ExceptionClassProp, page 94
KS_OpenException, page 104

94 RTXC Kernel Services Reference, Volume 1

INIT_ExceptionClassProp

June 18, 2002

INIT_ExceptionClassProp
Initialize the Exception object class properties.

Synopsis KSRC INIT_ExceptionClassProp
(const KCLASSPROP *pclassprop)

Inputs

Description During the RTXC Kernel initialization procedure, you must define
the kernel objects needed by the kernel to perform the application.
The INIT_ExceptionClassProp kernel service allocates space
for the exception object class in system RAM. The amount of RAM
to allocate, and all other properties of the class, are specified in the
KCLASSPROP structure pointed to by pclassprop.

Example 2-13 on page 44 shows the organization of the KCLASSPROP
structure.

The attributes element of the Exception KCLASSPROP structure
supports the class property attributes and masks listed in Table 3-1
on page 96.

Output This service returns a KSRC value as follows:

RC_GOOD if the service completes successfully.

RC_NO_RAM if the initialization fails because there is insufficient
system RAM available.

Example During system initialization, the startup code must initialize the
Exception object class before using any kernel service for that class.
The system generation process produces a KCLASSPROP structure
containing the information about the kernel object necessary for its
initialization. Example 3-5 on page 95 references that structure
externally to the code module.

pclassprop A pointer to an exception object class properties structure.

Chapter 3: Exception Services 95

INIT_ExceptionClassProp

June 18, 2002

Example 3-5. Initialize Exception Object Class

#include "rtxcapi.h" /* RTXC Kernel Services prototypes */

extern const SYSPROP sysprop;
extern const KCLASSPROP xeptnclassprop;

KSRC userinit (void)
{
 KSRC ksrc;

 /* initialize the kernel workspace and allocate RAM */
 /* for required classes, etc. */

 if ((ksrc = InitSysProp (&sysprop)) != RC_GOOD)
 {
 putline ("Kernel initialization failure");
 return (ksrc); /* end initialization process */
 }
 /* kernel is initialized */

 /* Need to initialize the necessary kernel object classes */

 /* Initialize the Exception kernel object class */
 if ((ksrc = INIT_ExceptionClassProp (&xeptnclassprop))
 != RC_GOOD)
 {
 putline ("No RAM for Exception init");
 return (ksrc); /* end initialization process */
 }

... Continue with system initialization
}

See Also INIT_SysProp, page 284
KS_GetExceptionClassProp, page 96

96 RTXC Kernel Services Reference, Volume 1

KS_GetExceptionClassProp

June 18, 2002

KS_GetExceptionClassProp
Get the Exception object class properties.

Synopsis const KCLASSPROP * KS_GetExceptionClassProp
(int *pint)

Input

Description The KS_GetExceptionClassProp kernel service obtains a
pointer to the KCLASSPROP structure that was used during system
initialization by the INIT_ExceptionClassProp service to
initialize the exception object class properties. If pint is not null
((int *)0), the service returns the number of available dynamic
exceptions in the variable pointed to by pint.

Example 2-13 on page 44 shows the organization of the KCLASSPROP
structure.

The attributes element of the Exception KCLASSPROP structure
supports the class property attributes and corresponding masks
listed in Table 3-1.

Output If successful, this service returns a pointer to a KCLASSPROP
structure.

If the Exception class is not initialized, the service returns a null
pointer ((KCLASSPROP *)0).

Example Example 3-6 on page 97 accesses to the information contained in the
KCLASSPROP structure for the Exception object class.

pint A pointer to a variable in which to store the number of
available dynamic exceptions.

Table 3-1. Exception Class Attributes and Masks

Attribute Mask

Static Names ATTR_STATIC_NAMES

Dynamics ATTR_DYNAMICS

Chapter 3: Exception Services 97

KS_GetExceptionClassProp

June 18, 2002

Example 3-6. Read Exception Object Class Properties

#include "rtxcapi.h" /* RTXC Kernel Services prototypes */

KCLASSPROP *pxeptnclassprop;
int free_dyn;

/* Get the Exception kernel object class properties */
if ((pxeptnclassprop = KS_GetExceptionClassProp (&free_dyn))
 == (KCLASSPROP *)0)
{
 putline ("Exception Class not initialized");
}
else
{
 ... Exception class information is available for use
 "free_dyn" contains the number of available dynamic exceptions
}

See Also INIT_ExceptionClassProp, page 94

98 RTXC Kernel Services Reference, Volume 1

KS_GetExceptionName

June 18, 2002

KS_GetExceptionName
Get the name of an exception.

Synopsis char * KS_GetExceptionName (EXCPTN xeptn)

Input

Description The KS_GetExceptionName kernel service obtains a pointer to
the null-terminated string containing the name of the static or
dynamic exception specified in xeptn.

Output If the exception has a name, this service returns a pointer to the null-
terminated name string.

If the exception has no name, the service returns a null pointer
((char *)0).

Error This service may generate the following fatal error code:

FE_ILLEGAL_EXCEPTION if the specified exception ID is not valid.

Example Example 3-7 reports the name of the dynamic exception specified in
dynxeptn.

Example 3-7. Read Exception Name

#include <stdio.h> /* standard i/o */
#include "rtxcapi.h" /* RTXC Kernel Services prototypes */

static char buf[128];

EXCPTN dynxeptn;
char *pname;

if ((pname = KS_GetExceptionName (dynxeptn)) == (char *)0)
 sprintf (buf, "Exception %d has no name", dynxeptn);
else
 sprintf (buf, "The name of Exception %d is %s", dynxeptn,
 pname);

putline (buf);

xeptn The handle of the exception being queried.

Chapter 3: Exception Services 99

KS_GetExceptionName

June 18, 2002

See Also KS_DefExceptionName, page 90
KS_OpenException, page 104

100 RTXC Kernel Services Reference, Volume 1

XX_GetExceptionProp

June 18, 2002

XX_GetExceptionProp
Get the properties of an exception.

Zones TS_GetExceptionProp
 KS_GetExceptionProp

Synopsis void XX_GetExceptionProp (EXCPTN xeptn,
EXCPTNPROP *pxeptnprop)

Inputs

Description The XX_GetExceptionProp kernel service obtains all of the
property values of the exception specified in xeptn in a single call.
The service stores the property values in the EXCPTNPROP structure
pointed to by pxeptnprop.

Example 3-3 on page 92 shows the organization of the EXCPTNPROP
structure.

Output This service does not return a value.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_EXCEPTION if the specified exception ID is not
valid.

FE_UNINITIALIZED_SEMA if the specified semaphore has not
yet been initialized.

Example In Example 3-8 on page 101, the Current Task needs to change the
interrupt level of the dynamic exception specified in dynxeptn to 3
but does not want to change any of the other properties. The task first
obtains the current properties, then modifies the level element in the
EXCPTNPROP structure. The task then uses
XX_DefExceptionProp to redefine the properties of the
exception.

xeptn The handle of the exception being queried.

pxeptnprop A pointer to an exception properties structure.

Chapter 3: Exception Services 101

XX_GetExceptionProp

June 18, 2002

Example 3-8. Read Exception Properties

#include "rtxcapi.h" /* RTXC Kernel Services prototypes */

EXCPTN dynxeptn;
EXCPTNPROP xeptnprop;

/* get the current exception properties */
KS_GetExceptionProp (dynxeptn, &xeptnprop);

/* modify just the level element */
xeptnprop.level = 3;

/* define the new exception properties */
KS_DefExceptionProp (dynxeptn, &xeptnprop);

See Also XX_DefExceptionProp, page 92

102 RTXC Kernel Services Reference, Volume 1

KS_LookupException

June 18, 2002

KS_LookupException
Look up an exception’s name to get its handle.

Synopsis KSRC KS_LookupException (const char *pname,
EXCPTN *pxeptn)

Inputs

Description The KS_LookupException kernel service obtains the handle of a
static or dynamic exception whose name matches the null-
terminated string pointed to by pname. The lookup process
terminates when it finds a match between the specified string and a
static or dynamic exception name or when it finds no match. The
service stores the matching exception’s handle in the variable
pointed to by pxeptn. The service searches dynamic names, if any,
first.

Note: To use this service on static mutexes, you must
enable the Static Names attribute of the Exception class
during system generation.

This service has no effect on the use registration of the
specified exception by the Current Task.

The time required to perform this operation varies with the
number of exception names in use.

Output This service returns a KSRC value as follows:

RC_GOOD if the search succeeds. The service stores the matching
exception’s handle in the variable pointed to by pxeptn.

RC_OBJECT_NOT_FOUND if the service finds no matching
exception name.

pname A pointer to a null-terminated name string.

pxeptn A pointer to a variable in which to store the matching
exception’s handle.

Chapter 3: Exception Services 103

KS_LookupException

June 18, 2002

Example In Example 3-9, the Current Task needs to use the dynamic
exception named Dynxeptn2. If the exception is found, the task
sends its exception handle to the console in a brief message.

Example 3-9. Look Up Exception by Name

#include <stdio.h> /* standard i/o */
#include "rtxcapi.h" /* RTXC Kernel Services prototypes */

static char buf[128];

EXCPTN dynxeptn;

/* lookup the exception name to see if it exists */
if (KS_LookupException ("Dynxeptn2", &dynxeptn) != RC_GOOD)
{
 putline ("Exception Dynxeptn2 name not found");
}
else /* Exception exists */
{
 sprintf (buf, "Dynxeptn2 is Exception %d", dynxeptn);
 putline (buf);
}

See Also KS_DefExceptionName, page 90
KS_OpenException, page 104

104 RTXC Kernel Services Reference, Volume 1

KS_OpenException

June 18, 2002

KS_OpenException
Allocate and name a dynamic exception.

Synopsis KSRC KS_OpenException (const char *pname,
EXCPTN *pxeptn)

Inputs

Description The KS_OpenException kernel service allocates, names, and
obtains the handle of a dynamic exception. If a dynamic exception is
available and there is no existing exception, static or dynamic, with a
name matching the null-terminated string pointed to by pname, the
service allocates a dynamic exception and applies the name
referenced by pname to the new exception. The service stores the
handle of the new dynamic exception in the variable pointed to by
pxeptn. The kernel stores only the address of the name internally,
which means that the same array cannot be used to build multiple
dynamic exception names.

If pname is a null pointer ((char *)0), the service does not assign a
name to the dynamic exception. However, if pname points to a null
string, the name is legal as long as no other exception is already
using a null string as its name.

If the service finds an existing exception with a matching name, it
does not open a new exception and returns a value indicating an
unsuccessful operation.

Note: To use this service, you must enable the Dynamics
attribute of the Exception class during system generation.

If pname is not null ((char *)0), the time required to
perform this operation is determined by the number of
exception names in use.

pname A pointer to a null-terminated name string.

pxeptn A pointer to a variable in which to store the allocated
exception’s handle.

Chapter 3: Exception Services 105

KS_OpenException

June 18, 2002

If the pointer to the timer name is null, no search of
exception names takes place and the time to perform the
service is fixed. You can define the exception name at a later
time with a call to the KS_DefExceptionName service.

Output This service returns a KSRC value as follows:

RC_GOOD if the service completes successfully.

RC_OBJECT_ALREADY_EXISTS if the name search finds another
exception whose name matches the given string.

RC_NO_OBJECT_AVAILABLE if the name search finds no match
but all dynamic exceptions are in use.

Example Example 3-10 allocates a dynamic exception and names it
SCIChnl2xeptn. If the name is found to be in use or if there are no
dynamic exceptions available, the task sends an appropriate message
to the console.

Example 3-10. Allocate and Name Exception

#include "rtxcapi.h" /* RTXC Kernel Services prototypes */

KSRC ksrc;
EXCPTN dynxeptn;

if ((ksrc = KS_OpenException ("SCIChnl2xeptn", &dynxeptn))
 != RC_GOOD)
{
 if (ksrc == RC_OBJECT_ALREADY_EXISTS)
 putline ("SCIChnl2xeptn name in use");
 else if (ksrc == RC_NO_OBJECT_AVAILABLE)
 putline ("No dynamic exceptions available");
 else
 putline ("Exceptions are not a defined class");
}
else
{
 ... Exception was opened correctly. Okay to use it now
}

106 RTXC Kernel Services Reference, Volume 1

KS_OpenException

June 18, 2002

See Also KS_CloseException, page 88
KS_LookupException, page 102
KS_UseException, page 107

Chapter 3: Exception Services 107

KS_UseException

June 18, 2002

KS_UseException
Look up a dynamic exception by name and mark it for use.

Synopsis KSRC KS_UseException (const char *pname,
EXCPTN *pxeptn)

Inputs

Description The KS_UseException kernel service acquires the handle of a
dynamic exception by looking up the null-terminated string pointed
to by pname in the list of exception names. If there is a match, the
service registers the exception for future use by the Current Task and
stores the matching exception’s handle in the variable pointed to by
pxeptn. This procedure allows the Current Task to reference the
dynamic exception successfully in subsequent kernel service calls.

Note: To use this service, you must enable the Dynamics
attribute of the Exception class during system generation.

The time required to perform this operation varies with the
number of exception names in use.

Output This service returns a KSRC value as follows:

RC_GOOD if the search is successful. The service also stores the
matching exception’s handle in the variable pointed to by pxeptn.

RC_STATIC_OBJECT if the given name belongs to a static
exception.

RC_OBJECT_NOT_FOUND if the service finds no matching
exception name.

Example Example 3-11 locates a dynamic exception named DynSCIxeptn3,
prepares it for subsequent use, and obtains its exception handle. It

pname A pointer to a null-terminated name string.

pxeptn A pointer to a variable in which to store the allocated
exception’s handle.

108 RTXC Kernel Services Reference, Volume 1

KS_UseException

June 18, 2002

then sends a message to the console indicating the handle of the
exception if successful or an error message if unsuccessful.

Example 3-11. Read Exception Handle and Register It

#include <stdio.h> /* standard i/o */
#include "rtxcapi.h" /* RTXC Kernel Services prototypes */

static char buf[128];

EXCPTN dynxeptn;

if (KS_UseException ("DynSCIxeptn3", &dynxeptn) != RC_GOOD)
{
 ... exception is either static or not found
 ... need to handle that here
}
else
{
 /* Exception was found and its handle is in dynxeptn. */
 sprintf (buf, "DynSCIxeptn3 is Exception %d", dynxeptn);
 putline (buf);
}

See Also XX_DefExceptionProp, page 92
KS_DefExceptionName, page 90
KS_OpenException, page 104

Chapter 4: Pipe Services 109

June 18, 2002

C H A P T E R 4 Pipe Services

In This Chapter
We describe the Pipe kernel services in detail. The Pipe kernel
services move data between a single producer and a single consumer
and maintain information about pipe states.

KS_ClosePipe.. 110

XX_DefPipeAction ...112

XX_DefPipeProp.. 115

KS_DefPipeName..118

XX_GetEmptyPipeBuf .. 120

XX_GetFullPipeBuf... 122

XX_GetPipeBufSize .. 124

KS_GetPipeClassProp .. 126

KS_GetPipeName... 128

XX_GetPipeProp... 130

XX_JamFullGetEmptyPipeBuf...132

XX_JamFullPipeBuf .. 136

KS_LookupPipe ...138

KS_OpenPipe ... 140

INIT_PipeClassProp... 142

XX_PutEmptyGetFullPipeBuf... 144

XX_PutEmptyPipeBuf... 147

XX_PutFullGetEmptyPipeBuf... 149

XX_PutFullPipeBuf ..152

KS_UsePipe ...154

110 RTXC Kernel Services Reference, Volume 1

KS_ClosePipe

June 18, 2002

KS_ClosePipe
End the use of a dynamic pipe.

Synopsis KSRC KS_ClosePipe (PIPE pipe)

Input

Description The KS_UsePipe kernel service ends the Current Task’s use of the
specified dynamic pipe. When closing pipe, the kernel detaches the
caller’s use of it. If the caller is the last task associated with pipe, the
kernel releases pipe to the free pool of dynamic pipes for reuse. If
there is at least one other task still referencing pipe, the kernel does
not release the pipe to the free pool but the service completes
successfully.

Note: To use this service, you must enable the Dynamics
attribute of the Pipe class during system generation.

Output This service returns a KSRC value as follows:

RC_GOOD if the service was successful.

RC_STATIC_OBJECT if the specified pipe is not dynamic.

RC_OBJECT_NOT_INUSE if the specified pipe does not
correspond to an active dynamic pipe.

RC_OBJECT_INUSE if the Current Task’s use of the specified pipe
is closed but the pipe remains associated with other tasks.

Note: The KSRC value does not necessarily indicate an error
condition. The calling task must interpret its meaning.

Error This service may generate the following fatal error code:

FE_ILLEGAL_PIPE if the specified pipe ID is not valid.

pipe The handle of the pipe to close.

Chapter 4: Pipe Services 111

KS_ClosePipe

June 18, 2002

Example In Example 4-1, the Current Task waits on a signal from another task
indicating that it is time to close the active dynamic pipe specified in
dynpipe. When the signal is received, the Current Task closes the
associated pipe.

Example 4-1. Close Pipe Upon Receiving Signal

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

PIPE dynpipe;
SEMA dynsema;

KS_TestSema (dynsema); /* wait for signal */

/* then close the pipe */
if (KS_ClosePipe (dynpipe) != RC_GOOD)
{
 ... something is wrong. Deal with it
}
... continue /* pipe closed successfully */

See Also KS_OpenPipe, page 140
KS_UsePipe, page 154

112 RTXC Kernel Services Reference, Volume 1

XX_DefPipeAction

June 18, 2002

XX_DefPipeAction
Define action to perform following XX_PutFullPipeBuf or
XX_PutEmptyPipeBuf services.

Zones TS_DefPipeAction
 KS_DefPipeAction

Synopsis void XX_DefPipeAction (PIPE pipe, PIPEACTION action,
THREAD thread, PIPECOND cond)

Input

Description The XX_DefPipeAction kernel service defines the action to take
following a service that puts a buffer (empty or full) into the specified
pipe. The XX_PutFullPipeBuf or XX_PutEmptyPipeBuf
services perform the specified end action operation, if defined, on

pipe The handle of the pipe to be associated with the callback
function.

action A code for the action to perform as follows:

SCHEDULETHREAD—Schedule thread at the completion
of the operation on pipe.

DECRTHREADGATE—Decrement the thread gate value of
thread upon completing the operation on pipe.

thread The handle of the thread on which to perform the end action
operation.

cond A value of PIPECOND type specifying the action to take
according to the completed pipe operation. The valid values
are:

PUTFULL—If the pipe operation puts full buffers into the
pipe (XX_PutFullPipeBuf,
XX_PutFullGetEmptyPipeBuf,
XX_JamFullPipeBuf, or
XX_JamFullGetEmptyPipeBuf).

PUTEMPTY—For a pipe operation that puts empty buffers
into a pipe (XX_PutEmptyPipeBuf or
XX_PutEmptyGetFullPipeBuf).

Chapter 4: Pipe Services 113

XX_DefPipeAction

June 18, 2002

the specified thread when the service completes. If the pipe service to
put an empty or full buffer into the pipe is called from an ISR, the
end action operation performs a Zone 1 service,
IS_ScheduleThread or IS_DecrThreadGate, corresponding to
the action code SCHEDULETHREAD or DECRTHREADGATE,
respectively. If the pipe service to put an empty or full buffer into the
pipe is called from a thread, the end action operation performs a
Zone 2 service, TS_ScheduleThread or TS_DecrThreadGate,
corresponding to the action code SCHEDULETHREAD or
DECRTHREADGATE, respectively.

Output This service does not return a value.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_PIPE if the specified pipe ID is not valid.

FE_UNINITIALIZED_PIPE if the specified pipe has not yet been
initialized.

FE_INVALID_PIPECOND if the specified pipe condition value is
not either PUTEMPTY or PUTFULL.

FE_INVALID_PIPEACTION if the specified pipe action value is
not one of the four possible actions.

FE_ILLEGAL_THREAD if the specified thread ID is not valid.

FE_UNINITIALIZED_THREAD if the specified thread has not yet
been initialized.

Example In Example 4-2 on page 114, the gate for the thread specified in
THREADA needs to be decremented every time a full buffer is put into
the pipe specified in PIPEA. When the value of the THREADA thread
gate reaches zero, THREADA is scheduled to execute. The Current
Thread defines the action that is to take place on PIPEA.

114 RTXC Kernel Services Reference, Volume 1

XX_DefPipeAction

June 18, 2002

Example 4-2. Define Pipe End Action Operation

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kthread.h" /* THREADA */
#include "kpipe.h" /* PIPEA */

/* define pipe action on PIPEA to decrement gate */
TS_DefPipeAction (PIPEA, DECRTHREADGATE, THREADA, PUTFULL);

/* define the thread gate and thread gate preset for THREADA */
TS_DefThreadGate (THREADA, (GATEKEY)2);
... continue

/* ISR device handler function that puts a full buffer into PIPEA */
void devhandler (void)
{
 ...first part of ISR

/* The following action puts the buffer into PIPEA and causes */
/* THREADA thread gate to be decremented because of the defined */
/* pipe action. */
/* THREADA is scheduled if the decrement causes the thread */
/* gate to become zero (0) */

/* In the following statement, bufptr points to the full buffer */
/* and bufsize contains the size of the buffer as filled */

 IS_PutFullPipeBuf (PIPEA, bufptr, bufsize);

 ...more device handler
 return
}

Chapter 4: Pipe Services 115

XX_DefPipeProp

June 18, 2002

XX_DefPipeProp
Define the properties of a pipe.

Zones TS_DefPipeProp
 KS_DefPipeProp

Synopsis void XX_DefPipeProp (PIPE pipe, PIPEPROP ppipeprop)

Inputs

Description The XX_DefPipeProp kernel service defines the properties of the
specified pipe using the values contained in the PIPEPROP structure
pointed to by ppipeprop. You may use this service on static or
dynamically allocated pipes. It is typically used to define a static pipe
during system startup or a dynamic pipe during runtime which has
been previously allocated with the KS_OpenPipe kernel service.

Example 4-3 shows the organization of the PIPEPROP structure.

Example 4-3. Pipe Properties Structure

typedef struct _pipeprop
{
 KATTR attributes; /* pipe attributes */
 KCOUNT numbufs; /* number of buffers */
 ksize_t bufsize; /* maximum usable buffer size */
 void * buf; /* pipe buffer base address */
 void ** fullbase; /* base address of full buffers pointers */
 void ** freebase; /* base address of free buffers pointers */
 int * sizebase;
} PIPEPROP;

When using this service with static pipes defined as part of the
system configuration process, the properties are fully specified. In
the case of static pipes, the pipe’s buffers are generally allocated in a
contiguous manner.

When using this service to define the properties of a dynamic pipe,
it is possible to define the properties less than fully and still be able

pipe The handle of the pipe being defined.

ppipeprop A pointer to a pipe properties structure.

116 RTXC Kernel Services Reference, Volume 1

XX_DefPipeProp

June 18, 2002

to make limited references to the pipe. It is possible to define the
pipe buffer base address, buf, as a null pointer ((void *)0) and
then allocate space for each buffer in the pipe, defining each by using
the XX_PutEmptyPipeBuf kernel service until all buffers are
defined. With this technique, the buffers are not necessarily
allocated contiguously.

Output This service does not return a value.

Error This service may generate one of the following fatal error codes:

FE_ILLEGAL_PIPE if the specified pipe ID is not valid.

FE_ZERO_PIPENUMBUF if the number of buffers in the specified
pipe is zero.

FE_ZERO_PIPEBUFSIZE if the buffer size in the specified pipe is
zero.

FE_NULL_PIPEFULLBASE if the specified Pipe full base address
is null.

FE_NULL_PIPEFREEBASE if the specified Pipe free base address
is null.

FE_NULL_PIPESIZEBASE if the specified Pipe base size address
is null.

Examples During system initialization, the startup routine must create and
initialize the Pipe object class and define the properties of all the
static Pipes before information can be passed through Pipes, as
illustrated in Example 4-4 on page 117.

Chapter 4: Pipe Services 117

XX_DefPipeProp

June 18, 2002

Example 4-4. Define Pipe Properties

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

extern const KCLASSPROP pipeclassprop;
extern const PIPEPROP pipeprop[];

KSRC ksrc;
int objnum;

 /* initialize the PIPE class/object data */
 if ((ksrc = INIT_PipeClassProp (&pipeclassprop)) != RC_GOOD)
 return ksrc;

 for (objnum = 1; objnum <= pipeclassprop.n_statics; objnum++)
 {
 TS_DefPipeProp (objnum, &pipeprop[objnum]);
 }

... continue

See Also XX_GetPipeProp, page 130

118 RTXC Kernel Services Reference, Volume 1

KS_DefPipeName

June 18, 2002

KS_DefPipeName
Define the name of a previously opened dynamic pipe.

Synopsis KSRC KS_DefPipeName (PIPE pipe, const char *pname)

Inputs

Description The KS_GetPipeName kernel service names or renames the
specified dynamic pipe. The service uses the null-terminated string
pointed to by pname for the new name. The kernel only stores pname
internally, which means the same array cannot be used to build
multiple dynamic pipe names. Static pipes cannot be named or
renamed under program control.

Note: To use this service, you must enable the Dynamics
attribute of the Pipe class during system generation.

This service does not check for duplicate pipe names.

Output This service returns a KSRC value as follows:

RC_GOOD if the service completes successfully.

RC_STATIC_OBJECT if the pipe being named is static.

RC_OBJECT_NOT_FOUND if the Dynamics attribute of the Pipe
class is not enabled.

RC_OBJECT_NOT_INUSE if the dynamic pipe being named is still
in the free pool of dynamic pipes.

Error This service may generate the following fatal error code:

FE_ILLEGAL_PIPE if the specified pipe ID is not valid.

pipe The handle of the pipe being defined.

pname A pointer to a null-terminated name string.

Chapter 4: Pipe Services 119

KS_DefPipeName

June 18, 2002

Example Example 4-5 assigns the name NewPipe to the pipe specified in
dynpipe so other users may reference it by name.

Example 4-5. Define Dynamic Pipe Name

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

PIPE dynpipe;

if (KS_DefPipeName (dynpipe, "NewPipe") != RC_GOOD)
{
 ... Probably is a static pipe. Deal with it here.
}

... else the naming operation was successful. Continue

See Also KS_GetPipeName, page 128
KS_LookupPipe, page 138
KS_UsePipe, page 154

120 RTXC Kernel Services Reference, Volume 1

XX_GetEmptyPipeBuf

June 18, 2002

XX_GetEmptyPipeBuf
Get an empty buffer from a specified pipe.

Zones IS_GetEmptyPipeBuf
 TS_GetEmptyPipeBuf
 KS_GetEmptyPipeBuf

Synopsis void * XX_GetEmptyPipeBuf (PIPE pipe)

Input

Description The KS_UsePipe kernel service removes the next available empty
buffer from the specified pipe and returns a pointer to the empty
buffer to the caller. If there is no buffer available, the service returns
a null pointer ((void *)0).

Output This service returns a pointer to the empty buffer if a buffer is
available. If no buffer is available, the service returns a null pointer
((void *)0).

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_PIPE if the specified pipe ID is not valid.

FE_UNINITIALIZED_PIPE if the specified pipe has not yet been
initialized.

Example In Example 4-6 on page 121, the Current Thread gets an empty
buffer from the pipe specified in PIPEA and, if a valid buffer pointer
is returned, performs some operation on the buffer.

pipe The handle of the pipe from which to get an empty buffer.

Chapter 4: Pipe Services 121

XX_GetEmptyPipeBuf

June 18, 2002

Example 4-6. Get Empty Buffer from Pipe

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kpipe.h" /* PIPEA */

void threadxyz ((void *)0, (void *)0)
{
 char *pipebuf;
 int pipebufsize;

 /* get size of pipe's buffers */
 pipebufsize = TS_GetPipeBufSize (PIPEA);

 /* get empty pipe buffer and test for success */
 if ((pipebuf = TS_GetEmptyPipeBuf (PIPEA)) == (char *)0);

 /* test if emtpy buffer is available */
 if (pipebuf == (char *)0)
 {
 ... no empty buffers, deal with it here
 }
 else
 {
 ... perform operation on fill the empty buffer
 }
 ...when buffer is full, put it into the pipe
 TS_PutFullPipeBuf (PIPEA, (void *)pipebuf, pipebufsize);
... continue
}

See Also KS_UsePipe, page 154
XX_JamFullGetEmptyPipeBuf, page 132
XX_JamFullPipeBuf, page 136
XX_PutEmptyGetFullPipeBuf, page 144
XX_PutEmptyPipeBuf, page 147
XX_PutFullGetEmptyPipeBuf, page 149
XX_PutFullPipeBuf, page 152

122 RTXC Kernel Services Reference, Volume 1

XX_GetFullPipeBuf

June 18, 2002

XX_GetFullPipeBuf
Get a full buffer from a specified pipe.

Zones IS_GetFullPipeBuf
 TS_GetFullPipeBuf
 KS_GetFullPipeBuf

Synopsis void * XX_GetFullPipeBuf (PIPE pipe, int *pbufsize)

Inputs

Description The XX_GetFullPipeBuf kernel service removes the next
available full buffer from the specified pipe and returns a pointer to
the full buffer to the caller. If there is no buffer available, the service
returns a null pointer ((void *)0) and the variable pointed to by
pbufsize is set to 0.

Output This service returns a pointer to the full buffer if a buffer is available.
If no buffer is available, the service returns a null pointer
((void *)0) and the variable pointed to by pbufsize is set to 0.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_PIPE if the specified pipe ID is not valid.

FE_UNINITIALIZED_PIPE if the specified pipe has not yet been
initialized.

FE_NULL_PIPEPBUFSIZE if the pointer to the buffer size is null.

Example In Example 4-7 on page 123, the Current Thread gets a full buffer
from the pipe specified in PIPEA and, if a valid buffer pointer is
returned, performs some operation on the buffer.

pipe The handle of the pipe from which to get a full buffer.

pbufsize A pointer to a variable that will, upon completion of the
service, contain the actual size of the full buffer whose
pointer is being returned as the value of the service.

Chapter 4: Pipe Services 123

XX_GetFullPipeBuf

June 18, 2002

Example 4-7. Get Full Buffer from Pipe

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kpipe.h" /* PIPEA */

void threadxyz ((void *)0, (void *)0)
{
 char *pipebuf;
 int bsize, i;

 /* get full pipe buffer and its size and test if OK */
 if ((pipebuf = TS_GetFullPipeBuf (PIPEA, &bsize)) == (char *)0);

 /* test if full buffer available */
 if (pipebuf == (char *)0)
 {
 ... no full buffers, deal with it here
 }
 else
 {
 for (i=0; i<=bsize; i++)
 {
 ... perform operation on full buffer
 }
 /* when buffer is empty, return it to the pipe */
 TS_PutEmptyPipeBuf (PIPEA, pipebuf);
 }

... continue
}

See Also XX_DefPipeProp, page 115
XX_JamFullGetEmptyPipeBuf, page 132
XX_JamFullPipeBuf, page 136
XX_PutEmptyGetFullPipeBuf, page 144
XX_PutEmptyPipeBuf, page 147
XX_PutFullGetEmptyPipeBuf, page 149
XX_PutFullPipeBuf, page 152

124 RTXC Kernel Services Reference, Volume 1

XX_GetPipeBufSize

June 18, 2002

XX_GetPipeBufSize
Get the maximum usable size of buffers in the specified pipe.

Zones IS_GetPipeBufSize
 TS_GetPipeBufSize
 KS_GetPipeBufSize

Synopsis int XX_GetPipeBufSize (PIPE pipe)

Input

Description The XX_GetPipeBufSize kernel service allows the caller to
obtain the maximum usable size of buffers in the specified pipe.

Warning: It is possible that a pipe may contain buffers of
unequal sizes. It is the responsibility of the programmer to
ensure that all buffers used in a given pipe have sufficient
RAM to meet or exceed the maximum useful buffer size
specified for the pipe. Failure to do so may lead to
undesirable or unpredictable results.

Output This service returns an int type value containing the buffer size for
pipe.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_PIPE if the specified pipe ID is not valid.

FE_UNINITIALIZED_PIPE if the specified pipe has not yet been
initialized.

Example In Example 4-8 on page 125, the Current Thread reads the buffer
size and fills an empty buffer with data. It then puts the full buffer
into the pipe specified in PIPEA.

pipe The handle of the pipe being queried.

Chapter 4: Pipe Services 125

XX_GetPipeBufSize

June 18, 2002

Example 4-8. Read Pipe Buffer Size

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kpipe.h" /* PIPEA */

int buffersize, i;
char *pipebuf;

/* get pipe buffer size */
buffersize = TS_GetPipeBufSize (PIPEA);

/* get empty pipe buffer */
pipebuf = TS_GetEmptyPipeBuf (PIPEA);

/* fill buffer with data */
for (i = 0; i <= buffersize; i++)
{
 ... put entry into pipebuf
}

/* put full buffer into Pipe */
TS_PutFullPipeBuff (PIPEA, pipebuf, buffersize);

... continue

See Also XX_DefPipeProp, page 115

126 RTXC Kernel Services Reference, Volume 1

KS_GetPipeClassProp

June 18, 2002

KS_GetPipeClassProp
Get the Pipe class properties.

Synopsis const KCLASSPROP * KS_GetPipeClassProp (int *pint)

Input

Description The KS_GetPipeClassProp kernel service obtains a pointer to
the KCLASSPROP structure that was used during system initialization
by the INIT_PipeClassProp service to initialize the Pipe object
class properties.

If the pint pointer contains a non-zero address, the current number
of unused dynamic pipes is stored in the indicated address. If pint
contains a null pointer ((int *)0), the service ignores the
parameter. If the Pipe object class properties do not include the
Dynamics attribute, the service stores a value of zero (0) at the
address contained in pint.

The KCLASSPROP structure has the following organization:

typedef struct
{
 KATTR attributes;
 KOBJECT n_statics; /* number of static objects */
 KOBJECT n_dynamics; /* number of dynamic objects */
 short objsize; /* used for calculating offsets */
 short totalsize; /* used to alloc object array RAM */
 ksize_t namelen; /* length of the name string */
 const char *pstaticnames;
} KCLASSPROP;

The attributes element of the Pipe property structure supports the
class property attributes and corresponding masks listed in Table 4-1
on page 127.

pint A pointer to an integer variable in which to store the current
number of unused dynamic pipes.

Chapter 4: Pipe Services 127

KS_GetPipeClassProp

June 18, 2002

Output If successful, this service returns a pointer to a KCLASSPROP
structure.

If the Pipe class is not initialized, the service returns a null pointer
((KCLASSPROP *)0).

If pint is not null ((int *)0), the service returns the number of
available dynamic pipes in the variable pointed to by pint.

Example In Example 4-9, the Current Pipe needs access to the information
contained in the KCLASSPROP structure for the Pipe object class.

Example 4-9. Read Pipe Object Class Properties

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

KCLASSPROP *ppipeclassprop;
int free_dyn;

/* Get the pipe kernel object class properties */
if ((ppipeclassprop = KS_GetPipeClassProp (&free_dyn))
 == (KCLASSPROP *)0)
{
 putline ("Pipe Class not initialized");
}
else
{
 ... pipe object class properties are available for use
 "free_dyn" contains the number of available dynamic pipes
}

See Also INIT_PipeClassProp, page 142

Table 4-1. Pipe Class Attributes and Masks

Attribute Mask

Static Names ATTR_STATIC_NAMES

Dynamics ATTR_DYNAMICS

128 RTXC Kernel Services Reference, Volume 1

KS_GetPipeName

June 18, 2002

KS_GetPipeName
Get the pipe’s name.

Synopsis char * KS_GetPipeName (PIPE pipe)

Input

Description The KS_GetPipeName kernel service obtains a pointer to the null-
terminated string containing the name of the specified pipe. The pipe
may be static or dynamic.

Note: To use this service on static pipes, you must enable
the Static Names attribute of the Pipe class during system
generation.

Output If pipe has a name, this service returns a pointer to the null-
terminated name string.

If pipe has no name, the service returns a null pointer ((char *)0).

Error This service may generate the following fatal error code:

FE_ILLEGAL_PIPE if the specified pipe ID is not valid.

Example In Example 4-10 on page 129, the Current Task needs to report the
name of the dynamic pipe specified in dynpipe.

pipe The handle of the pipe being queried.

Chapter 4: Pipe Services 129

KS_GetPipeName

June 18, 2002

Example 4-10. Read Pipe Name

#include <stdio.h> /* standard i/o */
#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

static char buf[128];
PIPE dynpipe;
char *pname;

if ((pname = KS_GetPipeName (dynpipe)) == (char *)0)
 sprintf (buf, "Pipe %d has no name", dynpipe);
else
 sprintf (buf, "Pipe %d name is %s", dynpipe, pname);

putline (buf);

See Also KS_DefPipeName, page 115
KS_LookupPipe, page 138
XX_DefPipeProp, page 115

130 RTXC Kernel Services Reference, Volume 1

XX_GetPipeProp

June 18, 2002

XX_GetPipeProp
Get the pipe’s properties.

Zones TS_GetPipeProp
 KS_GetPipeProp

Synopsis void XX_GetPipeProp (PIPE pipe, PIPEPROP *ppipeprop)

Inputs

Description The XX_GetPipeProp kernel service obtains all of the property
values of the specified pipe in a single call. The pipe input argument
may specify a static or a dynamic pipe. The service stores the
property values in the PIPEPROP structure pointed to by ppipeprop
and returns to the caller.

Example 4-3 on page 115 shows the organization of the PIPEPROP
structure.

Output This service returns pipe’s properties in the property structure
pointed to by ppipeprop.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_PIPE if the specified pipe ID is not valid.

FE_UNINITIALIZED_PIPE if the specified pipe has not yet been
initialized.

Example In Example 4-11 on page 131, the Current Thread reads the
properties of the pipe specified in PIPEA, changes some value in the
property structure, then redefines PIPEA with the new properties.

pipe The handle of the pipe being queried.

ppipeprop The pointer to the pipe property structure in which to store
the properties of the specified pipe.

Chapter 4: Pipe Services 131

XX_GetPipeProp

June 18, 2002

Example 4-11. Read Pipe Properties

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kpipe.h" /* PIPEA */

PIPEPROP pipeprop;

/* get current Pipe Properties */
TS_GetPipeProp (PIPEA, &pipeprop);

... make changes to the properties

/* define the new Pipe properties */
TS_DefPipeProp (PIPEA, &pipeprop);

... continue

See Also XX_DefPipeProp, page 115

132 RTXC Kernel Services Reference, Volume 1

XX_JamFullGetEmptyPipeBuf

June 18, 2002

XX_JamFullGetEmptyPipeBuf
Put a full buffer at the front of a pipe and then get an empty buffer
from the same pipe.

Zones IS_JamFullGetEmptyPipeBuf
 TS_JamFullGetEmptyPipeBuf
 KS_JamFullGetEmptyPipeBuf

Synopsis void * XX_JamFullGetEmptyPipeBuf (PIPE pipe,
void * pbuf, int bufsize, KSRC * pksrc)

Inputs

Description The XX_JamFullGetEmptyPipeBuf kernel service allows the
specified pipe’s producer to put a full buffer into pipe at its head
rather than at the tail as is the normal case. At the same time, the
service gets the next available empty buffer from the same pipe and
returns the pointer to the empty buffer to the caller.

It is necessary for the producer to state the size of the buffer as filled
so that pipe’s consumer knows how much data there is to process.
The size of the filled buffer must be less than or equal to the
maximum usable size of the buffers for pipe.

It is permissible to define pbuf as a null pointer ((void *)0) to
indicate there is no full buffer to put into the pipe. If pbuf is null, the
service ignores it and operates identically to the
XX_GetEmptyPipeBuf service, returning the pointer to the next
available empty buffer. This technique may be useful when
employing a loop in a producer that uses the combination pipe
operation. The first time through the loop, there is no full buffer but

pipe The handle of the pipe to use.

pbuf The pointer to the full buffer to be put at the front of the
specified pipe.

bufsize The actual size of the buffer as filled. This number must be
less than or equal to the maximum usable buffer size for the
specified pipe.

pksrc A pointer to KSRC type return code.

Chapter 4: Pipe Services 133

XX_JamFullGetEmptyPipeBuf

June 18, 2002

the service allocates an empty buffer allowing the producer to begin
operation.

If pbuf is a null pointer, the service ignores the value of bufsize.
Ideally, in this situation, bufsize would contain a value of zero (0).

Output This service returns the pointer to the next available empty buffer in
pipe if one is available. If the pipe contains no available empty buffer,
the service returns a null pointer ((void *)0).

The service also returns a KSRC type value through the pksrc pointer
indicating how the service performed. The possible values are:

RC_GOOD if the service was successful.

RC_PIPE_FULL if the specified pipe does not have room for
another full buffer. The service may return a valid empty buffer
address even though this KSRC value is passed back.

RC_PIPE_EMPTY if the specified pipe does not have an available
empty buffer. The service may return this code after successfully
putting the full buffer into the pipe but not finding an available
empty buffer. This code is redundant because the service would
also return the null pointer for the empty buffer. It is provided
for completeness.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_PIPE if the specified pipe ID is not valid.

FE_UNINITIALIZED_PIPE if the specified pipe has not yet been
initialized.

Example In Example 4-12 on page 134, the threadA producer thread has
environment arguments in the myenvargs structure and the
elements of the structure have been previously defined. The buffer
element represents the address of the next buffer to fill and is
initialized with a pointer to an empty buffer in PIPEA. The
maxbufsize variable contains the maximum useful size of a buffer
in PIPEA. When threadA executes, it receives the pointer to its
environment arguments and uses the elements therein to preserve
variables it needs to maintain between execution cycles, principally

134 RTXC Kernel Services Reference, Volume 1

XX_JamFullGetEmptyPipeBuf

June 18, 2002

the buffer variable. When in operation, it fills the empty buffer in
a loop until the buffer reaches the maximum useful size. The thread
then jams the full buffer to the front of the pipe, simultaneously
getting the next available empty buffer in the pipe. The empty buffer
is stored in the environment argument buffer element to get ready
for the next execution cycle of threadA. The example assumes that
the KSRC value returned by the service is always RC_GOOD.

Example 4-12. Perform Fast Buffer Exchange at Front of Pipe

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kpipe.h" /* PIPEA */

/* environment argument structure for threadA */
struct myenvargs
{
 char *buffer;
 int maxbufsize;
}

void threadA ((void *)0, (struct myenvargs *)myargs)
{
 int bufsize;
 KSRC ksrc;

 for (bufsize=0; bufsize <= myargs->maxbufsize; bufsize++)
 {
 ...fill the buffer
 }

 /* jam full buffer in front of pipe and get next empty buffer */
 myargs->buffer = TS_JamFullGetEmptyPipeBuf (PIPEA,
 myargs->buffer, bufsize, &ksrc);
}

See Also XX_GetEmptyPipeBuf, page 120
XX_GetFullPipeBuf, page 122
XX_JamFullPipeBuf, page 136
XX_PutEmptyGetFullPipeBuf, page 144
XX_PutEmptyPipeBuf, page 147
XX_PutFullGetEmptyPipeBuf, page 149
XX_PutFullPipeBuf, page 152

Chapter 4: Pipe Services 135

XX_JamFullGetEmptyPipeBuf

June 18, 2002

136 RTXC Kernel Services Reference, Volume 1

XX_JamFullPipeBuf

June 18, 2002

XX_JamFullPipeBuf
Put a full buffer at the front of a pipe.

Zones IS_JamFullPipeBuf
 TS_JamFullPipeBuf
 KS_JamFullPipeBuf

Synopsis KSRC XX_JamFullPipeBuf (PIPE pipe, void * pbuf,
int bufsize)

Inputs

Description The XX_JamFullPipeBuf kernel service allows the specified
pipe’s producer to put a full buffer into pipe at its head rather than at
the tail as is the normal case.

It is necessary for the producer to state the size of the buffer as filled
so that pipe’s consumer knows how much data there is to process.
The size of the filled buffer must be less than or equal to the
maximum usable size of the buffers for pipe.

Output This service returns a KSRC value as follows:

RC_GOOD if the service was successful.

RC_PIPE_FULL if the specified pipe does not have room for
another full buffer.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_PIPE if the specified pipe ID is not valid.

FE_UNINITIALIZED_PIPE if the specified pipe has not yet been
initialized.

pipe The handle of the pipe to use.

pbuf The pointer to the full buffer to be put at the front of the
specified pipe.

bufsize The actual size of the buffer as filled. This number must be
less than or equal to the maximum usable buffer size for the
specified pipe.

Chapter 4: Pipe Services 137

XX_JamFullPipeBuf

June 18, 2002

FE_NULL_PIPEBUFFER if the specified Pipe buffer address is
null.

FE_ZERO_PIPEBUFSIZE if the buffer size in the specified pipe is
zero.

Example In Example 4-13, the Current Thread fills a buffer with data and jams
this buffer in front of the pipe specified in PIPEA.

Example 4-13. Put Full Buffer at Front of Pipe

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kpipe.h" /* PIPEA */

int bufsize;
char *fullbuf;

... fill the buffer, fullbuf

/* jam full buffer in front of pipe */
TS_JamFullPipeBuf (PIPEA, fullbuf, bufsize);

... continue

See Also XX_DefPipeAction, page 112
XX_DefPipeProp, page 115
XX_JamFullGetEmptyPipeBuf, page 132
XX_PutEmptyGetFullPipeBuf, page 144
XX_PutEmptyPipeBuf, page 147
XX_PutFullGetEmptyPipeBuf, page 149
XX_PutFullPipeBuf, page 152

138 RTXC Kernel Services Reference, Volume 1

KS_LookupPipe

June 18, 2002

KS_LookupPipe
Look up a pipe by name to get its handle.

Synopsis KSRC KS_LookupPipe (const char *pname, PIPE *ppipe)

Inputs

Description The KS_LookupPipe service obtains the handle of a static or
dynamic pipe whose name matches the null-terminated string
pointed to by pname. The lookup process terminates when it finds a
match between the specified string and a static or dynamic pipe
name or when it finds no match. The service searches dynamic
names, if any, first. If a match is found, the service stores the
matching pipe’s handle in the variable pointed to by ppipe.

Note: To use this service on static pipes, you must enable
the Static Names attribute of the Pipe class during system
generation.

This service has no effect on the registration of the specified
pipe by the Current Task.

The time required to perform this operation varies with the
number of pipe names in use.

Output This service returns a KSRC value as follows:

RC_GOOD if the search succeeds. The service stores the handle of
the pipe in the variable pointed to by ppipe.

RC_OBJECT_NOT_FOUND if the service finds no matching pipe
name.

pname A pointer to the null-terminated name string for the pipe.

ppipe A pointer to a variable in which to store the matching handle,
if found.

Chapter 4: Pipe Services 139

KS_LookupPipe

June 18, 2002

Example In Example 4-14, the Current Task needs to use the dynamic pipe
specified in DynPipe2. If the pipe name is found, the example
outputs the pipe handle to the console in a brief message.

Example 4-14. Look Up Pipe by Name

#include <stdio.h> /* standard i/o */
#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

PIPE dynpipe;
static char buf[128];

/* lookup the pipe name to see if it exists */
if (KS_LookupPipe ("DynPipe2", &dynpipe) != RC_GOOD)
{
 putline ("Pipe DynPipe2 name not found");
}
else /* pipe exists */
{
 sprintf (buf, "DynPipe2 is pipe %d", dynpipe);
 putline (buf);
}

See Also KS_DefPipeName, page 118
KS_GetPipeName, page 128

140 RTXC Kernel Services Reference, Volume 1

KS_OpenPipe

June 18, 2002

KS_OpenPipe
Allocate and name a dynamic pipe.

Synopsis KSRC KS_OpenPipe (const char *pname, PIPE *ppipe)

Inputs

Description The KS_OpenPipe kernel service allocates, names, and obtains the
handle of a dynamic pipe. If a dynamic pipe is available and there is
no existing pipe, static or dynamic, with a name matching the null-
terminated string pointed to by pname, the service allocates a
dynamic pipe and applies the name referenced by pname to the new
pipe. The service stores the handle of the new dynamic pipe in the
variable pointed to by ppipe. The kernel stores only the address of the
name internally, which means that the same array cannot be used to
build multiple dynamic pipe names.

If pname is a null pointer ((char *)0), the service does not assign a
name to the dynamic pipe. However, if pname points to a null string
(""), the name is legal as long as no other pipe is already using a null
string as its name.

If the service finds an existing pipe with a matching name, it does
not open a new pipe and returns a value indicating an unsuccessful
operation.

Note: To use this service, you must enable the Dynamics
attribute of the Pipe class during system generation.

If the pointer to the pipe name is not null, the time required
to perform this operation varies with the number of pipe
names in use.

pname A pointer to the null-terminated name string for the pipe.

ppipe A pointer to a variable in which to store the handle of the
allocated pipe.

Chapter 4: Pipe Services 141

KS_OpenPipe

June 18, 2002

If the pointer to the pipe name is null, no search of pipe
names takes place and the time to perform the service is
fixed. You can define the pipe name at a later time with a
call to the KS_DefPipeName service.

Output This service returns a KSRC value as follows:

RC_GOOD if the service completes successfully. The service stores
the handle of the new dynamic pipe in the variable pointed to by
ppipe.

RC_OBJECT_ALREADY_EXISTS if the name search finds another
pipe whose name matches the specified string.

RC_NO_OBJECT_AVAILABLE if the name search finds no match
but all dynamic pipes are in use.

Example Example 4-15 allocates a dynamic pipe and names it DynPipe2.

Example 4-15. Allocate Dynamic Pipe

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

KSRC ksrc;
PIPE dynpipe;

if ((ksrc = KS_OpenPipe ("DynPipe2", &dynpipe)) != RC_GOOD)
{
 if (ksrc == RC_OBJECT_ALREADY_EXISTS)
 putline ("DynPipe2 pipe name in use");
 else if (ksrc == RC_NO_OBJECT_AVAILABLE)
 putline ("No dynamic pipes available");
 else
 putline ("Pipes are not a defined class");
}
else
{
 ... pipe was opened correctly. Okay to define its properties now
}

See Also KS_ClosePipe, page 110
KS_UsePipe, page 154

142 RTXC Kernel Services Reference, Volume 1

INIT_PipeClassProp

June 18, 2002

INIT_PipeClassProp
Initialize the Pipe object class properties.

Synopsis KSRC INIT_PipeClassProp
(const KCLASSPROP *pclassprop)

Input

Description During the RTXC Kernel initialization procedure (usually performed
in Zone 3), you must define the kernel objects needed by the RTXC
Kernel to perform the application. The INIT_PipeClassProp
kernel service allocates space for the Pipe object class in system
RAM. The amount of RAM to allocate, and all other properties of the
class, are specified in the structure pointed to by pclassprop.

The KCLASSPROP structure has the following organization:

typedef struct
{
 KATTR attributes;
 KOBJECT n_statics; /* number of static objects */
 KOBJECT n_dynamics; /* number of dynamic objects */
 short objsize; /* used for calculating offsets */
 short totalsize; /* used to alloc object array RAM */
 ksize_t namelen; /* length of the name string */
 const char *pstaticnames;
} KCLASSPROP;

The attributes element of the Pipe property structure supports the
attributes and corresponding masks listed in Table 4-1 on page 127.

Output This service returns a KSRC value as follows:

RC_GOOD if the service completes successfully.

RC_NO_RAM if the initialization fails because there is insufficient
system RAM available.

Example During system initialization, the startup code must initialize the
Pipe object class before using any kernel service for that class,
regardless of Zone. In Example 4-16 on page 143, the system

pclassprop A pointer to a Pipe object class properties structure.

Chapter 4: Pipe Services 143

INIT_PipeClassProp

June 18, 2002

generation process produced a KCLASSPROP structure containing
the information about the kernel class necessary for its initialization.
That structure is referenced externally to the code. The example
outputs any error messages to the console.

Example 4-16. Initialize Pipe Object Class

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

extern const SYSPROP sysprop;
extern const KCLASSPROP pipeclassprop;

KSRC userinit (void)
{
 KSRC ksrc;
 static char buf[128];

 /* initialize the kernel workspace, allocate RAM for
 required classes, etc. */

 if ((ksrc = INIT_SysProp (&sysprop)) != RC_GOOD)
 {
 putline ("Kernel initialization failure");
 return (ksrc); /* end initialization process */
 }
 /* kernel is initialized */

 /* Need to initialize the necessary kernel object classes */

 /* Initialize the Pipe Kernel Object class */
 if ((ksrc = INIT_PipeClassProp (&pipeclassprop)) != RC_GOOD)
 {
 putline ("Insufficient RAM for Pipe init.");
 return (ksrc); /* end initialization process */
 }

... Continue with system initialization

}

See Also KS_GetPipeClassProp, page 126

144 RTXC Kernel Services Reference, Volume 1

XX_PutEmptyGetFullPipeBuf

June 18, 2002

XX_PutEmptyGetFullPipeBuf
Put an empty buffer into a pipe and then get a full buffer from the
same pipe.

Zones IS_PutEmptyGetFullPipeBuf
 TS_PutEmptyGetFullPipeBuf
 KS_PutEmptyGetFullPipeBuf

Synopsis void * XX_PutEmptyGetFullPipeBuf (PIPE pipe,
void * pbuf, int *pbufsize, KSRC *pksrc)

Inputs

Description The XX_PutEmptyGetFullPipeBuf kernel service allows the
specified pipe’s consumer to return an empty buffer to pipe and, at
the same time, get the next available full buffer from pipe, returning
the pointer to the full buffer to the caller.

It is necessary for the consumer to obtain the size of the buffer as
filled by pipe’s producer so that the consumer knows how much data
there is to process. It is the producer’s responsibility to ensure that
the size of the filled buffer is less than or equal to the maximum
usable size of the buffers for pipe.

It is permissible to define pbuf as a null pointer ((void *)0) to
indicate there is no empty buffer to return into the pipe. If pbuf is
null, the service ignores the pointer and functions identically to the
XX_GetFullPipeBuf kernel service, returning the pointer to the
next available full buffer. This technique may be useful when
operating a loop in a consumer that uses the combination pipe
operation. The first time through the loop, there is no empty buffer

pipe The handle of the pipe to use.

pbuf The pointer to the empty buffer being returned to the
specified pipe.

pbufsize A pointer to a variable that will, upon completion of the
service, contain the actual size of the full buffer, the pointer
to which is being returned as the value of the function.

pksrc A pointer to KSRC type return code.

Chapter 4: Pipe Services 145

XX_PutEmptyGetFullPipeBuf

June 18, 2002

to release but the service gets a full buffer, returning its address to
allow the consumer to begin operation.

Output This service returns the pointer to the next available full buffer in
pipe if the service is successful. If not, it returns a null pointer
((void *)0).

The service also returns a KSRC type value through the pksrc pointer
indicating how the service performed. The possible values are:

RC_GOOD if the service was successful.

RC_PIPE_FULL if the specified pipe does not have room for
another full buffer. The service may return a valid empty buffer
address even though this KSRC value is passed back.

RC_PIPE_EMPTY if the specified pipe does not have an available
empty buffer. The service may return this code after successfully
putting the full buffer into the pipe but not finding an available
empty buffer. This code is redundant because the service would
also return the null pointer for the empty buffer. It is provided
for completeness.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_PIPE if the specified pipe ID is not valid.

FE_UNINITIALIZED_PIPE if the specified pipe has not yet been
initialized.

FE_NULL_PIPEPBUFSIZE if the pointer to the buffer size is null.

Example In Example 4-17 on page 146, the threadA thread is a pipe
consumer having environment arguments in the myenvargs
structure. The elements of the structure have been previously
defined. The buffer element represents the address of the empty
buffer to release and is initialized with a null pointer. The
maxbufsize variable contains the maximum useful size of a buffer
in PIPEA. When threadA executes, it receives the pointer to its
environment arguments and uses the elements therein to preserve
needed values between execution cycles, principally buffer. When
in operation, it releases the buffer, presumed empty, to the pipe and

146 RTXC Kernel Services Reference, Volume 1

XX_PutEmptyGetFullPipeBuf

June 18, 2002

simultaneously gets the address of the next available full buffer and
the buffer’s size. Having a full buffer, it processes the data in the
buffer in a loop until the buffer is empty. The pointer to the now-
empty buffer is stored in the environment argument buffer
element to be ready for the next execution cycle of threadA. The
example assumes that the KSRC value returned by the service is
always RC_GOOD.

Example 4-17. Perform Consumer Fast Buffer Exchange on Pipe

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kpipe.h" /* PIPEA */

/* environment argument structure for threadA */
struct myenvargs
{
 char *buffer;
 int maxbufsize;
}

void threadA ((void *)0, (struct myenvargs *)myargs)
{
 int bufsize, i;
 KSRC ksrc;

 /* put empty buffer into pipe and get next full buffer */
 myargs->buffer = TS_PutEmptyGetFullPipeBuf (PIPEA,
 myargs->buffer, &bufsize, &ksrc);

 for (i=0; i<= bufsize; i++)
 {
 ...process the data in the buffer
 }
}

See Also XX_DefPipeProp, page 115
XX_GetPipeProp, page 130
XX_JamFullGetEmptyPipeBuf, page 132
XX_JamFullPipeBuf, page 136
XX_PutEmptyPipeBuf, page 147
XX_PutFullGetEmptyPipeBuf, page 149
XX_PutFullPipeBuf, page 152

Chapter 4: Pipe Services 147

XX_PutEmptyPipeBuf

June 18, 2002

XX_PutEmptyPipeBuf
Return an empty buffer to a pipe.

Zones IS_PutEmptyPipeBuf
 TS_PutEmptyPipeBuf
 KS_PutEmptyPipeBuf

Synopsis KSRC XX_PutEmptyPipeBuf (PIPE pipe, void * pbuf)

Inputs

Description The XX_PutEmptyPipeBuf kernel service allows the specified
pipe’s consumer to return an empty buffer to pipe. The address of the
empty buffer is then available for future use by the pipe’s producer.

Output This service returns a KSRC value as follows:

RC_GOOD if the service was successful.

RC_PIPE_FULL if the specified pipe does not have room for
another empty buffer.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_PIPE if the specified pipe ID is not valid.

FE_UNINITIALIZED_PIPE if the specified pipe has not yet been
initialized.

FE_NULL_PIPEBUFFER if the specified Pipe buffer address is
null.

Example In Example 4-18 on page 148, the Current Thread gets a full buffer,
empties it and returns the buffer to the pipe specified in PIPEA.

pipe The handle of the pipe to use.

pbuf The pointer to the empty buffer to be returned to the pipe.

148 RTXC Kernel Services Reference, Volume 1

XX_PutEmptyPipeBuf

June 18, 2002

Example 4-18. Return Empty Buffer to Pipe

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kpipe.h" /* PIPEA */

int buffersize, i;
char *buffer;

/* first get a full buffer from PIPEA */
buffer = TS_GetFullPipeBuf (PIPEA, &buffersize);

for (i=0; i<=buffersize; i++)
{
... Process the data in the buffer

/* release empty buffer to pipe */
TS_PutEmptyPipeBuf (PIPEA, buffer);

... continue

See Also XX_DefPipeProp, page 115
XX_GetPipeProp, page 130
XX_JamFullGetEmptyPipeBuf, page 132
XX_JamFullPipeBuf, page 136
XX_PutEmptyGetFullPipeBuf, page 144
XX_PutFullGetEmptyPipeBuf, page 149
XX_PutFullPipeBuf, page 152

Chapter 4: Pipe Services 149

XX_PutFullGetEmptyPipeBuf

June 18, 2002

XX_PutFullGetEmptyPipeBuf
Put a full buffer into a pipe and then get an empty buffer from the
same pipe.

Zones IS_PutFullGetEmptyPipeBuf
 TS_PutFullGetEmptyPipeBuf
 KS_PutFullGetEmptyPipeBuf

Synopsis void * XX_PutFullGetEmptyPipeBuf (PIPE pipe,
void *pbuf, int bufsize, KSRC *pksrc)

Inputs

Description The XX_PutFullGetEmptyPipeBuf kernel service allows the
specified pipe’s producer to put a full buffer into pipe and at the same
time, get the next available empty buffer from pipe, returning the
pointer to the empty buffer to the caller.

It is necessary for the producer to state the size of the buffer as filled
so that pipe’s consumer knows how much data there is to process.
The size of the filled buffer must be less than or equal to the
maximum usable size of the buffers for pipe.

It is permissible to define pbuf as a null pointer ((void *)0) to
indicate there is no full buffer to put into the pipe. If pbuf is null, the
service ignores it and operates identically to the
XX_GetEmptyPipeBuf service, returning the pointer to the next
available empty buffer. This technique may be useful when
employing a loop in a producer that uses the combination pipe
operation. The first time through the loop, there is no full buffer but

pipe The handle of the pipe to use.

pbuf The pointer to the full buffer to be put into the specified pipe.
A null pointer is valid.

bufsize The actual size of the buffer as filled. This number must be
less than or equal to the maximum usable buffer size for the
specified pipe. If pbuf is a null pointer, the service ignores
bufsize.

pksrc A pointer to KSRC type return code.

150 RTXC Kernel Services Reference, Volume 1

XX_PutFullGetEmptyPipeBuf

June 18, 2002

the service allocates an empty buffer allowing the producer to begin
operation.

If pbuf is a null pointer, the service ignores the value of bufsize.
Ideally, in this situation, bufsize would contain a value of zero (0).

Output This service returns the pointer to the next available empty buffer if
the service is successful. If not, it returns a null pointer ((void *)0).

The service also returns a KSRC type value through the pksrc pointer
indicating how the service performed. The possible values are:

RC_GOOD if the service was successful.

RC_PIPE_FULL if the specified pipe does not have room for
another full buffer. The service may return a valid empty buffer
address even though this KSRC value is passed back.

RC_PIPE_EMPTY if the specified pipe does not have an available
empty buffer. The service may return this code after successfully
putting the full buffer into the pipe but not finding an available
empty buffer. This code is redundant because the service would
also return the null pointer for the empty buffer. It is provided
for completeness.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_PIPE if the specified pipe ID is not valid.

FE_UNINITIALIZED_PIPE if the specified pipe has not yet been
initialized.

Example In Example 4-19 on page 151, the threadA pipe producer thread has
environment arguments in the myenvargs structure and the
elements of the structure have been previously defined. The buffer
element represents the address of the next empty buffer to process
and is initialized with a valid pointer to an empty buffer in PIPEA,
and maxbufsize contains the maximum useful size of a buffer in
PIPEA. When threadA executes, it receives the pointer to its
environment argument structure and uses the elements therein to
preserve needed variables between execution cycles, principally the
buffer variable. When in operation, it fills the buffer in a loop until

Chapter 4: Pipe Services 151

XX_PutFullGetEmptyPipeBuf

June 18, 2002

the buffer reaches the maximum useful size. The thread then puts
the full buffer into the pipe at its tail, simultaneously getting the next
available empty buffer in the pipe. The address of the next empty
buffer is stored in the environment argument buffer element to be
ready for the next execution cycle of threadA. The example assumes
that the KSRC value returned by the service is always RC_GOOD.

Example 4-19. Perform Fast Producer Buffer Exchange on Pipe

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kpipe.h" /* PIPEA */

/* environment argument structure for threadA */
struct myenvargs
{
 char *buffer;
 int maxbufsize;
}

void threadA ((void *)0, (struct myenvargs *)myargs)
{
 int bufsize;
 KSRC ksrc;

 for (bufsize=0; bufsize<=myargs->maxbufsize; bufsize++)
 {
 ...fill the buffer
 }

 /* put full buffer at tail of pipe and get next empty buffer */
 myargs->buffer = TS_PutFullGetEmptyPipeBuf (PIPEA,
 myargs->buffer, bufsize, &ksrc);
}

See Also XX_DefPipeProp, page 115
XX_GetPipeProp, page 130
XX_JamFullGetEmptyPipeBuf, page 132
XX_JamFullPipeBuf, page 136
XX_PutEmptyGetFullPipeBuf, page 144
XX_PutEmptyPipeBuf, page 147
XX_PutFullPipeBuf, page 152

152 RTXC Kernel Services Reference, Volume 1

XX_PutFullPipeBuf

June 18, 2002

XX_PutFullPipeBuf
Put a full buffer into a pipe.

Zones IS_PutFullPipeBuf
 TS_PutFullPipeBuf
 KS_PutFullPipeBuf

Synopsis KSRC XX_PutFullPipeBuf (PIPE pipe, void * pbuf,
int bufsize)

Inputs

Description The XX_PutFullPipeBuf kernel service allows the specified
pipe’s producer to put a full buffer into pipe at its tail.

It is necessary for the producer to state the size of the buffer as filled
so that pipe’s consumer knows how much data there is to process.
The size of the filled buffer must be less than or equal to the
maximum usable size of the buffers for pipe.

Output This service returns a KSRC value as follows:

RC_GOOD if the service was successful.

RC_PIPE_FULL if the specified pipe does not have room for
another full buffer.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_PIPE if the specified pipe ID is not valid.

FE_UNINITIALIZED_PIPE if the specified pipe has not yet been
initialized.

pipe The handle of the pipe to use.

pbuf The pointer to the full buffer to be put into the specified
pipe. The pointer must not be null.

bufsize The actual size of the buffer as filled. This number must be
less than or equal to the maximum usable buffer size for
the specified pipe.

Chapter 4: Pipe Services 153

XX_PutFullPipeBuf

June 18, 2002

FE_NULL_PIPEBUFFER if the specified Pipe buffer address is
null.

FE_ZERO_PIPEBUFSIZE if the buffer size in the specified pipe is
zero.

Example In Example 4-20, the Current Thread fills a buffer and puts the
buffer in the pipe specified in PIPEA.

Example 4-20. Put Full Buffer into Pipe

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kpipe.h" /* PIPEA */

int buffersize;
void *buffer;

/* get pointer to an empty buffer */
buffer = TS_GetEmptyPipeBuf (PIPEA);

... fill the buffer until its size = maxbufsize for the pipe

/* put full buffer back into pipe */
TS_PutFullPipeBuf (PIPEA, buffer, &buffersize);

... continue

See Also XX_DefPipeProp, page 115
XX_GetPipeProp, page 130
XX_JamFullGetEmptyPipeBuf, page 132
XX_JamFullPipeBuf, page 136
XX_PutEmptyGetFullPipeBuf, page 144
XX_PutEmptyPipeBuf, page 147
XX_PutFullGetEmptyPipeBuf, page 149

154 RTXC Kernel Services Reference, Volume 1

KS_UsePipe

June 18, 2002

KS_UsePipe
Look up a dynamic pipe by name and mark it for use.

Synopsis KSRC KS_UsePipe (const char *pname, PIPE *ppipe)

Inputs

Description The KS_UsePipe kernel service acquires the handle of a dynamic
pipe by looking up the null-terminated string pointed to by pname in
the list of pipe names. If there is a match, the service registers the
pipe for future use by the Current Task and stores the matching
handle in the variable pointed to by ppipe. This procedure allows the
Current Task to reference the dynamic pipe successfully in
subsequent kernel service calls.

Note: To use this service, you must enable the Dynamics
attribute of the Pipe class during system generation.

The time required to perform this operation varies with the
number of pipe names in use.

Output This service returns a KSRC value as follows:

RC_GOOD if the search and registration is successful. The service
stores the matching handle in the variable pointed to by ppipe.

RC_STATIC_OBJECT if the specified name belongs to a static
pipe.

RC_OBJECT_NOT_FOUND if the service finds no matching pipe
name.

Example Example 4-21 on page 155 locates the DynPipe3 dynamic pipe by
name and obtains the pipe handle. It then outputs a message to the

pname A pointer to a null-terminated name string.

ppipe A pointer to a variable in which to store the matching handle,
if found.

Chapter 4: Pipe Services 155

KS_UsePipe

June 18, 2002

console indicating the handle of the pipe if successful or an error
message if unsuccessful.

Example 4-21. Read Pipe Handle and Register It

#include <stdio.h> /* standard i/o */
#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

PIPE dynpipe;
KSRC ksrc;
static char buf[128];

if ((ksrc = KS_UsePipe ("DynPipe3", &dynpipe)) != RC_GOOD)
{
 if (ksrc == RC_STATIC_OBJECT)
 putline ("Pipe DynPipe3 is a static pipe");
 else
 putline ("Pipe DynPipe3 not found");
}
else
{
 /* pipe was found and its handle is in dynpipe. */
 sprintf (buf, "DynPipe3 is pipe %d", dynpipe);
 putline (buf);
}

See Also KS_DefPipeName, page 118
KS_GetPipeName, page 128

156 RTXC Kernel Services Reference, Volume 1

KS_UsePipe

June 18, 2002

Chapter 5: Event Source Services 157

June 18, 2002

C H A P T E R 5 Event Source Services

In This Chapter
We describe the Event Source kernel services in detail. The Event
Source services maintain and update accumulators to count the
number of source events as well as to serve as the base for related
Counters and Alarms.

XX_ClearEventSourceAttr ...158

KS_CloseEventSource ..160

KS_DefEventSourceName ... 162

XX_DefEventSourceProp.. 164

INIT_EventSourceClassProp.. 167

XX_GetEventSourceAcc ... 169

KS_GetEventSourceClassProp..171

KS_GetEventSourceName ..173

XX_GetEventSourceProp ..175

KS_LookupEventSource ..177

KS_OpenEventSource .. 179

XX_ProcessEventSourceTick...181

XX_SetEventSourceAcc ...183

XX_SetEventSourceAttr...185

KS_UseEventSource... 187

158 RTXC Kernel Services Reference, Volume 1

XX_ClearEventSourceAttr

June 18, 2002

XX_ClearEventSourceAttr
Clear one or more event source attributes.

Zones TS_ClearEventSourceAttr
 KS_ClearEventSourceAttr

Synopsis void XX_ClearEventSourceAttr (EVNTSRC evntsrc,
ATTRMASK amask)

Input

Description The XX_ClearEventSourceAttr kernel service clears bits in the
attribute property of the event source specified in evntsrc according
to the bits specified in amask.

The attributes element of an Event Source object supports the
attribute and corresponding mask listed in Table 5-1 on page 164.

Output This service does not return a value.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_EVNTSRC if the specified event source ID is not
valid.

FE_UNINITIALIZED_EVNTSRC if the specified event source has
not yet been initialized.

Example In Example 5-1 on page 159, the Current Thread clears the disable
bit in the event source specified in EVNTSRC1 to enable further
processing of Events.

evntsrc The handle of the event source containing the attributes to be
cleared.

amask A mask value containing the bits to clear in the attribute
property of the specified event source.

Chapter 5: Event Source Services 159

XX_ClearEventSourceAttr

June 18, 2002

Example 5-1. Clear Event Source Attribute

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "keventsrc.h" /* EVNTSRC1 */

/* clear disable bit in event source to re-enable */
TS_ClearEventSourceAttr (EVNTSRC1, ATTR_ENVTSRC_DISABLE);

... continue

See Also XX_SetEventSourceAttr, page 185

160 RTXC Kernel Services Reference, Volume 1

KS_CloseEventSource

June 18, 2002

KS_CloseEventSource
End the use of a dynamic event source.

Synopsis KSRC KS_CloseEventSource (EVNTSRC evntsrc)

Input

Description The KS_CloseEventSource kernel service ends the Current
Task’s use of the dynamic event source specified in evntsrc. When
closing evntsrc, the service detaches the caller’s use of it. If the caller
is the last user of evntsrc, the service releases evntsrc to the free pool
of dynamic event sources for reuse. If there is at least one other task
still using evntsrc, the service does not release evntsrc to the free pool
but completes successfully.

Note: To use this service, you must enable the Dynamics
attribute of the Event Source class during system
generation.

Output This service returns a KSRC value as follows:

RC_GOOD if the service is successful.

RC_STATIC_OBJECT if the specified event source is not
dynamic.

RC_OBJECT_NOT_INUSE if the specified event source does not
correspond to an active dynamic event source.

RC_OBJECT_INUSE if the Current Task’s use of the specified
event source is closed but the event source remains open for use
by other tasks.

Note: RC_OBJECT_INUSE does not necessarily indicate an
error condition. The calling task must interpret its meaning.

evntsrc The handle for an event source.

Chapter 5: Event Source Services 161

KS_CloseEventSource

June 18, 2002

Error This service may generate the following fatal error code:

FE_ILLEGAL_EVNTSRC if the specified event source ID is not valid.

Example In Example 5-2, the Current Task waits on a signal from another task
indicating that it is time to close the dynamic event source specified
in dynevntsrc. When the Current Task receives the signal, it closes the
associated event source.

Example 5-2. Close Event Source

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

EVNTSRC dynevntsrc;
SEMA dynsema;

KS_TestSemaW (dynsema); /* wait for signal */

KS_CloseEventSource (dynevntsrc); /* then close the event source */

See Also KS_OpenEventSource, page 179
KS_UseEventSource, page 187

162 RTXC Kernel Services Reference, Volume 1

KS_DefEventSourceName

June 18, 2002

KS_DefEventSourceName
Define the name of a previously opened event source.

Synopsis KSRC KS_DefEventSourceName (EVNTSRC evntsrc,
const char *pname)

Inputs

Description The KS_DefEventSourceName kernel service names or renames
the dynamic event source specified in evntsrc. The service uses the
null-terminated string pointed to by pname for evntsrc’s new name.

Static event sources cannot be named or renamed under program
control.

Note: To use this service, you must enable the Dynamics
attribute of the Event Source class during system
generation.

This service does not check for duplicate event source
names.

Output This service returns a KSRC value as follows:

RC_GOOD if the service completes successfully.

RC_STATIC_OBJECT if the event source being named is static.

RC_OBJECT_NOT_FOUND if the Dynamics attribute of the Event
Source class is not enabled.

RC_OBJECT_NOT_INUSE if the specified event source does not
correspond to an active dynamic event source.

Error This service may generate the following fatal error code:

FE_ILLEGAL_EVNTSRC if the specified event source ID is not valid.

evntsrc The handle of the event source being defined.

pname A pointer to a null-terminated name string.

Chapter 5: Event Source Services 163

KS_DefEventSourceName

June 18, 2002

Example Example 5-3 assigns the name NewEventSource to the event source
specified in dynevntsrc so other users may reference it by name.

Example 5-3. Assign Event Source Name

#include <stdio.h> /* standard i/o */
#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

KSRC ksrc;
EVNTSRC dynevntsrc;

if ((ksrc = KS_DefEventSourceName (dynevntsrc, "NewEventSource"))
 != RC_GOOD)
{
 if (ksrc == RC_OBJECT_NOT_FOUND)
 putline ("Dynamic Event Sources are not enabled");
 else if (ksrc == RC_STATIC_OBJECT)
 {
 sprintf (buf, "Event Source %d is a static event source",
 dynevntsrc);
 putline (buf);
 }
 else
 {
 sprintf (buf, "Event Source %d is not active.",
 dynevntsrc);
 putline (buf);
 }
}

... naming operation was successful. Continue

See Also KS_OpenEventSource, page 179
KS_GetEventSourceName, page 173
KS_LookupEventSource, page 177
KS_UseEventSource, page 187

164 RTXC Kernel Services Reference, Volume 1

XX_DefEventSourceProp

June 18, 2002

XX_DefEventSourceProp
Define the event source’s properties.

Zones TS_DefEventSourceProp
 KS_DefEventSourceProp

Synopsis void KS_DefEventSourceProp (EVNTSRC evntsrc,
const EVNTSRCPROP *pevntsrcprop)

Inputs

Description The XX_DefEventSourceProp kernel service defines the
properties of the event source specified in evntsrc using the values
contained in the EVNTSRCPROP structure pointed to by pevntsrcprop.

Example 5-4 shows the organization of the EVNTSRCPROP structure.

Example 5-4. Event Source Properties Structure

typedef struct
{
 KATTR attributes; /* Event Source attributes (DISABLE only) */
} EVNTSRCPROP;

The attributes element of an Event Source object supports the
attribute and corresponding mask listed in Table 5-1.

Setting the Disable attribute disables processing of event source ticks
with the XX_ProcessEventSourceTick service. Clearing the
Disable attribute enables tick processing on the event source.

evntsrc The handle of the event source being defined.

pevntsrcprop A pointer to an Event Source properties structure.

Table 5-1. Event Source Attributes and Masks

Attribute Mask

Disable ATTR_DISABLE

Chapter 5: Event Source Services 165

XX_DefEventSourceProp

June 18, 2002

Note: Define a event source’s properties only when the
event source is not busy.
This kernel service is not intended to permit unrestricted
enabling and disabling of a event source’s Disable attribute.
While no restrictions are placed on its frequency of use, you
should use this service before the first use of the event
source.

Output This service does not return a value.

Error This service may generate the following fatal error code:

FE_ILLEGAL_EVNTSRC if the specified event source ID is not valid.

Example During system initialization, the startup routine must create and
initialize the Event Source object class and define the properties of
all the static event sources before the system can process the events
associated with the sources, as illustrated in Example 5-5.

Example 5-5. Define Event Source Properties

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

extern const KCLASSPROP evntsrcclassprop;
extern const ENVSRCPROP evntsrcprop[];

KSRC ksrc;
int objnum;

/* initialize the Event Source class/object data */
if ((ksrc = INIT_EventSourceClassProp (&evntsrcclassprop))
 != RC_GOOD)
 return ksrc;

for (objnum = 1; objnum <= evntsrcclassprop.n_statics; objnum++)
{
 TS_DefEventSourceProp (objnum, &evntsrcprop[objnum]);
}

... continue

166 RTXC Kernel Services Reference, Volume 1

XX_DefEventSourceProp

June 18, 2002

See Also XX_GetEventSourceProp, page 175
INIT_EventSourceClassProp, page 167
KS_OpenEventSource, page 179

Chapter 5: Event Source Services 167

INIT_EventSourceClassProp

June 18, 2002

INIT_EventSourceClassProp
Initialize the Event Source object class properties.

Synopsis KSRC INIT_EventSourceClassProp
(const KCLASSPROP *pclassprop)

Input

Description During the RTXC initialization procedure, you must define the
kernel objects needed by the kernel to perform the application. The
INIT_EventSourceClassProp kernel service allocates space
for the Event Source object class in system RAM. The amount of
RAM to allocate, and all other properties of the class, are specified in
the KCLASSPROP structure pointed to by pclassprop.

The KCLASSPROP structure has the following organization:

typedef struct
{
 KATTR attributes;
 KOBJECT n_statics; /* number of static objects */
 KOBJECT n_dynamics; /* number of dynamic objects */
 short objsize; /* used for calculating offsets */
 short totalsize; /* used to alloc object array RAM */
 ksize_t namelen; /* length of the name string */
 const char *pstaticnames;
} KCLASSPROP;

The attributes element of the Event Source KCLASSPROP
structure supports the class property attributes and corresponding
masks listed in Table 5-2 on page 171.

Output This service returns a KSRC value as follows:

RC_GOOD if the service completes successfully.

RC_NO_RAM if the initialization fails because there is insufficient
system RAM available.

pclassprop A pointer to a Event Source object class properties
structure.

168 RTXC Kernel Services Reference, Volume 1

INIT_EventSourceClassProp

June 18, 2002

Example During system initialization, the startup code must initialize the
Event Source object class before using any kernel service for that
class. The system generation process produces a KCLASSPROP
structure containing the information about the kernel object
necessary for its initialization. In Example 5-6, that structure is
referenced externally to the code module.

Example 5-6. Initialize Event Source Object Class Properties

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

extern const SYSPROP sysprop;
extern const KCLASSPROP evntsrcclassprop;

KSRC userinit (void)
{
 KSRC ksrc;

 /* Initialize the kernel workspace and allocate RAM */
 /* for required classes, etc. */
 if ((ksrc = INIT_SysProp (&sysprop)) != RC_GOOD)
 {
 putline ("Kernel initialization failure");
 return (ksrc); /* end initialization process */
 }

 /* Initialize the necessary kernel object classes */

 /* Initialize the Event Source kernel object class */
 if ((ksrc = INIT_EventSourceClassProp (&evntsrcclassprop))
 != RC_GOOD)
 {
 putline ("No RAM for Event Source init");
 return (ksrc); /* end initialization process */
 }

... Continue with system initialization

}

See Also KS_GetEventSourceClassProp

Chapter 5: Event Source Services 169

XX_GetEventSourceAcc

June 18, 2002

XX_GetEventSourceAcc
Get the event sources’s accumulator.

Zones IS_GetEventSourceAcc
 TS_GetEventSourceAcc
 KS_GetEventSourceAcc

Synopsis TICKS KS_GetEventSourceAcc (EVNTSRC evntsrc)

Input

Description The XX_GetEventSourceAcc kernel service reads the event
accumulator of the event source specified in evntsrc and returns the
value read to the caller.

Output This service returns the event accumulator of the specified event
source to a variable of type TICKS.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_EVNTSRC if the specified event source ID is not
valid.

FE_UNINITIALIZED_EVNTSRC if the specified event source has
not yet been initialized.

Example In Example 5-7 on page 170, the Current Thread needs to know how
many ticks have occurred on the event source specified in
EVNTSRC1.

evntsrc The handle of the event source to be read.

170 RTXC Kernel Services Reference, Volume 1

XX_GetEventSourceAcc

June 18, 2002

Example 5-7. Read Event Source Accumulator

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kevntsrc.h" /* EVNTSRC1 */

TICKS currticks;

/* get current tick count on EVNTSRC1 */
currticks = TS_GetEventSourceAcc (EVNTSRC1);

... do something with currticks from EVNTSRC1

... continue

See Also XX_ProcessEventSourceTick, page 181

Chapter 5: Event Source Services 171

KS_GetEventSourceClassProp

June 18, 2002

KS_GetEventSourceClassProp
Get the Event Source object class properties.

Synopsis const KCLASSPROP * KS_GetEventSourceClassProp
(int *pint)

Input

Description The KS_GetEventSourceClassProp kernel service obtains a
pointer to the KCLASSPROP structure that was used during system
initialization by the INIT_EventSourceClassProp service to
initialize the Event Source object class properties. If pint is not null
((int *)0), the service returns the number of available dynamic
event sources in the variable pointed to by pint. If pint is null, the
service does not return the number of dynamic event sources.

Table 2-13 on page 44 shows the organization of the KCLASSPROP
structure.

The value of the attributes element of the Event Source KCLASSPROP
structure is determined by the selections you make during the
system configuration procedure. It supports the class property
attributes and corresponding masks listed in Table 5-2.

Output If successful, this service returns a pointer to a KCLASSPROP
structure.

If the Event Source class is not initialized, the service returns a null
pointer ((KCLASSPROP *)0).

pint A pointer to a variable in which to store the number of
available dynamic event sources. The value of pint may be
null ((int *)0), in which case the service does not return
the number of dynamic event sources.

Table 5-2. Event Source Class Attributes and Masks

Attribute Mask

Static Names ATTR_STATIC_NAMES

Dynamics ATTR_DYNAMICS

172 RTXC Kernel Services Reference, Volume 1

KS_GetEventSourceClassProp

June 18, 2002

If pint is not null, the service returns the number of available
dynamic event sources, provided that the Dynamics attribute is
enabled (Set). If the Dynamics attribute is disabled (Clear), the
service stores a value of zero (0) in the variable pointed to by pint.

Example In Example 5-8, the Current Task accesses the information
contained in the KCLASSPROP structure for the Event Source class.

Example 5-8. Read Event Source Object Class Properties

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

KCLASSPROP *pevntsrcclassprop;
int free_dyn;

/* Get the event source kernel object class properties */
if ((pevntsrcclassprop = KS_GetEventSourceClassProp (&free_dyn))
 == (KCLASSPROP *)0)
{
 putline ("Event Source Class not initialized");
}
else
{
 ... event source object class properties are available for use
 "free_dyn" is the number of available dynamic event sources
}

See Also INIT_EventSourceClassProp, page 167

Chapter 5: Event Source Services 173

KS_GetEventSourceName

June 18, 2002

KS_GetEventSourceName
Get the event source’s name.

Synopsis char * KS_GetEventSourceName (EVNTSRC evntsrc)

Input

Description The KS_GetEventSourceName kernel service obtains a pointer
to the null-terminated string containing the name of the event
source specified in evntsrc. The event source may be static or
dynamic.

Note: To use this service, you must select the Dynamics
option for the Event Source class during system generation.

To use this service on static event sources, you must select
the Static Names option for the Event Source class during
system generation.

Output If evntsrc has a name, this service returns a pointer to the null-
terminated name string.

If evntsrc has no name, the service returns a null pointer
((char *)0).

Error This service may generate the following fatal error code:

FE_ILLEGAL_EVNTSRC if the specified event source ID is not valid.

Example In Example 5-9 on page 174, the Current Task reports the name of
the dynamic event source specified in dynevntsrc.

evntsrc The handle of the event source being queried.

174 RTXC Kernel Services Reference, Volume 1

KS_GetEventSourceName

June 18, 2002

Example 5-9. Read Event Source Name

#include <stdio.h> /* standard i/o */
#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

static char buf[128];

EVNTSRC dynevntsrc;
char *pname;

if ((pname = KS_GetEventSourceName (dynevntsrc)) == (char *)0)
 sprintf (buf, "Event Source %d has no name", dynevntsrc);
else
 sprintf (buf, "Event Source %d name is %s", dynevntsrc, pname);

putline (buf); /* send buffer to console */

See Also KS_DefEventSourceName, page 162
KS_OpenEventSource, page 179

Chapter 5: Event Source Services 175

XX_GetEventSourceProp

June 18, 2002

XX_GetEventSourceProp
Get the event source’s properties.

Zones TS_GetEventSourceProp
 KS_GetEventSourceProp

Synopsis void XX_GetEventSourceProp (EVNTSRC evntsrc,
EVNTSRCPROP *pevntsrcprop)

Inputs

Description The XX_GetEventSourceProp kernel service obtains all of the
property values of the event source specified in evntsrc in a single call.
The service stores the property values in the EVNTSRCPROP structure
pointed to by pevntsrcprop.

Example 5-4 on page 164 shows the organization of the
EVNTSRCPROP structure.

The attributes element of an Event Source object supports the
attribute and corresponding mask listed in Table 5-1 on page 164.

Output This service does not return a value.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_EVNTSRC if the specified event source ID is not
valid.

FE_UNINITIALIZED_EVNTSRC if the specified event source has
not yet been initialized.

Example In Example 5-10 on page 176, the Current Thread needs to know the
status of the disable bit in the attributes of the event source specified
in EVNTSRC1.

evntsrc The handle of the event source being queried.

pevntsrcprop A pointer to an Event Source properties structure.

176 RTXC Kernel Services Reference, Volume 1

XX_GetEventSourceProp

June 18, 2002

Example 5-10. Read Event Source Properties

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kevntsrc.h" /* EVNTSRC1 */

EVNTSRCPROP evntsrcprop;

/* get current Event Source Properties */
TS_GetEventSourceProp (EVNTSRC1, &evntsrcprop);

/* is event source disable? */
if (evntsrcprop.attributes && ATTR_DISABLE)
{
 ... do something, Event Source is disabled
}

... continue

See Also XX_DefEventSourceProp, page 164

Chapter 5: Event Source Services 177

KS_LookupEventSource

June 18, 2002

KS_LookupEventSource
Look up an event source by its name to get its handle.

Synopsis KSRC KS_LookupEventSource (const char *pname,
EVNTSRC *pevntsrc)

Inputs

Description The KS_LookupEventSource kernel service obtains the handle
of the static or dynamic event source whose name matches the null-
terminated string pointed to by pname. The lookup process
terminates when it finds a match between the specified string and a
static or dynamic event source name or when it finds no match. The
service stores the handle of the matching event source in the variable
pointed to by pevntsrc. The service searches dynamic names, if any,
first.

Note: To use this service on static event sources, you must
enable the Static Names attribute of the Event Source class
during system generation.

This service has no effect on the registration of the specified
event source by the Current Task.

The time required to perform this operation varies with the
number of event source names in use.

Output This service returns a KSRC value as follows:

RC_GOOD if the search succeeds. The service also stores the
handle of the matching event source in the variable pointed to by
pevntsrc.

pname A pointer to a null-terminated name string.

pevntsrc A pointer to a variable in which to store the event source
handle.

178 RTXC Kernel Services Reference, Volume 1

KS_LookupEventSource

June 18, 2002

RC_OBJECT_NOT_FOUND if the service finds no matching event
source name.

Example In Example 5-11, the Current Task needs to use the dynamic event
source named Chnl2EventSource. If the event source is found, the
Current Task reads its accumulator.

Example 5-11. Look Up Event Source by Name

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

EVNTSRC dynevntsrc;
TICKS chnl2evnts;
KSRC ksrc;

/* lookup the event source name to see if it exists */
if (KS_LookupEventSource ("Chnl2EventSource", &dynevntsrc)
 != RC_GOOD)
{
 ... Event Source name not found. Deal with it
}
else /* event source exists */
{
 /* get the event source's accumulator */
 chnl2evnts = KS_GetEventSourceAcc (dynevntsrc);

 ...OK to use accumulator for "Chnl2EventSource" now

}

See Also KS_DefEventSourceName, page 162
KS_GetEventSourceName, page 173
KS_OpenEventSource, page 179

Chapter 5: Event Source Services 179

KS_OpenEventSource

June 18, 2002

KS_OpenEventSource
Allocate and name a dynamic event source.

Synopsis KSRC KS_OpenEventSource (const char *pname,
EVNTSRC *pevntsrc)

Inputs

Description The KS_OpenEventSource kernel service allocates, names, and
obtains the handle of a dynamic event source. If a dynamic event
source is available and there is no existing event source, static or
dynamic, with a name matching the null-terminated string pointed
to by pname, the service allocates a dynamic event source and applies
the name referenced by pname to the new event source. The service
stores the handle of the new dynamic event source in the variable
pointed to by pevntsrc. The kernel stores only the address of the name
internally, which means that the same array cannot be used to build
multiple dynamic event source names.

If pname is null ((char *)0), the service does not assign a name to
the dynamic event source. However, if pname points to a null string
(""), the name is legal as long as no other event source is already
using a null string as its name.

If the service finds an existing event source with a matching name,
it does not open a new event source and returns a value indicating an
unsuccessful operation.

Note: To use this service, you must enable the Dynamics
attribute of the Event Source class during system
generation.

If the pointer to the event source name is not null
((char *)0), the time required to perform this operation
varies with the number of event source names in use.

pname A pointer to a null-terminated name string.

pevntsrc A pointer to a variable in which to store the event source
handle.

180 RTXC Kernel Services Reference, Volume 1

KS_OpenEventSource

June 18, 2002

If pname is null, no search of event source names takes
place and the time to perform the service is fixed. You can
define the event source name at a later time with a call to
the KS_DefEventSourceName service.

Output This service returns a KSRC value as follows:

RC_GOOD if the service completes successfully. The service also
stores the handle of the allocated event source in the variable
pointed to by pevntsrc.

RC_OBJECT_ALREADY_EXISTS if the name search finds another
event source whose name matches the specified string.

RC_NO_OBJECT_AVAILABLE if the name search finds no match
but all dynamic event sources are in use.

Example Example 5-12 allocates a dynamic event source and names it
Chnl2EventSource. If the name is already being used, the example
outputs a message on the console.

Example 5-12. Allocate and Name Event Source

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

KSRC ksrc;
EVNTSRC dynevntsrc;

if ((ksrc = KS_OpenEventSource ("Chnl2EventSource", &dynevntsrc))
 != RC_GOOD)
{
 if (ksrc == RC_OBJECT_ALREADY_EXISTS)
 putline ("Chnl2EventSource event source name in use");
 else if (ksrc == RC_NO_OBJECT_AVAILABLE)
 putline ("No dynamic event sources available");
 else
 putline ("Event Sources object class not defined");
}
... event source was opened correctly. Okay to use it now

See Also KS_CloseEventSource, page 160
KS_LookupEventSource, page 177
KS_UseEventSource, page 187

Chapter 5: Event Source Services 181

XX_ProcessEventSourceTick

June 18, 2002

XX_ProcessEventSourceTick
Process a tick on an event source.

Zones IS_ProcessEventSourceTick
 TS_ProcessEventSourceTick
 KS_ProcessEventSourceTick

Synopsis KSRC XX_ProcessEventSourceTick (EVNTSRC evntsrc,
TICKS nevnts)

Inputs

Description Provided the ATTR_DISABLED attribute is cleared in the attributes
property of the event source specified in evntsrc, the
XX_ProcessEventSourceTick kernel service performs all of
the RTXC Kernel-dependent functions necessary when an event
source tick occurs, including updating of all counters associated with
evntsrc and all alarms associated with those counters. The source of
the tick may be external or an internal. The service may process more
than one tick per call, as specified in nevnts.

Output This service returns a KSRC value as follows:

RC_GOOD if no alarm expiration occurred as a result of the event
source tick.

RC_ALARM_EXPIRED if an alarm expires on a counter associated
with the specified event source as a result of the call to
XX_ProcessEventSourceTick.

RC_EVNTSRC_DISABLED if the specified event source has been
disabled.

Example In Example 5-13 on page 182, for diagnostic purposes, a clock
interrupt service routine is tracking how many alarm expirations
occur as a result of processing ticks from the TIMEBASE event

evntsrc The handle of the event source being updated with a new tick
(or ticks).

nevnts The number of ticks to process for the specified event source.

182 RTXC Kernel Services Reference, Volume 1

XX_ProcessEventSourceTick

June 18, 2002

source. The ticks variable specifies the number of ticks to process.
The interrupt service routine uses a second event source, named
ALARMEXPS, to accumulate the number of alarm expiration
notifications it receives as a result of processing event source ticks on
TIMEBASE.

Example 5-13. Process Source Event for Clock Tick

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "eventsrc.h" /* defines ALARMEXPS */

Global TICKS ticks;

/* start of the interrupt service routine device handler */

...got a clock interrupt and have number of ticks
 to process in "ticks"

if (IS_ProcessEventSourceTick (TIMEBASE, ticks)
 == RC_ALARM_EXPIRED)
 IS_ProcessEventSourceTick (ALARMEXPS, (TICKS)1);

... continue

Chapter 5: Event Source Services 183

XX_SetEventSourceAcc

June 18, 2002

XX_SetEventSourceAcc
Set the event source’s accumulator to a specified value.

Zones TS_SetEventSourceAcc
 KS_SetEventSourceAcc

Synopsis void XX_SetEventSourceAcc (EVNTSRC evntsrc,
TICKS ticks)

Inputs

Description The XX_SetEventSourceAcc kernel service sets the event
accumulator of the event source specified in evntsrc to the value
specified in ticks.

Output This service does not return a value.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_EVNTSRC if the specified event source ID is not
valid.

FE_UNINITIALIZED_EVNTSRC if the specified event source has
not yet been initialized.

Example In Example 5-14 on page 184, the Current Thread needs to set the
accumulator in the event source specified in EVNTSRC1 to zero.

evntsrc The handle of the event source to be updated.

ticks The value to store in the accumulator of the event source.

184 RTXC Kernel Services Reference, Volume 1

XX_SetEventSourceAcc

June 18, 2002

Example 5-14. Set Event Source Accumulator

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kevntsrc.h" /* EVNTSRC1 */

/* set event source accumulator */
TS_SetEventSourceAcc (EVNTSRC1, (TICKS)0);

... continue

See Also XX_GetEventSourceAcc, page 169
XX_ProcessEventSourceTick, page 181

Chapter 5: Event Source Services 185

XX_SetEventSourceAttr

June 18, 2002

XX_SetEventSourceAttr
Set one or more event source attributes.

Zones TS_SetEventSourceAttr
 KS_SetEventSourceAttr

Synopsis void XX_SetEventSourceAttr (EVNTSRC evntsrc,
ATTRMASK amask)

Inputs

Description The XX_SetEventSourceAttr kernel service sets bits in the
attribute property of the event source specified in evntsrc according
to the bits specified in amask.

The attributes element of an Event Source object supports the
attribute and corresponding mask listed in Table 5-1 on page 164.

Output This service does not return a value.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_EVNTSRC if the specified event source ID is not
valid.

FE_UNINITIALIZED_EVNTSRC if the specified event source has
not yet been initialized.

Example In Example 5-15 on page 186, the Current Thread needs to disable
the event source specified in EVNTSRC1 to prevent further
processing of events for that event source.

evntsrc The handle of the event source containing the attributes to be
set.

amask A mask value containing the bits to set in the attribute
property of the event source specified in evntsrc.

186 RTXC Kernel Services Reference, Volume 1

XX_SetEventSourceAttr

June 18, 2002

Example 5-15. Set Event Source Attribute Bits

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kevntsrc.h" /* EVNTSRC1 */

/* disable EVNTSRC1 */
TS_SetEventSourceAttr (EVNTSRC1, ATTR_EVNTSRC_DISABLE);

... continue

See Also XX_ClearEventSourceAttr, page 158

Chapter 5: Event Source Services 187

KS_UseEventSource

June 18, 2002

KS_UseEventSource
Look up a dynamic event source by name and mark it for use.

Synopsis KSRC KS_UseEventSource (const char *pname,
EVNTSRC *pevntsrc)

Inputs

Description The KS_UseEventSource kernel service acquires the handle of a
dynamic event source by looking up the null-terminated string
pointed to by pname in the list of event source names. If there is a
match, the service registers the event source for future use by the
Current Task and stores the handle of the matching event source in
the variable pointed to by pevntsrv. This procedure allows the Current
Task to reference the dynamic event source successfully in
subsequent kernel service calls.

Note: To use this service, you must enable the Dynamics
attribute of the Event Source class during system
generation.

The time required to perform this operation varies with the
number of event source names in use.

Output This service returns a KSRC value as follows:

RC_GOOD if the search is successful. The service also stores the
handle of the matching event source in the variable pointed to by
pevntsrc.

RC_STATIC_OBJECT if the specified name belongs to a static
event source.

RC_OBJECT_NOT_FOUND if the service finds no matching event
source name.

pname A pointer to a null-terminated name string.

pevntsrc A pointer to a variable in which to store the event source
handle.

188 RTXC Kernel Services Reference, Volume 1

KS_UseEventSource

June 18, 2002

Example Example 5-16 locates a dynamic event source named
DynMuxEventSource3 and obtains its handle for subsequent use.

Example 5-16. Read Event Source Handle and Register It

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

KSRC ksrc;
EVNTSRC dynevntsrc;

if ((ksrc = KS_UseEventSource ("DynMuxEventSource3", &dynevntsrc))
 != RC_GOOD)
{
 if (ksrc == RC_STATIC_OBJECT)
 putline ("DynMuxEventSource3 is a static event source");
 else
 putline ("Event Source DynMuxEventSource3 name not found");
}

... event source was found and its handle is in dynevntsrc.
 Okay to use it now

See Also XX_DefEventSourceProp, page 164
XX_ClearEventSourceAttr, page 158
KS_OpenEventSource, page 179

Chapter 6: Counter Services 189

June 18, 2002

C H A P T E R 6 Counter Services

In This Chapter
We describe the Counter kernel services in detail. The Counter
services maintain and update accumulators for the number of
counter ticks used for associated Alarms.

XX_ClearCounterAttr ..190

KS_CloseCounter.. 192

INIT_CounterClassProp... 194

KS_DefCounterName... 196

XX_DefCounterProp... 198

XX_GetCounterAcc...202

KS_GetCounterClassProp ... 204

KS_GetCounterName.. 206

XX_GetCounterProp...208

XX_GetElapsedCounterTicks ... 210

KS_LookupCounter .. 214

KS_OpenCounter ... 216

XX_SetCounterAcc ... 218

XX_SetCounterAttr ...220

KS_UseCounter ..222

190 RTXC Kernel Services Reference, Volume 1

XX_ClearCounterAttr

June 18, 2002

XX_ClearCounterAttr
Clear one or more attributes for a counter.

Zones TS_ClearCounterAttr
 KS_ClearCounterAttr

Synopsis void XX_ClearCounterAttr (COUNTER counter,
KATTRMASK amask)

Inputs

Description The XX_ClearCounterAttr kernel service clears bits in the
specified counter’s attribute property according to the bits specified
in amask. For information about the Counter attributes, see
“XX_ClearCounterAttr” on page 190.

Output This service does not return a value.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_COUNTER if the specified counter ID is not valid.

FE_UNINITIALIZED_COUNTER if the specified counter has not
yet been initialized.

Example In Example 6-1 on page 191, the Current Thread clears the disable
bit in the counter specified in COUNTER1 to enable further
processing of events on this Counter.

counter The handle of the counter containing the attributes to be
cleared.

amask A mask value containing the bits to clear in the attribute
property of the specified counter.

Chapter 6: Counter Services 191

XX_ClearCounterAttr

June 18, 2002

Example 6-1. Clear Counter Attribute

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kcounter.h" /* COUNTER1 */

/* clear disable bit in counter to re-enable */
TS_ClearCounterAttr (COUNTER1, ATTR_COUNTER_DISABLE);

... continue

See Also XX_SetCounterAttr, page 220

192 RTXC Kernel Services Reference, Volume 1

KS_CloseCounter

June 18, 2002

KS_CloseCounter
End the use of a dynamic counter.

Synopsis KSRC KS_CloseCounter (COUNTER counter)

Input

Description The KS_CloseCounter kernel service ends the Current Task’s use
of the specified dynamic counter. When closing counter, the service
detaches the caller’s use of it. If the caller is the last user of counter,
the service releases counter to the free pool of dynamic counters for
reuse. If there is at least one other task still using counter, the service
does not release the counter to the free pool but completes
successfully.

Note: To use this service, you must enable the Dynamics
attribute of the Counter class during system generation.

Output This service returns a KSRC value as follows:

RC_GOOD if the service is successful.

RC_STATIC_OBJECT if the specified counter is not dynamic.

RC_OBJECT_NOT_INUSE if the specified counter does not
correspond to an active dynamic counter.

RC_OBJECT_INUSE if the Current Task’s use of the specified
counter is closed but the counter remains open for use by other
tasks.

Note: RC_OBJECT_INUSE does not necessarily indicate an
error condition. The calling task must interpret its meaning.

Error This service may generate the following fatal error code:

FE_ILLEGAL_COUNTER if the specified counter ID is not valid.

counter A handle for a dynamic counter.

Chapter 6: Counter Services 193

KS_CloseCounter

June 18, 2002

Example In Example 6-2, the Current Task waits on a signal from another task
indicating that it is time to close the dynamic counter specified in
dyncounter. When the signal is received, the Current Task closes
the associated counter.

Example 6-2. Close Counter

#include "rtxcapi.h" /* RTXC Kernel Services prototypes */

COUNTER dyncounter;
SEMA dynsema;

KS_TestSemaW (dynsema); /* wait for signal */

KS_CloseCounter (dyncounter); /* then close the counter */

See Also KS_OpenCounter, page 216

194 RTXC Kernel Services Reference, Volume 1

INIT_CounterClassProp

June 18, 2002

INIT_CounterClassProp
Initialize the Counter object class properties.

Synopsis KSRC INIT_CounterClassProp
(const KCLASSPROP *pclassprop)

Input

Description During the RTXC Kernel initialization procedure, you must define
the kernel objects needed by the kernel to perform the application.
The INIT_CounterClassProp kernel service allocates space for
the Counter object class in system RAM. The amount of RAM to
allocate, and all other properties of the class, are specified in the
KCLASSPROP structure pointed to by pclassprop.

Example 2-13 on page 44 shows the organization the KCLASSPROP
structure.

The attributes element of the Counter KCLASSPROP structure
supports the class property attributes and corresponding masks
listed in Table 6-2 on page 204.

Output This service returns a KSRC value as follows:

RC_GOOD if the service completes successfully.

RC_NO_RAM if the initialization fails because there is insufficient
system RAM available.

Example During system initialization, the startup code must initialize the
Counter object class before using any kernel service for that class.
The system generation process produces a KCLASSPROP structure
containing the information about the kernel object necessary for its
initialization. In Example 6-3 on page 195, that structure is
referenced externally to the code module.

pclassprop A pointer to a Counter object class properties structure.

Chapter 6: Counter Services 195

INIT_CounterClassProp

June 18, 2002

Example 6-3. Initialize Counter Object Class Properties

#include "rtxcapi.h" /* RTXC Kernel Services prototypes */

extern const SYSPROP sysprop;
extern const KCLASSPROP counterclassprop;

KSRC userinit (void)
{
 KSRC ksrc;

 /* initialize the kernel workspace and allocate RAM */
 /* for required classes, etc. */

 if ((ksrc = INIT_SysProp (&sysprop)) != RC_GOOD)
 {
 putline ("Kernel initialization failure");
 return (ksrc); /* end initialization process */
 }
 /* kernel is initialized */

 /* Need to initialize the necessary kernel object classes */

 /* Initialize the Counter kernel object class */
 if ((ksrc = INIT_CounterClassProp (&counterclassprop))
 != RC_GOOD)
 {
 putline ("No RAM for Counter init");
 return (ksrc); /* end initialization process */
 }

... Continue with system initialization

}

See Also KS_GetCounterClassProp, page 204

196 RTXC Kernel Services Reference, Volume 1

KS_DefCounterName

June 18, 2002

KS_DefCounterName
Define the name of a previously opened dynamic counter.

Synopsis KSRC KS_DefCounterName (COUNTER counter,
const char *pname)

Inputs

Description The KS_DefCounterName kernel service names or renames the
specified dynamic counter. The service uses the null-terminated
string pointed to by pname for the new name.

Static counters cannot be named or renamed under program
control.

Note: To use this service, you must enable the Dynamics
attribute of the Counter class during system generation.

This service does not check for duplicate counter names.

Output This service returns a KSRC value as follows:

RC_GOOD if the service completes successfully.

RC_STATIC_OBJECT if the counter being named is static.

RC_OBJECT_NOT_FOUND if the Dynamics attribute of the
Counter class is not enabled.

RC_OBJECT_NOT_INUSE if the specified counter does not
correspond to an active dynamic counter.

Error This service may generate the following fatal error code:

FE_ILLEGAL_COUNTER if the specified counter ID is not valid.

counter The handle of the counter being defined.

pname A pointer to a null-terminated name string.

Chapter 6: Counter Services 197

KS_DefCounterName

June 18, 2002

Example Example 6-4 assigns the name NewCounter to the counter specified
in dyncounter so other users may reference it by name.

Example 6-4. Assign Counter Name

#include <stdio.h> /* standard i/o */
#include "rtxcapi.h" /* RTXC Kernel Services prototypes */

KSRC ksrc;
COUNTER dyncounter;

if ((ksrc = KS_DefCounterName (dyncounter, "NewCounter"))
 != RC_GOOD)
{
 if (ksrc == RC_OBJECT_NOT_FOUND)
 putline ("Dynamic Counters are not enabled");
 else if (ksrc == RC_STATIC_OBJECT)
 {
 sprintf (buf, "Counter %d is a static counter", dyncounter);
 putline (buf);
 }
 else
 {
 sprintf (buf, "Counter %d is not active.", dyncounter);
 putline (buf);
 }
}

... naming operation was successful. Continue

See Also KS_OpenCounter, page 216
KS_GetCounterName, page 206
KS_LookupCounter, page 214
KS_UseCounter, page 222

198 RTXC Kernel Services Reference, Volume 1

XX_DefCounterProp

June 18, 2002

XX_DefCounterProp
Define the counter’s properties.

Zones TS_DefCounterProp
 KS_DefCounterProp

Synopsis void XX_DefCounterProp (COUNTER counter,
const COUNTERPROP *pcounterprop)

Inputs

Description The XX_DefCounterProp kernel service defines the properties of
the specified counter using the values contained in the COUNTERPROP
structure pointed to by pcounterprop.

Example 6-5 shows the organization of the COUNTERPROP structure.

Example 6-5. Counter Properties Structure

typedef struct
{
 KATTR attributes; /* counter attributes */
 EVNTSRC evntsrc;
 KMODULUS modulus;
} COUNTERPROP;

The attributes element of a Counter object supports the attribute and
corresponding mask listed in Table 6-1.

counter The handle of the counter being defined.

pcounterprop A pointer to a Counter properties structure.

Table 6-1. Counter Attributes and Masks

Attribute Mask

Counter Disable ATTR_COUNTER_DISABLE

Systime Time Counter ATTR_COUNTER_TIMEBASE

Tick Slice Counter ATTR_COUNTER_TICKSLICE

Chapter 6: Counter Services 199

XX_DefCounterProp

June 18, 2002

The Counter Disable attribute controls updating of the counter’s tick
accumulator during a XX_ProcessEventSourceTick service.
When you set ATTR_COUNTER_DISABLE, the counter’s tick
accumulator is frozen. When you clear the attribute, the counter’s
tick accumulator can be updated. The attribute is cleared by default.

The Systime Time Counter attribute controls the counter’s use as the
system timebase. The attribute is cleared by default. When you set
ATTR_COUNTER_TIMEBASE using this service or the
XX_SetCounterAttr service, the counter has special significance
as the system timebase. Therefore, for kernel services in which the
user wants to use the system timebase counter as a referenced
object, the actual identity of the timebase counter can be represented
by the construct (COUNTER)0 (or some suitable symbol defined as
(COUNTER)0). This construct makes it possible to reference the
system timebase counter without actually knowing its identity.

Note: The developer must ensure that one, and only one,
counter in the system has the Systime Time Counter attribute
enabled. The RTXC Kernel does not provide any checking to
ensure only one counter has this attribute enabled. After
clearing the ATTR_COUNTER_TIMEBASE attribute on one
counter, you may enable it on another.

The Tick Slice Counter attribute controls the counter’s use in tick slice
scheduling by the RTXC Kernel. The attribute is cleared by default.
When you set ATTR_COUNTER_TICKSLICE using this service or
the XX_SetCounterAttr service, the counter is used as the
source of counter ticks for tick sliced scheduling of tasks by the
RTXC/ms Scheduler. In this manner, tasks can use any form of tick,
not just time, for tick sliced scheduling.

Note: Like the Systime Time Counter attribute, there should
be one, and only one, counter with the Tick Slice Counter
attribute enabled at any given time. You may use different
counters for the tick slice counter and the system timebase
counter.

200 RTXC Kernel Services Reference, Volume 1

XX_DefCounterProp

June 18, 2002

Define a counter's properties only when the counter is not
busy.

This kernel service is not intended to permit unrestricted
enabling and disabling of a counter's attributes. While no
restrictions are placed on its frequency of use, you should
use this service before the first use of counter.

If more than one counter has either the Systime Time
Counter or Tick Slice Counter attributes enabled, the RTXC
Kernel recognizes only the counter most recently defined
that has either attribute set for their intended purposes. For
information about setting Counter attributes, see
“XX_SetCounterAttr” on page 220.

Output This service does not return a value.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_COUNTER if the specified counter ID is not valid.

FE_ILLEGAL_EVENTSOURCE if the specified event source ID is
not valid.

Example During system initialization, the startup routine must create and
initialize the Counter object class and define the properties of all the
static counters before the system can process the events on the
counters, as illustrated in Example 6-6 on page 201.

Chapter 6: Counter Services 201

XX_DefCounterProp

June 18, 2002

Example 6-6. Define Counter Properties

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

extern const KCLASSPROP counterclassprop;
extern const COUNTERPROP counterprop[];

KSRC ksrc;
int objnum;

 /* initialize the Counter class/object data */
 if ((ksrc = INIT_CounterClassProp (&counterclassprop))
 != RC_GOOD)
 return ksrc;

 for (objnum = 1; objnum <= counterclassprop.n_statics; objnum++)
 {
 TS_DefCounterProp (objnum, &counterprop[objnum]);
 }

... continue

See Also XX_GetCounterProp, page 208
INIT_CounterClassProp, page 194
KS_OpenCounter, page 216

202 RTXC Kernel Services Reference, Volume 1

XX_GetCounterAcc

June 18, 2002

XX_GetCounterAcc
Get the counter’s tick accumulator.

Zones IS_GetCounterAcc
 TS_GetCounterAcc
 KS_GetCounterAcc

Synopsis TICKS XX_GetCounterAcc (COUNTER counter)

Input

Description The KS_GetCounterClassProp kernel service reads the specified
counter’s tick accumulator and returns the value to the caller.

Output This service returns the tick accumulator value as a TICKS type
value.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_COUNTER if the specified counter ID is not valid.

FE_UNINITIALIZED_COUNTER if the specified counter has not
yet been initialized.

Example In Example 6-7 on page 203, the Current Thread needs to know how
many ticks have occurred on the counter specified in COUNTER1 and
on the counter used for the system timebase.

counter The handle of the counter to be read.

Chapter 6: Counter Services 203

XX_GetCounterAcc

June 18, 2002

Example 6-7. Read Counter Accumulator

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kcounter.h" /* COUNTER1 */

TICKS currticks;

/* get current tick count on COUNTER1 */
currticks = TS_GetCounterAcc (COUNTER1);

... do something with currticks from COUNTER1

currticks = TS_GetCounterAcc (TIMEBASE);

... do something with currticks from system time base

... continue

See Also XX_GetElapsedCounterTicks, page 210

204 RTXC Kernel Services Reference, Volume 1

KS_GetCounterClassProp

June 18, 2002

KS_GetCounterClassProp
Get the Counter object class properties.

Synopsis const KCLASSPROP * KS_GetCounterClassProp
(int *pint)

Input

Description The KS_GetCounterClassProp kernel service obtains a pointer
to the KCLASSPROP structure that was used during system
initialization by the INIT_CounterClassProp kernel service to
initialize the Counter object class properties. If pint is not null ((int
*)0), the service returns the number of available dynamic counters
in the variable pointed to by pint. If pint is null, the service does not
return the number of available dynamic counters.

Example 2-13 on page 44 shows the organization of the KCLASSPROP
structure.

The value of the attributes element of the Counter KCLASSPROP
structure is determined by the selections you make during the
system configuration procedure. It supports the class property
attributes and corresponding masks listed in Table 6-2.

Output If successful, this service returns a pointer to a KCLASSPROP
structure.

If the Counter class is not initialized, the service returns a null
pointer ((KCLASSPROP *)0).

pint A pointer to a variable in which to store the number of
available dynamic counters. This argument may be a null
pointer ((void *)0).

Table 6-2. Counter Class Attributes and Masks

Attribute Mask

Static Names ATTR_STATIC_NAMES

Dynamics ATTR_DYNAMICS

Chapter 6: Counter Services 205

KS_GetCounterClassProp

June 18, 2002

If pint is not null, the service returns the number of available
dynamic counters, provided that the Dynamics attribute is enabled
(set). If the Dynamics attribute is disabled (cleared), the service stores
a value of zero (0) in the variable pointed to by pint.

Example In Example 6-8, the Current Task accesses the information
contained in the KCLASSPROP structure for the Counter object class.

Example 6-8. Read Counter Object Class Properties

#include "rtxcapi.h" /* RTXC Kernel Services prototypes */

KCLASSPROP *pcounterclassprop;
int free_dyn;

/* Get the counter kernel object class properties */
if ((pcounterclassprop = KS_GetCounterClassProp (&free_dyn))
 == (KCLASSPROP *)0)
{
 putline ("Counter Class not initialized");
}
else
{
 ... counter object class properties are available for use
 "free_dyn" contains the number of available dynamic counteres
}

See Also INIT_CounterClassProp, page 194

206 RTXC Kernel Services Reference, Volume 1

KS_GetCounterName

June 18, 2002

KS_GetCounterName
Get the counter’s name.

Synopsis char * KS_GetCounterName (COUNTER counter)

Input

Description The KS_GetCounterName kernel service obtains a pointer to the
null-terminated string containing the name of the specified counter.
The counter may be static or dynamic.

Note: To use this service on static counters, you must
enable the Static Names attribute of the Counter class
during system generation.

Output If counter has a name, this service returns a pointer to the null-
terminated name string.

If counter has no name, the service returns a null pointer
((char *)0).

Error This service may generate the following fatal error code:

FE_ILLEGAL_COUNTER if the specified counter ID is not valid.

Example In Example 6-9 on page 207, the Current Task reports the name of
the dynamic counter specified in dyncounter.

counter The handle of the counter being queried.

Chapter 6: Counter Services 207

KS_GetCounterName

June 18, 2002

Example 6-9. Read Counter Name

#include <stdio.h> /* standard i/o */
#include "rtxcapi.h" /* RTXC Kernel Services prototypes */

static char buf[128];

COUNTER dyncounter;
char *pname;

if ((pname = KS_GetCounterName (dyncounter)) == (char *)0)
 sprintf (buf, "Counter %d has no name", dyncounter);
else
 sprintf (buf, "Counter %d name is %s", dyncounter, pname);

putline (buf); /* send buffer to console */

See Also KS_DefCounterName, page 196
KS_OpenCounter, page 216

208 RTXC Kernel Services Reference, Volume 1

XX_GetCounterProp

June 18, 2002

XX_GetCounterProp
Get the counter’s properties.

Zones TS_GetCounterProp
 KS_GetCounterProp

Synopsis void XX_GetCounterProp (COUNTER counter,
COUNTERPROP *pcounterprop)

Inputs

Description The XX_GetCounterProp service obtains all of the property
values of the specified counter in a single call. The service stores the
property values in the COUNTERPROP structure pointed to by
pcounterprop.

The COUNTERPROP structure has the following organization:

typedef struct
{
 KATTR attributes; /* Counter attributes (DISABLE only) */
 EVNTSRC evntsrc;
 KMODULUS modulus;
} COUNTERPROP;

For information about the Counter properties, see
“XX_GetCounterProp” on page 208.

Output This service does not return a value.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_COUNTER if the specified counter ID is not valid.

FE_UNINITIALIZED_COUNTER if the specified counter has not
yet been initialized.

counter The handle of the counter being queried.

pcounterprop A pointer to an Counter properties structure.

Chapter 6: Counter Services 209

XX_GetCounterProp

June 18, 2002

Example In Example 6-10, the Current Thread needs to know the status of the
ATTR_COUNTER_DISABLE attribute for the counter specified in
COUNTER1.

Example 6-10. Read Counter Properties

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kcounter.h" /* COUNTER1 */

COUNTERPROP counterprop; /* a counter properties structure */

/* get current Counter Properties */
TS_GetCounterProp (COUNTER1, &counterprop);

/* is counter disabled? */
if (counterprop.attributes && ATTR_COUNTER_DISABLE)
{
 ... do some processing if Counter is disabled
}

... continue

See Also XX_DefCounterProp, page 198

210 RTXC Kernel Services Reference, Volume 1

XX_GetElapsedCounterTicks

June 18, 2002

XX_GetElapsedCounterTicks
Compute the number of counter ticks that have elapsed between two
events.

Zones TS_GetElapsedCounterTicks
 KS_GetElapsedCounterTicks

Synopsis TICKS XX_GetElapsedCounterTicks (COUNTER counter,
TICKS *pprevticks)

Inputs

Description The XX_GetElapsedCounterTicks service returns the number
of ticks on counter that have elapsed between the current value of
counter’s tick accumulator and a previous value of counter’s tick
accumulator represented by the value pointed to by pprevticks. The
service computes the difference between the current value of
counter’s tick accumulator and the previous value and returns it to
the caller as the number of elapsed ticks. The service then prepares
for the next event by putting the current value of counter’s tick
accumulator into the variable pointed to by pprevticks.

Correct calculation of an elapsed number of ticks requires two
service calls. The first call puts the initial value of counter’s tick
accumulator into the variable pointed to by pprevticks and should be
done using either this service or the XX_GetCounterAcc kernel
service The second call should use this service as it returns the
number of ticks that have elapsed since the first call. Putting the
current tick accumulator value into pprevticks allows you to measure
sequential events with single calls to
XX_GetElapsedCounterTicks after each subsequent period.

counter The handle of the counter to use for determining the
number of elapsed ticks.

pprevticks A pointer to a variable that contains the value of the tick
accumulator for the specified counter at a previous event or
point in time.

Chapter 6: Counter Services 211

XX_GetElapsedCounterTicks

June 18, 2002

Accuracy of the elapsed count is limited by the tick frequency of the
specified counter and is guaranteed to be less than the duration of
one tick.

Note: If you use the XX_GetElapsedCounterTicks
kernel service to initialize the variable at pprevticks, the
TICKS value returned by that service call should be
discarded because it is unreliable.

Output This service returns the number of elapsed counter ticks as a TICKS
type value.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_COUNTER if the specified counter ID is not valid.

FE_UNINITIALIZED_COUNTER if the specified counter has not
yet been initialized.

Example Example 6-11 on page 212 calculates the number of ticks on the
system timebase counter, defined as TIMEBASE, that elapse between
two consecutive states of an on/off switch, where the change-of-state
event is associated with the SWITCH semaphore. The current state of
the switch is unknown.

212 RTXC Kernel Services Reference, Volume 1

XX_GetElapsedCounterTicks

June 18, 2002

Example 6-11. Obtain Elapsed Counter Ticks between Two Events

#include "rtxcapi.h" /* RTXC Kernel Services prototypes */
#include "ksema.h" /* defines SWITCH */

TICKS timestamp, diff;

/* wait for the first, and change of state */
KS_TestSemaW (SWITCH);

/* initialize timestamp and disregard return value */
KS_GetElapsedCounterTicks (TIMEBASE, ×tamp);

/*---*/
/* initialization of timestamp could have been done by the */
/* following: */
/* timebase = KS_GetCounterAcc (TIMEBASE); */
/*---*/

KS_TestSemaW (SWITCH); /* wait for switch change event */
 /* marking end of first state */

/* get elapsed time since t(0) */
diff = KS_GetElapsedCounterTicks (TIMEBASE, ×tamp);

... use the elapsed number of ticks in "diff" for something ...

KS_TestSemaW (SWITCH); /* wait for next switch change */
 /* marking end of second state */

/* get elapsed time since start of second state */
diff = KS_GetElapsedCounterTicks (TIMEBASE, ×tamp);

... Use the second period’s elapsed time

Chapter 6: Counter Services 213

XX_GetElapsedCounterTicks

June 18, 2002

214 RTXC Kernel Services Reference, Volume 1

KS_LookupCounter

June 18, 2002

KS_LookupCounter
Look up a counter by name to get its handle.

Synopsis KSRC KS_LookupCounter (const char *pname,
COUNTER *pcounter)

Inputs

Description The KS_LookupCounter kernel service obtains the handle of the
static or dynamic counter whose name matches the null-terminated
string pointed to by pname. The lookup process terminates when it
finds a match between the specified string and a static or dynamic
counter name or when it finds no match. The service stores the
handle of the matching counter in the variable pointed to by pcounter.
The service searches dynamic names, if any, first.

Note: To use this service on static counters, you must
enable the Static Names attribute of the Counter class
during system generation.

This service has no effect on the registration of the specified
counter by the Current Task.

The time required to perform this operation varies with the
number of counter names in use.

Output This service returns a KSRC value as follows:

RC_GOOD if the search succeeds. The service also stores the
handle of the matching counter in the variable pointed to by
pcounter.

RC_OBJECT_NOT_FOUND if the service finds no matching
counter name.

pname A pointer to a null-terminated name string.

pcounter A pointer to a variable in which to store the counter handle.

Chapter 6: Counter Services 215

KS_LookupCounter

June 18, 2002

Example In Example 6-12, the Current Task needs to use the dynamic counter
named Chnl2Counter. If the counter is found, the Current Task
reads its accumulator.

Example 6-12. Look Up Counter by Name

#include "rtxcapi.h" /* RTXC Kernel Services prototypes */

COUNTER dyncounter;
TICKS chnl2cnts;
KSRC ksrc;

/* lookup the counter name to see if it exists */
if (KS_LookupCounter ("Chnl2Counter", &dyncounter) != RC_GOOD)
{
 ... Counter name not found. Deal with it
}
else /* counter exists */
{
 /* get the counter's accumulator */
 chnl2cnts = KS_GetCounterAcc (dyncounter);

 ok to use accumulator for "Chnl2Counter" now

}

See Also KS_DefCounterName, page 196
KS_GetCounterName, page 206
KS_OpenCounter, page 216

216 RTXC Kernel Services Reference, Volume 1

KS_OpenCounter

June 18, 2002

KS_OpenCounter
Allocate and name a dynamic counter.

Synopsis KSRC KS_OpenCounter (const char *pname,
COUNTER *pcounter)

Inputs

Description The KS_OpenCounter service allocates, names, and obtains the
handle of a dynamic counter. If a dynamic counter is available and
there is no existing counter, static or dynamic, with a name matching
the null-terminated string pointed to by pname, the service allocates
a dynamic counter and applies the name referenced by pname to the
new counter. The service stores the handle of the new dynamic
counter in the variable pointed to by pcounter. The kernel stores only
the address of the name internally, which means that the same array
cannot be used to build multiple dynamic counter names.

If pname is null ((char *)0), the service does not assign a name to
the dynamic counter. However, if pname points to a null string (""),
the name is legal as long as no other counter is already using a null
string as its name.

If the service finds an existing counter with a matching name, it does
not open a new counter and returns a value indicating an
unsuccessful operation.

Note: To use this service, you must enable the Dynamics
attribute of the Counter class during system generation.

If the pointer to the counter name is not null ((char *)0),
the time required to perform this operation varies with the
number of counter names in use.

If the pointer to the counter name is null, no search of

pname A pointer to a null-terminated name string.

pcounter A pointer to a variable in which to store the counter handle.

Chapter 6: Counter Services 217

KS_OpenCounter

June 18, 2002

counter names takes place and the time to perform the
service is fixed. You can define the counter name at a later
time with a call to the KS_DefCounterName service.

Output This service returns a KSRC value as follows:

RC_GOOD if the service completes successfully. The service also
stores the handle of the allocated counter in the variable pointed
to by pcounter.

RC_OBJECT_ALREADY_EXISTS if the name search finds another
counter whose name matches the specified string.

RC_NO_OBJECT_AVAILABLE if the name search finds no match
but all dynamic counters are in use.

Example Example 6-13 attempts to allocate a dynamic counter and names it
Chnl2Counter. If the name is already being used, the example
outputs a message on the console.

Example 6-13. Allocate and Name Counter

#include "rtxcapi.h" /* RTXC Kernel Services prototypes */

KSRC ksrc;
COUNTER dyncounter;

if ((ksrc = KS_OpenCounter ("Chnl2Counter", &dyncounter))
 != RC_GOOD)
{
 if (ksrc == RC_OBJECT_ALREADY_EXISTS)
 putline ("Chnl2Counter counter name in use");
 else if (ksrc == RC_NO_OBJECT_AVAILABLE)
 putline ("No dynamic counters available");
 else
 putline ("Counters object class not defined");
}

... counter was opened correctly. Okay to use it now

See Also KS_CloseCounter, page 192
KS_LookupCounter, page 214
KS_UseCounter, page 222

218 RTXC Kernel Services Reference, Volume 1

XX_SetCounterAcc

June 18, 2002

XX_SetCounterAcc
Set the accumulator of a counter to a specified value.

Zones TS_SetCounterAcc
 KS_SetCounterAcc

Synopsis void XX_SetCounterAcc (COUNTER counter, TICKS ticks)

Inputs

Description The XX_SetCounterAcc service sets the specified counter’s tick
accumulator to the value in ticks.

This service is useful for setting a counter to a specific count that has
some significance in engineering units. For example, you can easily
establish an accurate real-time clock with one-second accuracy. First,
set up a counter that increments its tick accumulator once per
second. Then use a function to convert the current date and time to
the number of elapsed seconds since a standard date (most runtime
libraries include a function for conversion of dates and time to Base
Universal Time beginning 1-JAN-1970). Finally, set the 1-Hz
counter’s tick accumulator to the resulting number of seconds since
the base date with the XX_SetCounterAcc service.

Output This service does not return a value.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_COUNTER if the specified counter ID is not valid.

FE_UNINITIALIZED_COUNTER if the specified counter has not
yet been initialized.

Example In Example 6-14 on page 219, the Current Thread reads the number
of ticks in COUNTER1 that have occurred since the thread’s last
execution cycle. When the counter’s tick accumulator is read, the
thread sets the counter’s tick accumulator to zero.

counter The handle of the counter to be read.

ticks The value to store in the accumulator of the counter.

Chapter 6: Counter Services 219

XX_SetCounterAcc

June 18, 2002

Example 6-14. Set Counter Accumulator

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kcounter.h" /* COUNTER1 */

TICKS nticks;

/* first, get the number of ticks since last time thread executed */
nticks = GetCounterAcc (COUNTER1);

/* then set counter accumulator to 0 */
TS_SetCounterAcc (COUNTER1, (TICKS)0);

...do something with nticks

... continue

See Also KS_GetCounterClassProp, page 204

220 RTXC Kernel Services Reference, Volume 1

XX_SetCounterAttr

June 18, 2002

XX_SetCounterAttr
Set one or more attributes for a counter.

Zones TS_SetCounterAttr
 KS_SetCounterAttr

Synopsis void XX_SetCounterAttr (COUNTER counter,
KATTRMASK amask)

Inputs

Description The XX_SetCounterAttr service sets bits in the specified counter’s
attribute property according to the bits specified in amask. For
information about the Counter attributes, see
“XX_DefCounterProp” on page 198.

Output This service does not return a value.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_COUNTER if the specified counter ID is not valid.

FE_UNINITIALIZED_COUNTER if the specified counter has not
yet been initialized.

Example In Example 6-15 on page 221, the Current Thread needs to disable
the counter specified in COUNTER1 to prevent further processing of
events by that counter.

counter The handle of the counter containing the attributes to be
cleared.

amask A mask value containing the bits to set in the attribute
property of the specified counter.

Chapter 6: Counter Services 221

XX_SetCounterAttr

June 18, 2002

Example 6-15. Set Counter Attribute Bits

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kcounter.h" /* COUNTER1 */

/* disable COUNTER1 */
TS_SetCounterAttr (COUNTER1, ATTR_COUNTER_DISABLE);

... continue

See Also XX_ClearCounterAttr, page 190

222 RTXC Kernel Services Reference, Volume 1

KS_UseCounter

June 18, 2002

KS_UseCounter
Look up a dynamic counter by name and mark it for use.

Synopsis KSRC KS_UseCounter (const char *pname,
COUNTER *pcounter)

Inputs

Description The KS_UseCounter service acquires the handle of a dynamic
counter by looking up the null-terminated string pointed to by pname
in the list of counter names. If there is a match with a dynamic
counter, the service registers the counter for future use by the
Current Task and stores that counter’s handle in the variable pointed
to by pcounter. This procedure allows the Current Task to reference
the dynamic counter successfully in subsequent kernel service calls.

Note: To use this service, you must enable the Dynamics
attribute of the Counter class during system generation.

The time required to perform this operation varies with the
number of counter names in use.

Output This service returns a KSRC value as follows:

RC_GOOD if the search is successful. The service also stores the
matching counter’s handle in the variable pointed to by pcounter.

RC_STATIC_OBJECT if the specified name belongs to a static
counter.

RC_OBJECT_NOT_FOUND if the service finds no matching
counter name.

Example Example 6-16 on page 223 locates a dynamic counter named
DynMuxCounter3 and obtains its handle for subsequent use.

pname A pointer to a null-terminated name string.

pcounter A pointer to a variable in which to store the counter handle.

Chapter 6: Counter Services 223

KS_UseCounter

June 18, 2002

Example 6-16. Read Counter Handle and Register It

#include "rtxcapi.h" /* RTXC Kernel Services prototypes */

KSRC ksrc;
COUNTER dyncounter;

if ((ksrc = KS_UseCounter ("DynMuxCounter3", &dyncounter))
 != RC_GOOD)
{
 if (ksrc == RC_STATIC_OBJECT)
 putline ("DynMuxCounter3 is a static counter");
 else
 putline ("Counter DynMuxCounter3 name not found");
}

... counter was found and its handle is in dyncounter.
 Okay to use it now

See Also XX_DefCounterProp, page 198
XX_ClearCounterAttr, page 190
KS_OpenCounter, page 216

224 RTXC Kernel Services Reference, Volume 1

KS_UseCounter

June 18, 2002

Chapter 7: Alarm Services 225

June 18, 2002

C H A P T E R 7 Alarm Services

In This Chapter
We describe the Alarm kernel services in detail. The Alarm services
create, arm, and start alarms as well as disarm and stop them.
Alarms are related to Counters in that alarms utilize the tick
accumulators of Counters to determine when an alarm reaches its
point of expiration.

XX_AbortAlarm...226
INIT_AlarmClassProp ..228
XX_ArmAlarm...230
XX_CancelAlarm... 232
KS_CloseAlarm... 234
XX_DefAlarmAction ... 236
XX_DefAlarmActionArm .. 238
KS_DefAlarmName ... 240
XX_DefAlarmProp ..242
KS_DefAlarmSema...244
KS_GetAlarmClassProp ...246
KS_GetAlarmName ..248
XX_GetAlarmProp ..250
KS_GetAlarmSema... 252
XX_GetAlarmTicks ... 254
KS_LookupAlarm.. 256
KS_OpenAlarm... 258
XX_RearmAlarm .. 260
KS_TestAlarm...262
KS_TestAlarmT... 265
KS_TestAlarmW..268
KS_UseAlarm..270

226 RTXC Kernel Services Reference, Volume 1

XX_AbortAlarm

June 18, 2002

XX_AbortAlarm
Abort an active alarm.

Zones TS_AbortAlarm
 KS_AbortAlarm

Synopsis TICKS XX_AbortAlarm (ALARM alarm)

Input

Description The XX_AbortAlarm kernel service stops the specified alarm and
removes it from the list of active alarms on its associated counter,
thereby making it inactive. If the alarm is already inactive, this
service has no effect on it.

All tasks waiting for the expiration of the alarm as a result of a
previous call to KS_TestAlarmW or KS_TestAlarmT become
unblocked and these services return a KSRC value of
RC_ALARM_ABORTED.

In addition, if there is a Alarm_Abort (AA) semaphore associated with
the alarm, then the service signals the AA semaphore.

Output If the user aborts an active alarm, the service returns the number of
counter ticks remaining on the alarm.

If the alarm was inactive when stopped, the service ignores the
request and returns a value of zero (0) for remaining ticks.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_ALARM if the specified alarm ID is not valid.

FE_UNINITIALIZED_ALARM if the specified alarm has not yet
been initialized.

Example In Example 7-1 on page 227, the Current Task starts the static alarm
specified in ALARM1. The alarm uses the counter specified in
TIMEBASE and has an initial period of 150 msec and a cyclic period

alarm The handle for the alarm to be aborted.

Chapter 7: Alarm Services 227

XX_AbortAlarm

June 18, 2002

of 100 msec. After starting the alarm, the task waits for the alarm to
expire before starting its procedure. It then runs periodically every
100 msec for a total of five iterations, after which it stops the alarm
and continues processing.

Example 7-1. Abort Alarm

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kalarm.h" /* defines ALARM1 */

int i;

/* start alarm with 150 ms initial period & 100 ms cycle period */
KS_ArmAlarm (ALARM1);

/* wait for alarm to expire */
KS_TestAlarmW (ALARM1, (TICKS *)0);

for (i = 0; i < 5; i++) /* processing loop of task */
{
 /* wait on alarm expiration but ignore time remaining */
 KS_TestAlarmW (ALARM1, (TICKS *)0);

 ... Execute loop procedure, then wait for the next loop time
}
/* kill the alarm and ignore time remaining */
KS_AbortAlarm (ALARM1);

... continue

See Also XX_ArmAlarm, page 230
KS_TestAlarmW, page 268

228 RTXC Kernel Services Reference, Volume 1

INIT_AlarmClassProp

June 18, 2002

INIT_AlarmClassProp
Initialize the Alarm object class properties.

Synopsis KSRC INIT_AlarmClassProp
(const KCLASSPROP *pclassprop)

Input

Description During the RTXC initialization procedure, you must define the
kernel objects needed by the kernel to perform the application. The
INIT_AlarmClassProp kernel service allocates space for the
Alarm object class in system RAM. The amount of RAM to allocate,
and all other properties of the class, are specified in the KCLASSPROP
structure pointed to by pclassprop.

Example 2-13 on page 44 shows the organization of the KCLASSPROP
structure.

The attributes element of the Alarm KCLASSPROP structure supports
the class property attributes and corresponding masks listed in
Table 7-1 on page 246.

Output This service returns a KSRC value as follows:

RC_GOOD if the service completes successfully.

RC_NO_RAM if the initialization fails because there is insufficient
system RAM available.

Example During system initialization, the startup code must initialize the
Alarm object class before using any kernel service for that class. In
Example 7-2 on page 229, the system generation process produced a
KCLASSPROP structure containing the information about the kernel
object necessary for its initialization. The example references that
structure externally to the code module.

pclassprop A pointer to a Alarm object class properties structure.

Chapter 7: Alarm Services 229

INIT_AlarmClassProp

June 18, 2002

Example 7-2. Initialize Alarm Object Class

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

static char buf[128];

extern const SYSPROP sysprop;
extern const KCLASSPROP alarmclassprop;

KSRC userinit (void)
{
 KSRC ksrc;

 /* initialize the kernel workspace and allocate RAM */
 /* for required classes, etc. */

 if ((ksrc = INIT_SysProp (&sysprop)) != RC_GOOD)
 {
 putline ("Kernel initialization failure");
 return (ksrc); /* end initialization process */
 }
 /* kernel is initialized */

 /* Need to initialize the necessary kernel */
 /* object classes */

 /* Initialize the Alarm kernel object class */
 if ((ksrc = INIT_AlarmClassProp (&alarmclassprop))
 != RC_GOOD)
 {
 putline ("No RAM for Alarm init");
 return (ksrc); /* end initialization process */
 }

... Continue with system initialization
}

See Also XX_CancelAlarm, page 232

230 RTXC Kernel Services Reference, Volume 1

XX_ArmAlarm

June 18, 2002

XX_ArmAlarm
Arm and start an alarm.

Zones TS_ArmAlarm
 KS_ArmAlarm

Synopsis KSRC XX_ArmAlarm (ALARM alarm)

Input

Description The XX_ArmAlarm service arms and starts the specified alarm.
Before performing this service on the alarm, you should define,
through a call to XX_DefAlarmProp, its associated counter and
the initial and cyclic interval properties in ticks appropriate to that
counter.

Output This service returns a KSRC value as follows:

RC_GOOD if the alarm is successfully started.

RC_ALARM_ACTIVE if the service attempts to start an active
alarm.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_ALARM if the specified alarm ID is not valid.

FE_UNINITIALIZED_ALARM if the specified alarm has not yet
been initialized.

Example Example 7-3 on page 231 arms and starts the static alarm specified
in ALARM1. The task first tests the alarm to insure that it is not
already active. If not active, it arms and starts the alarm using its
defined properties. The alarm is to be relative to the counter
specified in TIMEBASE and have an initial period of 150 msec and a
cyclic period of 100 msec. After starting the alarm, the task waits for
the alarm to expire before starting its procedure. It then runs
periodically every 100 msec.

alarm The handle of the alarm to be armed and started.

Chapter 7: Alarm Services 231

XX_ArmAlarm

June 18, 2002

Example 7-3. Arm Alarm

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kalarm.h" /* defines ALARM1 */

static ALARMPROP alarmprop;

if (KS_TestAlarm (ALARM1, (TICKS *)0) == RC_ALARM_INACTIVE)
/* alarm is inactive. Okay to arm it and start it */
 KS_ArmAlarm (ALARM1);

/* alarm is active */

for (;;) /* processing loop of task */
{
 /* wait for alarm to expire */
 KS_TestAlarmW (ALARM1, (TICKS *)0);

 ... Do some processing, then wait for alarm to begin next loop
}

See Also XX_DefAlarmProp, page 242
KS_TestAlarm, page 262
XX_RearmAlarm, page 260

232 RTXC Kernel Services Reference, Volume 1

XX_CancelAlarm

June 18, 2002

XX_CancelAlarm
Make an active alarm inactive.

Zones TS_CancelAlarm
 KS_CancelAlarm

Synopsis TICKS XX_CancelAlarm (ALARM alarm)

Input

Description The XX_CancelAlarm service stops the specified alarm and
removes it from the list of active alarms on its associated counter,
thereby making it inactive. If alarm is already inactive, this service
has no effect on it.

All tasks waiting for the expiration of the alarm as a result of a
previous call to KS_TestAlarmW or KS_TestAlarmT become
unblocked and these services return a KSRC value of
RC_ALARM_CANCELED.

Output If the user cancels an active alarm, this service returns the number
of counter ticks remaining on the alarm.

If the alarm was inactive when stopped, the service ignores the
request and returns a value of zero (0) for remaining ticks.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_ALARM if the specified alarm ID is not valid.

FE_UNINITIALIZED_ALARM if the specified alarm has not yet
been initialized.

Example In Example 7-4 on page 233, the Current Task cancels the static
alarm specified in ALARM1 after it has gone through five expiration
events.

alarm The handle for the alarm to be canceled.

Chapter 7: Alarm Services 233

XX_CancelAlarm

June 18, 2002

Example 7-4. Cancel Alarm

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kalarm.h" /* defines ALARM1 */

int i;
TICKS residual;

/* start alarm with 150 ms initial period and 100 ms cycle period */
KS_ArmAlarm (ALARM1);

for (i = 0; i < 5; i++) /* processing loop of task */
{
 /* wait on alarm expiration but ignore time remaining */
 KS_TestAlarmW (ALARM1, (TICKS *)0);

 ... Execute loop procedure, then wait for the next loop time
}
/* kill the alarm and ignore time remaining */
KS_CancelAlarm (ALARM1);

... continue

See Also XX_ArmAlarm, page 230
KS_TestAlarmW, page 268

234 RTXC Kernel Services Reference, Volume 1

KS_CloseAlarm

June 18, 2002

KS_CloseAlarm
End the use of a dynamic alarm.

Synopsis KSRC KS_CloseAlarm (ALARM alarm)

Input

Description The KS_CloseAlarm kernel service ends the Current Task’s use of
the specified dynamic alarm. When closing alarm, the kernel
detaches the caller’s use of it. If the caller is the last user of alarm, the
alarm is released to the free pool of dynamic alarms for reuse. If
there is at least one other task still using the alarm, the kernel does
not release the alarm to the free pool but the service completes
successfully.

Note: To use this service, you must enable the Dynamics
attribute of the Alarm class during system generation.

Output This service returns a KSRC value as follows:

RC_GOOD if the service is successful.

RC_STATIC_OBJECT if the specified alarm is not dynamic.

RC_OBJECT_NOT_INUSE if the specified alarm does not
correspond to an active dynamic alarm.

RC_OBJECT_INUSE if the Current Task’s use of the specified
alarm is closed but the alarm remains open for use by other
tasks.

Note: RC_OBJECT_INUSE does not necessarily indicate an
error condition. The calling task must interpret its meaning.

Error This service may generate the following fatal error code:

FE_ILLEGAL_ALARM if the specified alarm ID is not valid.

alarm The handle for the alarm.

Chapter 7: Alarm Services 235

KS_CloseAlarm

June 18, 2002

Example In Example 7-5, the Current Task waits on a signal from another task
indicating that it should close a dynamic alarm. The handle of the
dynamic semaphore associated with the signal is specified in
dynsema. The handle of the dynamic alarm is specified in dynalarm.
When the signal is received, the Current Task closes the prescribed
dynamic alarm.

Example 7-5. Close Alarm

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

ALARM dynalarm; /* dynamic alarm’s handle stored here */
SEMA dynsema; /* dynamic sema’s handle stored here */
KSRC ksrc;

KS_TestSemaW (dynsema); /* wait for signal */

/* then close the alarm */
if ((ksrc = KS_CloseAlarm (dynalarm)) != RC_GOOD)
{
 /* Something may be wrong, deal with it here */
}
... dynamic alarm is closed, continue

See Also XX_ArmAlarm, page 230

236 RTXC Kernel Services Reference, Volume 1

XX_DefAlarmAction

June 18, 2002

XX_DefAlarmAction
Define action to perform following an alarm expiration.

Zones TS_DefAlarmAction
 KS_DefAlarmAction

Synopsis KSRC XX_DefAlarmAction (ALARM alarm,
ALARMACTION action, THREAD thread)

Inputs

Description The XX_DefAlarmAction service defines the action to take
following the expiration of the specified alarm. The
XX_ProcessEventSourceTick determines when an alarm
expires. When an expiration occurs, the
XX_ProcessEventSourceTick service performs the specified
end action operation, if defined, on the specified thread. If the source
event processing is called from an ISR, the end action operation
must perform IS_ScheduleThread or IS_DecrThreadGate,
corresponding to the action codes SCHEDULETHREAD or
DECRTHREADGATE, respectively. If a Zone 2 thread processes the
source event and determines that an alarm has expired, the end
action operation must perform TS_ScheduleThread or
TS_DecrThreadGate, corresponding to the action code
SCHEDULETHREAD or DECRTHREADGATE, respectively.

alarm The handle of the alarm to be associated with the end action
operation.

action A code for the action to perform as follows:

SCHEDULETHREAD—Schedule thread at the expiration of
alarm.

DECRTHREADGATE—Decrement the thread gate value of
thread upon the expiration of alarm.

thread The handle of the thread on which to perform the end action
operation.

Chapter 7: Alarm Services 237

XX_DefAlarmAction

June 18, 2002

Output This service returns a KSRC value as follows:

RC_GOOD if the service is successful.

RC_ALARM_ACTIVE if the service attempts to start an active
alarm.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_ALARM if the specified alarm ID is not valid.

FE_UNINITIALIZED_ALARM if the specified alarm has not yet
been initialized.

FE_ILLEGAL_THREAD if the specified thread ID is not valid.

FE_UNINITIALIZED_THREAD if the specified thread has not yet
been initialized.

FE_INVALID_ALARMACTION if the specified alarm action value
is not one of the four possible actions.

Example In Example 7-6, the thread specified in THREADA needs to be scheduled
every 5 seconds. The Current Thread defines a SCHEDULETHREAD action
to take place on the expiration of the ALARM1 static alarm, which is a cyclic
alarm. The Current Thread then arms and starts the alarm.

Example 7-6. Define Alarm End Action Operation

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kthread.h" /* THREADA */
#include "kalarm.h" /* ALARM1 */

/* define alarm action on ALARM1 to schedule thread */
TS_DefAlarmAction (ALARM1, SCHEDULETHREAD, THREADA);

TS_ArmAlarm (ALARM1);

... continue

238 RTXC Kernel Services Reference, Volume 1

XX_DefAlarmActionArm

June 18, 2002

XX_DefAlarmActionArm
Define the action to perform when an alarm expires and then arm
and start the alarm.

Zones TS_DefAlarmActionArm
 KS_DefAlarmActionArm

Synopsis KSRC XX_DefAlarmActionArm (ALARM alarm,
ALARMACTION action, THREAD thread)

Inputs

Description The XX_DefAlarmActionArm service arms the specified alarm
and defines the action to take following its expiration. The
XX_ProcessEventSourceTick service determines when an
alarm expires. When an expiration occurs, the
XX_ProcessEventSourceTick service performs the specified
end action operation, if defined, on the specified thread. If the source
event processing is called from an interrupt service routine, the end
action operation must perform IS_ScheduleThread or
IS_DecrThreadGate, corresponding to the action code
SCHEDULETHREAD or DECRTHREADGATE, respectively. If a Zone 2
thread processes the source event and determines that an alarm has
expired, the end action operation must perform
TS_ScheduleThread or TS_DecrThreadGate, corresponding to
the action code SCHEDULETHREAD or DECRTHREADGATE, respectively.

alarm The handle of the alarm to be associated with the end action
operation.

action A code for the action to perform as follows:

SCHEDULETHREAD—Schedule thread at the expiration of
alarm.

DECRTHREADGATE—Decrement the thread gate value of
thread upon the expiration of alarm.

thread The handle of the thread on which to perform the end action
operation.

Chapter 7: Alarm Services 239

XX_DefAlarmActionArm

June 18, 2002

Output This service returns a KSRC value as follows:

RC_GOOD if the service is successful.

RC_ALARM_ACTIVE if the service attempts to start an active
alarm.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_ALARM if the specified alarm ID is not valid.

FE_UNINITIALIZED_ALARM if the specified alarm has not yet
been initialized.

FE_ILLEGAL_THREAD if the specified thread ID is not valid.

FE_UNINITIALIZED_THREAD if the specified thread has not yet
been initialized.

FE_INVALID_ALARMACTION if the specified alarm action value
is not one of the four possible actions.

Example In Example 7-7, the thread specified in THREADA needs to be
scheduled every 5 seconds. The Current Thread defines a
SCHEDULETHREAD action on the ALARM1 static alarm, which is a
cyclic alarm. The alarm is then armed and started automatically.

Example 7-7. Arm Alarm and Define Alarm Expiration Action Operation

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kthread.h" /* THREADA */
#include "kalarm.h" /* ALARM1 */

/* define alarm action on ALARM1 to schedule a thread from an ISR */
TS_DefAlarmActionArm (ALARM1, SCHEDULETHREAD, THREADA);

... continue

240 RTXC Kernel Services Reference, Volume 1

KS_DefAlarmName

June 18, 2002

KS_DefAlarmName
Define the name of a previously opened alarm.

Synopsis KSRC KS_DefAlarmName (ALARM alarm,
const char *pname)

Inputs

Description The KS_DefAlarmName kernel service names or renames the
specified dynamic alarm. The service uses the null-terminated string
pointed to by pname for the alarm’s new name.

Static alarms cannot be named or renamed under program control.

Note: To use this service, you must enable the Dynamics
attribute of the Alarm class during system generation.

This service does not check for duplicate alarm names.

Output This service returns a KSRC value as follows:

RC_GOOD if the service completes successfully.

RC_STATIC_OBJECT if the alarm being named is static.

RC_OBJECT_NOT_FOUND if the Dynamics attribute of the Alarm
class is not enabled.

RC_OBJECT_NOT_INUSE if the dynamic alarm being named
does not correspond to an open dynamic alarm.

Error This service may generate the following fatal error code:

FE_ILLEGAL_ALARM if the specified alarm ID is not valid.

alarm The handle of the alarm being defined.

pname A pointer to a null-terminated name string.

Chapter 7: Alarm Services 241

KS_DefAlarmName

June 18, 2002

Example Example 7-8 assigns the name NewAlarm to the previously opened
dynamic alarm specified in dynalarm so other users may reference
it by name.

Example 7-8. Define Alarm Name

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

ALARM dynalarm;

if (KS_DefAlarmName (dynalarm, "NewAlarm") != RC_GOOD)
{
 ... Something may be wrong. Deal with it here
}
... naming operation was successful. Continue

See Also KS_OpenAlarm, page 258
KS_GetAlarmName, page 248
KS_LookupAlarm, page 256
KS_UseAlarm, page 270

242 RTXC Kernel Services Reference, Volume 1

XX_DefAlarmProp

June 18, 2002

XX_DefAlarmProp
Define the properties of a alarm.

Zones TS_DefAlarmProp
 KS_DefAlarmProp

Synopsis void XX_DefAlarmProp (ALARM alarm,
const ALARMPROP *palarmprop)

Inputs

Description The XX_DefAlarmProp kernel service defines the properties of
the specified alarm using the values contained in the ALARMPROP
structure pointed to by palarmprop.

Example 7-9 shows the organization of the ALARMPROP structure.

Example 7-9. Alarm Properties Structure

typedef struct
{
 KATTR attributes; /* alarm attributes */
 COUNTER counter; /* counter associated with alarm */
 TICKS initial; /* initial count period */
 TICKS recycle; /* recycle count period */
} ALARMPROP;

The alarm attributes value is reserved for future use. The counter
property specifies the counter the system will use to determine alarm
expiration. The alarm’s initial ticks value is specified in initial. The
cyclic value is specified in recycle.

Output This service does not return a value.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_ALARM if the specified alarm ID is not valid.

FE_ILLEGAL_COUNTER if the specified counter ID is not valid.

alarm The handle of the alarm being defined.

palarmprop A pointer to an Alarm properties structure.

Chapter 7: Alarm Services 243

XX_DefAlarmProp

June 18, 2002

Example In Example 7-10, the Current Task defines the properties of the
previously opened dynamic alarm specified in dynalarm. The
attributes element is set to zero (0). The alarm uses the TIMEBASE
counter, which is the counter for the system timebase. The duration
of the alarm’s initial period is 500 ms and the cyclic period is 200 ms.
After the task defines the alarm’s properties, it uses the alarm to time
some processing on a periodic basis.

Example 7-10. Define Alarm Properties

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kproject.h" /* defines CLKTICK */

ALARM dynalarm;
static ALARMPROP alarmprop;

alarmprop.attributes = 0;
alarmprop.counter = TIMEBASE;
alarmprop.initial = (TICKS)500 / CLKTICK;
alarmprop.cycle = (TICKS)200 / CLKTICK;

KS_DefAlarmProp (dynalarm, &alarmprop);
KS_ArmAlarm (dynalarm); /* start alarm now */

for (;;)
{
 /* wait for alarm to expire */
 KS_TestAlarmW (dynalarm, (TICKS *)0);

 ... perform some process, then wait for next period
}

See Also XX_GetAlarmProp, page 250
XX_GetAlarmTicks, page 254
KS_OpenAlarm, page 258
KS_TestAlarm, page 262

244 RTXC Kernel Services Reference, Volume 1

KS_DefAlarmSema

June 18, 2002

KS_DefAlarmSema
Associate a semaphore with a alarm event.

Synopsis void KS_DefAlarmSema (ALARM alarm, SEMA sema,
AEVENT event)

Inputs

Description The KS_DefAlarmSema service associates the semaphore
specified in sema with an event, either Alarm_Expired (AE) or
Alarm_Aborted (AA), of the specified alarm.

The Alarm_Expired and Alarm_Aborted events have enumerated
values of AE and AA, respectively. You should use one of these values
when specifying the event argument.

Note: To use this service, you must enable the Semaphores
attribute of the Alarm class during system generation.

Output This service does not return a value.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_ALARM if the specified alarm ID is not valid.

FE_UNINITIALIZED_ALARM if the specified alarm has not yet
been initialized.

FE_ILLEGAL_SEMA if the specified semaphore ID is not valid.

FE_UNINITIALIZED_SEMA if the specified semaphore has not
yet been initialized.

alarm The handle of the alarm with which to associate the
semaphore.

sema The handle of the semaphore to associate with the alarm
event.

event An alarm event value.

Chapter 7: Alarm Services 245

KS_DefAlarmSema

June 18, 2002

FE_INVALID_ALARMEVENT if the specified semaphore event
value is not either AE or AA.

Example In Example 7-11, the Current Task needs to know when either of two
events occurs. The SWITCH1 event is associated with a switch
closure. The task uses KS_DefAlarmSema to associate the
ALARMXP semaphore with the Alarm_Expired (AE) event. Then the
task waits for either event.

Example 7-11. Define Alarm Semaphore

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "ksema.h" /* defines SWITCH1, ALARMXP */
#include "kalarm.h" /* defines ALARM1 */

SEMA cause;
const SEMA semalist[] =
{
 SWITCH1,
 ALARMXP,
 (SEMA)0 /* null terminated list */
};

/* associate ALARMXP with the expiration of ALARM1 */
KS_DefAlarmSema (ALARM1, ALARMXP, AE);

for (;;)
{
 /* wait for either of 2 events */
 cause = KS_TestSemaMW (semalist);

 switch (cause)
 {
 case SWITCH1:
 ... process SWITCH1 event...
 break;

 case ALARMXP:
 ... process ALARMXP event...
 break;

 } /* end of switch */
} /* end of forever */

See Also KS_GetAlarmSema, page 252

246 RTXC Kernel Services Reference, Volume 1

KS_GetAlarmClassProp

June 18, 2002

KS_GetAlarmClassProp
Get the Alarm object class properties.

Synopsis const KCLASSPROP * KS_GetAlarmClassProp (int *pint)

Input

Description The KS_GetAlarmClassProp kernel service obtains a pointer to
the KCLASSPROP structure that was used during system initialization
by the INIT_AlarmClassProp service to initialize the Alarm
object class properties.

If pint contains a non-zero address, the service stores the current
number of unused dynamic alarms in the indicated address. If pint
contains a null pointer ((int *)0), the service ignores the
parameter. If the Alarm object class properties do not include the
Dynamics attribute, the service stores a value of zero (0) at the
address contained in pint.

Example 2-13 on page 44 shows the organization of the KCLASSPROP
structure.

The attributes element of the Alarm KCLASSPROP structure supports
the class property attributes and corresponding masks listed in
Table 7-1.

Output If successful, this service returns a pointer to a KCLASSPROP
structure.

pint A pointer to a variable in which to store the number of
available dynamic alarms.

Table 7-1. Alarm Class Attributes and Masks

Attribute Mask

Static Names ATTR_STATIC_NAMES

Dynamics ATTR_DYNAMICS

Semaphores ATTR_SEMAPHORES

Chapter 7: Alarm Services 247

KS_GetAlarmClassProp

June 18, 2002

If the Alarm class is not initialized, the service returns a null pointer
((KCLASSPROP *)0).

Example Example 7-12 accesses the information contained in the
KCLASSPROP structure for the Alarm object class.

Example 7-12. Read Alarm Object Class Properties

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

KCLASSPROP *palarmclassprop;
int free_dyn;

/* Get the Alarm kernel object class properties */
if ((palarmclassprop = KS_GetAlarmClassProp (&free_dyn))
 == (KCLASSPROP *)0)
{
 putline ("Alarm Class not initialized");
}
else
{
 ... alarm object class info is available for use
 "free_dyn" contains the number of available dynamic alarms
}

See Also XX_GetAlarmTicks, page 254

248 RTXC Kernel Services Reference, Volume 1

KS_GetAlarmName

June 18, 2002

KS_GetAlarmName
Get the name of a alarm.

Synopsis char * KS_GetAlarmName (ALARM alarm)

Input

Description The KS_GetAlarmName kernel service obtains a pointer to the
null-terminated string containing the name of the specified static or
dynamic alarm.

Output If alarm has a name, this service returns a pointer to the null-
terminated name string.

If alarm has no name, the service returns a null pointer
((char *)0).

Error This service may generate the following fatal error code:

FE_ILLEGAL_ALARM if the specified alarm ID is not valid.

Example Example 7-13 reports the name of the dynamic alarm specified in
dynalarm.

Example 7-13. Read Alarm Name

#include <stdio.h> /* standard i/o */
#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

static char buf[128];
ALARM dynalarm;
char *pname;

if ((pname = KS_GetAlarmName (dynalarm)) == (char *)0)
 sprintf (buf, "Alarm %d has no name", dynalarm);
else
 sprintf (buf, "Alarm %d name is %s", dynalarm, pname);

putline (buf); /* send buffer to console */

alarm The handle of the alarm being queried.

Chapter 7: Alarm Services 249

KS_GetAlarmName

June 18, 2002

See Also KS_DefAlarmName, page 240
KS_OpenAlarm, page 258

250 RTXC Kernel Services Reference, Volume 1

XX_GetAlarmProp

June 18, 2002

XX_GetAlarmProp
Get the properties of a alarm.

Zones TS_GetAlarmProp
 KS_GetAlarmProp

Synopsis void XX_GetAlarmProp (ALARM alarm,
ALARMPROP *palarmprop)

Inputs

Description The XX_GetAlarmProp kernel service obtains all of the property
values of the specified alarm in a single call. The service stores the
property values in the ALARMPROP structure pointed to by
palarmprop.

Example 7-9 on page 242 shows the organization of the ALARMPROP
structure.

The alarm attributes value is reserved for future use. The counter
property specifies the counter the system uses to determine alarm
expiration. The alarm’s initial ticks value is specified in initial. The
cyclic value is specified in recycle.

Output This service does not return a value.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_ALARM if the specified alarm ID is not valid.

FE_UNINITIALIZED_ALARM if the specified alarm has not yet
been initialized.

Example Example 7-14 on page 251 changes the cyclic period value of the
dynamic alarm specified in dynalarm to 150 ms. The task first
obtains the alarm’s current properties then modifies the cyclic period
element in the ALARMPROP structure. XX_DefAlarmProp is then
used to redefine the properties of the alarm.

alarm The handle of the alarm being queried.

palarmprop A pointer to a Alarm properties structure.

Chapter 7: Alarm Services 251

XX_GetAlarmProp

June 18, 2002

Example 7-14. Read Alarm Properties

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kproject.h" /* defines CLKTICK */

ALARM dynalarm;
static ALARMPROP alarmprop;

/* get the current alarm properties */
KS_GetAlarmProp (dynalarm, &alarmprop);

/* modify just the cyclic period element */
alarmprop.recycle = (TICKS)150/CLKTICK;

/* define the new alarm properties */
KS_DefAlarmProp (dynalarm, &alarmprop);

See Also XX_DefAlarmProp, page 242

252 RTXC Kernel Services Reference, Volume 1

KS_GetAlarmSema

June 18, 2002

KS_GetAlarmSema
Get the handle of the semaphore associated with a alarm event.

Synopsis SEMA KS_GetAlarmSema (ALARM alarm, AEVENT event)

Inputs

Description The KS_GetAlarmSema kernel service obtains the handle of the
semaphore associated with the alarm event for the specified static or
dynamic alarm. The two possible alarm events are Alarm_Expired
(AE) orAlarm_Aborted (AA) and the value of event must be either AE
or AA.

You must have previously associated the semaphore and the alarm
event through a call to KS_DefAlarmSema.

Note: To use this service, you must enable the Semaphores
attribute of the Alarm class during system generation.

Output If the alarm event and semaphore association exists, this service
returns the handle of the semaphore as a SEMA type value.

If there is no such association for the alarm event, the service returns
a SEMA value of zero (0).

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_ALARM if the specified alarm ID is not valid.

FE_UNINITIALIZED_ALARM if the specified alarm has not yet
been initialized.

FE_INVALID_ALARMEVENT if the specified semaphore event
value is not either AE or AA.

Example In Example 7-15 on page 253, the Current Task needs to know the
handle of the semaphore associated with the specified alarm so it can

alarm The handle of the alarm being queried.

event A alarm event value.

Chapter 7: Alarm Services 253

KS_GetAlarmSema

June 18, 2002

initialize the semalist semaphore list for use in a multiple event wait
kernel service request.

Example 7-15. Read Alarm Semaphore

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "ksema.h" /* defines SEMA2, SEMA3 */

ALARM alarm;
SEMA cause;
static SEMA semalist[] =
{
 (SEMA)0, /* to be filled in below */
 SEMA2,
 SEMA3,
 (SEMA)0; /* null terminated list */
};
semalist[0] = KS_GetAlarmSema (alarm, AE);

/* got sema handle, wait on events */
cause = KS_TestSemaMW (semalist);
switch (cause)
{
 case SEMA2: /* test for SEMA2 */
 ... handle this case
 break;
 case SEMA3: /* test for SEMA3 */
 ... handle this case
 break;
 default: /* test for alarm expired */
 /* has to be this way because case arg must be a constant */
 if (cause == semalist[0])
 {
 ... handle this case
 }
 break;
}
... continue

See Also KS_DefAlarmSema, page 244

254 RTXC Kernel Services Reference, Volume 1

XX_GetAlarmTicks

June 18, 2002

XX_GetAlarmTicks
Get the number of counter ticks remaining until the expiration of an
active alarm.

Zones TS_AbortAlarm
 KS_AbortAlarm

Synopsis TICKS XX_GetAlarmTicks (ALARM alarm)

Input

Description The XX_GetAlarmTicks service obtains the number of counter
ticks remaining on the specified alarm until it expires. The alarm
must be active. This service does not affect the operation of the
alarm.

Output If alarm is active, this service returns a value of type TICKS
containing the number of ticks remaining on the alarm.

If alarm is inactive, the service returns a TICKS value of zero (0).

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_ALARM if the specified alarm ID is not valid.

FE_UNINITIALIZED_ALARM if the specified alarm has not yet
been initialized.

Example In Example 7-16 on page 255, the Current Task needs to know how
many ticks the static alarm, ALARM1, has to go before it expires.

alarm The handle of the alarm being queried.

Chapter 7: Alarm Services 255

XX_GetAlarmTicks

June 18, 2002

Example 7-16. Read Number of Counter Ticks Remaining on Alarm

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kalarm.h" /* defines ALARM1 */

TICKS residual;

residual = KS_GetAlarmTicks (ALARM1);

...do something with the residual counter tick value

... continue

See Also KS_DefAlarmSema, page 244

256 RTXC Kernel Services Reference, Volume 1

KS_LookupAlarm

June 18, 2002

KS_LookupAlarm
Look up a alarm’s name to get its handle.

Synopsis KSRC KS_LookupAlarm (const char *pname,
ALARM *palarm)

Inputs

Description The KS_LookupAlarm kernel service obtains the handle of a static
or dynamic alarm whose name matches the null-terminated string
pointed to by pname. The lookup process terminates when it finds a
match between the specified string and a static or dynamic alarm
name or when it finds no match. The service also stores the
matching alarm’s handle in the variable pointed to by palarm. The
service searches dynamic names, if any, first.

Note: To use this service on a static alarm, you must enable
the Static Names attribute of the Alarm class during system
generation.

This service has no effect on the use registration of the
specified alarm by the Current Task.

The time required to perform this operation varies with the
number of alarm names in use.

Output This service returns a KSRC value as follows:

RC_GOOD if the search succeeds. The service also stores the
matching alarm’s handle in the variable pointed to by palarm.

RC_OBJECT_NOT_FOUND if the service finds no matching alarm
name.

pname A pointer to a null-terminated name string.

palarm A pointer to a variable in which to store the matching alarm’s
handle.

Chapter 7: Alarm Services 257

KS_LookupAlarm

June 18, 2002

Example Example 7-17 looks for the dynamic alarm named Chnl2Alarm. If
the alarm is found, the example sends its handle to the console.

Example 7-17. Look Up Alarm by Name

#include <stdio.h> /* standard i/o */
#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

static char buf[128]; /* output buffer */

ALARM dynalarm;

/* lookup the semaphore name to see if it exists */
if (KS_LookupAlarm ("Chnl2Alarm", &dynalarm) != RC_GOOD)
{
 putline ("Alarm Chnl2Alarm not found");
}
else
{
 /* alarm exists, output its handle */
 sprintf (buf, "Chnl2Alarm is alarm %d", dynalarm);
 putline (buf);
}
... continue

See Also KS_DefAlarmName, page 240
KS_OpenAlarm, page 258

258 RTXC Kernel Services Reference, Volume 1

KS_OpenAlarm

June 18, 2002

KS_OpenAlarm
Allocate and name a dynamic alarm.

Synopsis KSRC KS_OpenAlarm (const char *pname, ALARM *palarm)

Inputs

Description If a dynamic alarm is available and no existing alarm, static or
dynamic, has a name matching the null-terminated string pointed to
by pname, the KS_OpenAlarm kernel service allocates a dynamic
alarm and applies the name to the new alarm. The kernel stores only
the address of the name internally, which means that the same array
cannot be used to build multiple dynamic alarm names. The service
stores the alarm’s handle in the variable pointed to by palarm.

If pname is a null pointer ((char *)0), the service does not assign a
name to the dynamic alarm. However, if pname points to a null
string, the name is legal as long as no other alarm is already using a
null string as its name.

If the service finds an existing alarm with a matching name, it does
not open a new alarm and returns a value indicating the failure.

Note: To use this service, you must enable the Dynamics
attribute of the Alarm class during system generation.

If the pointer to the alarm name is not null ((char *)0),
the time required to perform this operation is determined
by the number of alarm names in use. If the pointer to the
alarm name is null, no search of alarm names takes place
and the time to perform the service is fixed. You can define
the alarm name at a later time with a call to the
KS_DefAlarmName service.

pname A pointer to a null-terminated name string.

palarm A pointer to a variable in which to store the allocated alarm’s
handle.

Chapter 7: Alarm Services 259

KS_OpenAlarm

June 18, 2002

Output This service returns a KSRC value as follows:

RC_GOOD if the service completes successfully. The service stores
the handle of the new dynamic alarm in the variable pointed to
by palarm.

RC_OBJECT_ALREADY_EXISTS if the name search finds another
alarm whose name matches the given string.

RC_NO_OBJECT_AVAILABLE if the name search finds no match
but all dynamic alarms are in use.

Example Example 7-18 allocates a dynamic alarm and names it
MuxChnl2Alarm. If the name is found to be in use or if there are no
dynamic alarms available, the example sends an appropriate
message to the console.

Example 7-18. Allocate and Name Alarm

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */

KSRC ksrc;
ALARM dynalarm;

if ((ksrc = KS_OpenAlarm ("MuxChnl2Alarm", &dynalarm))
 != RC_GOOD)
{
 if (ksrc == RC_OBJECT_ALREADY_EXISTS)
 putline ("MuxChnl2Alarm alarm name in use");
 else if (ksrc == RC_NO_OBJECT_AVAILABLE)
 putline ("No dynamic alarms available");
 else
 putline ("Alarms are not a defined object class");
}
else
{
 ... alarm was opened correctly. Okay to use it now
}

See Also XX_ArmAlarm, page 230
KS_LookupAlarm, page 256
KS_UseAlarm, page 270

260 RTXC Kernel Services Reference, Volume 1

XX_RearmAlarm

June 18, 2002

XX_RearmAlarm
Rearm and restart an active alarm.

Zone TS_RearmAlarm
 KS_RearmAlarm

Synopsis TICKS XX_RearmAlarm (ALARM alarm, TICKS newinitial,
TICKS newcycle)

Inputs

Description The XX_RearmAlarm kernel service changes the initial period,
cyclic period, or both, of the specified alarm. If the alarm is inactive,
this service is equivalent to a call to XX_DefAlarmProp followed by
a call to XX_ArmAlarm. If the alarm is active when this request is
made, the service disarms and stops the alarm and then rearms and
restarts it with the new properties given by newinitial and newcycle. If
the alarm is active, the service returns the number of counter ticks
remaining on the alarm at the point of its disarming.

This service does not change the status of any task waiting for the
expiration of the alarm or on either of the alarm event semaphores.

Output If the alarm is active, this service returns the number of counter ticks
remaining on the alarm when the service is called.

If the alarm is inactive, the service returns zero (0).

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_ALARM if the specified alarm ID is not valid.

FE_UNINITIALIZED_ALARM if the specified alarm has not yet
been initialized.

alarm The handle of the alarm to be rearmed and restarted.

newinitial A value of type TICKS to be used as the new initial tick
interval for the alarm.

newcyclel A value of type TICKS to be used as the new recycle tick
interval for the alarm.

Chapter 7: Alarm Services 261

XX_RearmAlarm

June 18, 2002

Example Example 7-19 illustrates a re-triggerable watchdog alarm where the
Current Task, having previously opened a dynamic alarm, uses it
with the TIMEBASE counter as a 250-msec one-shot alarm. When the
task completes its processing, it rearms and restarts the alarm with
the same initial period duration. Presumably, some other task is
waiting on the expiration event should it occur.

Example 7-19. Rearm and Restart Alarm from Zone 3

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kproject.h" /* defines CLKTICK */

ALARM dynalarm;
static ALARMPROP alarmprop;

/* allocate a dynamic alarm for WDT, (name not important) */
if (KS_OpenAlarm ((char *)0, &dynalarm) != RC_GOOD)
{
 ... Deal with failure to open alarm
}

/* define the properties for a 250 msec one shot alarm */
alarmprop.attributes = 0;
alarmprop.counter = TIMEBASE;
alarmprop.initial = (TICKS)250/CLKTICK;
alarmprop.recycle = (TICKS)0;
KS_DefAlarmProp (dynalarm, &alarmprop);

/* start the alarm
if (KS_ArmAlarm (dynalarm) == RC_GOOD)
{
... WDT started. Do some processing
}

/* then restart the WDT as a 250 msec one-shot */
if (KS_RearmAlarm (dynalarm, (TICKS)250/CLKTICK, (TICKS)0) ==
 (TICKS)0)
{
 ...alarm had expired, may need to deal with that
}
else
 ...alarm not expired. Continue processing

See Also XX_AbortAlarm, page 226
XX_DefAlarmProp, page 242
XX_ArmAlarm, page 230

262 RTXC Kernel Services Reference, Volume 1

KS_TestAlarm

June 18, 2002

KS_TestAlarm
Get the time, in ticks, remaining on an active alarm.

Synopsis KSRC KS_TestAlarm (ALARM alarm, TICKS *pticks)

Inputs

Description The KS_TestAlarm kernel service tests the specified alarm and
obtains the time remaining on it if it is active. The service puts the
time remaining into the variable pointed to by pticks.

Output This service returns a KSRC value as follows:

RC_GOOD if the alarm is active.

RC_ALARM_INACTIVE if the alarm is not active.

If alarm is active and pticks is not null ((TICKS *)0), the service
returns the number of ticks remaining on the alarm in the variable
pointed to by pticks.

If alarm is not active and pticks is not null ((TICKS *)0), the service
stores a value of zero (0) in the variable pointed to by pticks.

If pticks is null, the service ignores it and does not use it as a
destination pointer.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_ALARM if the specified alarm ID is not valid.

FE_UNINITIALIZED_ALARM if the specified alarm has not yet
been initialized.

Example Example 7-20 on page 263 opens a dynamic alarm and defines the
properties for a 500-msec, one-shot alarm. The task then associates
the TMRSEMA semaphore with the expiration of the alarm and waits
on TMRSEMA and another event associated with the INTSEMA

alarm The handle of the alarm being tested.

pticks A pointer to a variable in which to store the number of
ticks remaining on the alarm.

Chapter 7: Alarm Services 263

KS_TestAlarm

June 18, 2002

semaphore. When either event occurs, the task tests the alarm and
loads the remainder variable with the time remaining on the alarm.
If the event associated with INTSEMA occurs, the task obtains the
remaining time and stops the alarm. If the event was the alarm
expiration, the value of remainder is zero (0).

Example 7-20. Test Alarm

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kproject.h" /* defines CLKTICK */
#include "ksema.h" /* defines INTSEMA & TMRSEMA */

ALARM dynalarm;
static ALARMPROP alarmprop;
TICKS remainder;
SEMA sema;
const SEMA semalist[] = { INTSEMA, TMRSEMA, (SEMA)0 };

/* allocate a dynamic alarm, name is unimportant */
if (KS_OpenAlarm ((char *)0, &dynalarm) != RC_GOOD)
{
 ... no alarms available if here
}
/* define the properties for a 500 msec one-shot alarm */
alarmprop.attributes = 0;
alarmprop.counter = TIMEBASE;
alarmprop.initial = (TICKS)500/CLKTICK;
alarmprop.cycle = (TICKS)0;
KS_DefAlarmProp (dynalarm, &alarmprop);

/* associate semaphore TMRSEMA with alarm expiration */
KS_DefAlarmSema (dynalarm, TMRSEMA);

/* start the allocated alarm and wait for the event or the alarm */
KS_ArmAlarm (dynalarm);
KS_TestSemaMW (semalist);/* disregard the returned sema */

/* test alarm to see if INTSEMA event occurred*/
if (KS_TestAlarm (dynalarm, &remainder) == RC_GOOD)
 KS_AbortAlarm (dynalarm); /* stop the alarm */
/* otherwise, alarm elapsed before event occurred

/* at this point both semaphores are back in a PENDING */
/* state and the alarm is in an INACTIVE state. */

... now do something with the remaining time

264 RTXC Kernel Services Reference, Volume 1

KS_TestAlarm

June 18, 2002

See Also XX_AbortAlarm, page 226
XX_DefAlarmProp, page 242
KS_DefAlarmSema, page 244
KS_OpenAlarm, page 258
XX_ArmAlarm, page 230

Chapter 7: Alarm Services 265

KS_TestAlarmT

June 18, 2002

KS_TestAlarmT
Wait a specified number of ticks for an alarm to expire.

Synopsis KSRC KS_TestAlarmT (ALARM alarm, TICKS *pticks,
COUNTER counter, TICKS tickout)

Inputs

Description The KS_TestAlarmT service waits for the expiration of the
specified active alarm. When the service determines that alarm is
active, the service starts an internal tickout alarm for the duration
specified in tickout on the specified counter, and then blocks the
Current Task. If pticks is not null ((TICKS *)0), the service returns
the number of ticks remaining on the alarm in the variable pointed
to by pticks when the task resumes.

The Current Task remains blocked until one of three events occurs.

The alarm being tested expires.

The specified number of ticks elapses.

The alarm being tested is aborted.

When an alarm is armed, it may be aborted by another task. If so, the
internal tickout alarm is stopped and the task waiting on the alarm
being tested resumes and the KS_TestAlarmT service returns an
indicator that the alarm was aborted.

Output This service returns a KSRC value as follows:

RC_GOOD if the specified alarm being tested expires before the
internal alarm expires. The service stores the number of ticks

alarm The handle of the alarm being tested.

pticks A pointer to a variable in which to store the number of ticks
remaining on the alarm being tested.

counter The handle of a counter to use for the internal alarm of
duration ticks.

tickout The number of ticks for the internal alarm on counter to wait
for the expiration of the alarm being tested.

266 RTXC Kernel Services Reference, Volume 1

KS_TestAlarmT

June 18, 2002

remaining on the alarm as a value of zero (0) at the address in
pticks.

RC_ALARM_INACTIVE if the specified alarm is not active when
the service is called. In this case, the service returns immediately.
The service returns a value of zero (0) for the remaining number
of ticks on the alarm

RC_ALARM_ABORTED if another task aborts the alarm being
tested through the use of XX_AbortAlarm before the internal
alarm expires. If so, the service stores, in the variable pointed to
by pticks, the number of ticks remaining on the alarm being
tested.

RC_TICKOUT if the specified number of ticks elapses before the
expiration of the specified alarm. In this case, the service returns
the number of ticks remaining on the specified alarm at the
address pointed to by pticks.

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_ALARM if the specified alarm ID is not valid.

FE_UNINITIALIZED_ALARM if the specified alarm has not yet
been initialized.

FE_ILLEGAL_COUNTER if the specified counter ID is not valid.

FE_UNINITIALIZED_COUNTER if the specified counter has not
yet been initialized.

Example Example 7-21 on page 267 needs to synchronize with static alarm,
ALARM1, started by another task, but sets up an internal tickout
alarm of 50 msec to achieve synchronization. If the internal tickout
alarm occurs before synchronizing with ALARM1, the task tries to
sync up again. If ALARM1 is inactive or is aborted, the task takes
special action.

Chapter 7: Alarm Services 267

KS_TestAlarmT

June 18, 2002

Example 7-21. Test Alarm—Wait Number of Ticks for Expiration

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kproject.h" /* defines CLKTICK */
#include "kalarm.h" /* defines ALARM1 */

KSRC retcode;

/* wait 50 msec for alarm to expire*/
while ((retcode = KS_TestAlarmT (ALARM1, (TICKS *)0, TIMEBASE,
 (TICKS)50/CLKTICK)) == RC_TICKOUT)
{
 ... No sync yet because timeout occurred.
 Do something useful
}

if (retcode != RC_GOOD)
{
 ... Either alarm was inactive or was aborted.
 Deal with it
}
else
{
 ... Alarm expired, Current Task is now in synch
 with ALARM1
}

See Also XX_AbortAlarm, page 226
XX_ArmAlarm, page 230

268 RTXC Kernel Services Reference, Volume 1

KS_TestAlarmW

June 18, 2002

KS_TestAlarmW
Wait for a alarm to expire.

Synopsis KSRC KS_TestAlarmW (ALARM alarm, TICKS *pticks)

Inputs

Description The KS_TestAlarmW service waits for the expiration of the
specified active alarm. The service blocks the requesting task until
the expiration of the specified alarm. However, another task or
thread may stop the alarm through the use of XX_CancelAlarm or
XX_AbortAlarm and cause a premature resumption of the waiting
task. In this case, the service stores the number of ticks remaining
on the alarm at the point of being stopped in the variable pointed to
by pticks, if pticks is not null ((TICKS *)0). If pticks is null, the
service does not return the number of remaining ticks.

Output This service returns a KSRC value as follows:

RC_GOOD if the alarm expires normally. The service returns zero
(0) for the remaining ticks in the variable pointed to by pticks.

RC_ALARM_INACTIVE if the alarm is inactive at the time of the
service request. The service does not block the calling task and
returns immediately, storing a value of zero (0) in the variable
pointed to by pticks.

RC_ALARM_ABORTED if another task aborts the alarm through
the use of the XX_AbortAlarm kernel service. If this occurs,
the number of ticks remaining on the alarm when aborted is
stored in the variable pointed to by pticks.

RC_ALARM_CANCELLED if another task stops the alarm through
the use of the XX_CancelAlarm kernel service. If this occurs,
the service stores the number of ticks remaining on the alarm
when aborted in the variable pointed to by pticks.

alarm The handle of the alarm being tested.

pticks A pointer to a variable in which to store the number of ticks
remaining on the alarm if aborted by another task or thread.

Chapter 7: Alarm Services 269

KS_TestAlarmW

June 18, 2002

Errors This service may generate one of the following fatal error codes:

FE_ILLEGAL_ALARM if the specified alarm ID is not valid.

FE_UNINITIALIZED_ALARM if the specified alarm has not yet
been initialized.

Example Example 7-22 needs to generate a report periodically. It opens a
dynamic alarm, defines the properties for a cyclic alarm, and starts
the alarm using counter TIMEBASE. The report period is 30 seconds
and the report is generated each time the alarm expires.

Example 7-22. Test Alarm—Wait for Expiration

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kproject.h" /* defines CLKTICK */

ALARM dynalarm;
static ALARMPROP alarmprop;

/* open a dynamic alarm, name is unimportant */
if (KS_OpenAlarm ((char *)0, &dynalarm) != RC_GOOD)
{
 ... no alarms available. Deal with it here
}

/* define the properties for a 30 second cyclic alarm */
alarmprop.attributes = 0;
alarmprop.counter = TIMEBASE;
alarmprop.initial = (TICKS)30000/CLKTICK;
alarmprop.cycle = (TICKS)30000/CLKTICK;
KS_DefAlarmProp (dynalarm, &alarmprop);

/* start the alarm
KS_ArmAlarm (dynalarm);

for (;;)
{
 /* wait for the report period */
 KS_TestAlarmW (dynalarm, (TICKS *)0);

 ...generate periodic report
}

See Also XX_AbortAlarm, page 226
XX_ArmAlarm, page 230

270 RTXC Kernel Services Reference, Volume 1

KS_UseAlarm

June 18, 2002

KS_UseAlarm
Look up a dynamic alarm by name and mark it for use.

Synopsis KSRC KS_UseAlarm (const char *pname, ALARM *palarm)

Inputs

Description The KS_UseAlarm kernel service acquires the handle of a dynamic
alarm by looking up the null-terminated string pointed to by pname
in the list of alarm names. If there is a match, the service registers
the alarm for future use by the Current Task and stores the matching
alarm’s handle in the variable pointed to by palarm. This procedure
allows the Current Task to reference the dynamic alarm successfully
in subsequent kernel service calls.

Note: To use this service, you must enable the Dynamics
attribute of the Alarm class during system generation.

The time required to perform this operation varies with the
number of alarm names in use.

Output This service returns a KSRC value as follows:

RC_GOOD if the search is successful. The service stores the
matching alarm’s handle in the variable pointed to by palarm.

RC_STATIC_OBJECT if the given name belongs to a static alarm.

RC_OBJECT_NOT_FOUND if the service finds no matching name.

Example Example 7-23 on page 271 locates a dynamic alarm named
DynMuxAlarm3 and obtains its handle. After the handle is known,
the task starts the alarm as a one-shot having an initial period
duration of 500 milliseconds. The task sends a message to the
console indicating the action taken.

pname A pointer to a null-terminated name string.

palarm A pointer to a variable in which to store the matching alarm’s
handle.

Chapter 7: Alarm Services 271

KS_UseAlarm

June 18, 2002

Example 7-23. Read Alarm Handle and Register It

#include "rtxcapi.h" /* RTXC Kernel Service prototypes */
#include "kproject.h" /* defines CLKTICK */

KSRC ksrc;
ALARM dynalarm;
static ALARMPROP alarmprop;

if ((ksrc = KS_UseAlarm ("DynMuxAlarm3", &dynalarm)) != RC_GOOD)
{
 if (ksrc == RC_STATIC_OBJECT)
 putline ("DynMuxAlarm3 is a static alarm");
 else
 putline ("Alarm DynMuxAlarm3 not found");
}
else
{
 /* alarm was found and its handle is in dynalarm */.
 if (KS_TestAlarm (dynalarm, (TICKS *)0) != RC_GOOD)
 {
 /* alarm is not active, ok to use it */
 /* define the properties for a 500 msec alarm */
 alarmprop.attribute = 0;
 alarmprop.counter = TIMEBASE;
 alarmprop.initial = (TICKS)500/CLKTICK;
 alarmprop.cycle = (TICKS)0;
 KS_DefAlarmProp (dynalarm, &alarmprop);

 /* now start the alarm */
 KS_ArmAlarm (dynalarm);
 putline ("Alarm DynMuxAlarm3 is started");
 ... alarm started, do whatever is required
 }
 else
 {
 putline ("Alarm DynMuxAlarm3 is already active");
 ... alarm was already active, deal with that here
 }
}

See Also XX_DefAlarmProp, page 242
KS_DefAlarmName, page 240
KS_OpenAlarm, page 258
KS_TestAlarm, page 262

272 RTXC Kernel Services Reference, Volume 1

KS_UseAlarm

June 18, 2002

Chapter 8: Special Services 273

June 18, 2002

C H A P T E R 8 Special Services

In This Chapter
We describe the Special kernel services in detail. The Special services
provide for user-defined extensions to the RTXC Kernel.

XX_AllocSysRAM..274

XX_DefFatalErrorHandler ..276

XX_GetFatalErrorHandler .. 278

XX_GetFreeSysRAMSize ..279

KS_GetSysProp...280

KS_GetVersion ...282

INIT_SysProp ...284

274 RTXC Kernel Services Reference, Volume 1

XX_AllocSysRAM

June 18, 2002

XX_AllocSysRAM
Allocate a block of system RAM.

Zones TS_AllocSysRAM
 KS_AllocSysRAM

Synopsis void * XX_AllocSysRAM (ksize_t blksize)

Input

Description The XX_AllocSysRAM kernel service allocates a block of system
RAM of size blksize. You define the amount of system RAM available
to the kernel during the kernel generation process (that is, in the
RTXCgen program). The kernel uses this RAM during RTXC Kernel
initialization processing for its internal tables. The kernel keeps
track of the amount of this RAM it needs and allows you to allocate
any extra RAM from this area of memory.

Note: The RTXC Kernel provides no inverse function to
release RAM allocated by this function.

Output If successful, this service returns a pointer to the first address of the
allocated block.

If the size of the requested block exceeds the amount of available
system RAM, the service returns a null pointer ((void *)0).

Example In Example 8-1 on page 275, the application needs a 256-byte block
of system RAM. If the allocation is successful, the pointer to the
block is to be stored in the p pointer. If there is not enough free RAM
available, the task must take the appropriate action.

blksize The size in bytes of the block of RAM to allocate.

Chapter 8: Special Services 275

XX_AllocSysRAM

June 18, 2002

Example 8-1. Allocate System RAM from Zone 3

#include "rtxcapi.h" /* RTXC Kernel Services prototypes */

void *p;

if ((p = KS_AllocSysRAM (256)) == (void *)0)
{
 ... Deal with no memory available
}
else
{
 ... Allocation was successful
}

276 RTXC Kernel Services Reference, Volume 1

XX_DefFatalErrorHandler

June 18, 2002

XX_DefFatalErrorHandler
Establish the system error function.

Zones TS_DefFatalErrorHandler
 KS_DefFatalErrorHandler

Synopsis void XX_DefFatalErrorHandler
(int (*errfunc) (void *))

Input

Description The XX_DefFatalErrorHandler kernel service establishes a
function to which the RTXC Kernel branches upon detection of a fatal
error. The errfunc argument specifies the entry address for the error
function.

Output This service does not return a value.

Example Example 8-2 on page 277 defines the kerror function for receiving
all fatal RTXC Kernel usage errors. The specified error function
requires two arguments as shown in the example: the handle of the
Current Task at the time of the error, task, and a pointer to that task’s
interrupt stack frame, pinfo. The error function returns an int type
value. If the returned value is non-zero, the RTXC Kernel aborts the
Current Task. The kernel ignores the error if the returned value is
zero (0).

errfunc The entry address for the error function.

Chapter 8: Special Services 277

XX_DefFatalErrorHandler

June 18, 2002

Example 8-2. Define Fatal Error Function

#include "rtxcapi.h" /* RTXC Kernel Services prototypes */

void fehandler (FEPACKET *fepacket); /* prototype for Error Handler */

KS_DefFatalErrorHandler (fehandler); /* define error handler function
*/
... continue

/* System Error Handler for Fatal RTXC Usage */
void fehandler (FEPACKET *fepacket)
{
 ...Do what has to be done here: display the point of error,
 kill the system, whatever is suitable to the application
 return (1); /* have RTXC abort Current Task */
}

See Also XX_GetFatalErrorHandler, page 278

278 RTXC Kernel Services Reference, Volume 1

XX_GetFatalErrorHandler

June 18, 2002

XX_GetFatalErrorHandler
Get the system error function.

Zones TS_GetFatalErrorHandler
 KS_GetFatalErrorHandler

Synopsis int (*)(void *)) XX_GetFatalErrorHandler (void)

Inputs This service has no inputs.

Description The XX_GetFatalErrorHandler kernel service returns a
pointer to the function registered to handle fatal system conditions
by a previous XX_DefFatalErrorHandler call.

Output The service returns a pointer to the error function installed by a
previous call to XX_DefFatalErrorHandler.

If no error function has been installed, the kernel service returns a
null function pointer ((int (*)(void *)) 0).

Example Example 8-3 needs to know if an error function has been defined. If
not, XX_DefFatalErrorHandler is used to establish kerror, a
function external to the Current Task, as the system error handler.

Example 8-3. Read Fatal Error Function

#include "rtxcapi.h" /* RTXC Kernel Services prototypes */

extern void fehandler (FEPACKET *fepacket);

if (KS_GetFatalErrorHandler () == (void (*)(FEPACKET *fepacket))0)
 KS_DefFatalErrorHandler (fehandler);

...Error handler is now in place, continue

See Also XX_DefFatalErrorHandler, page 276

Chapter 8: Special Services 279

XX_GetFreeSysRAMSize

June 18, 2002

XX_GetFreeSysRAMSize
Get the size of free system RAM.

Zones TS_GetFreeSysRAMSize
 KS_GetFreeSysRAMSize

Synopsis ksize_t XX_GetFreeSysRAMSize (void)

Inputs This service has no inputs.

Description The XX_GetFreeSysRAMSize kernel service determines the
amount of free system RAM that is available to the user.

Output The service returns the number of remaining free bytes of system
RAM.

Example The task in Example 8-4 needs to allocate 2000 bytes of system RAM.
It obtains the amount of available system RAM and prints a message
if there is less than 2000 bytes.

Example 8-4. Read Amount of Available System RAM from Zone 3

#include <stdio.h>
#include "rtxcapi.h" /* RTXC Kernel Services prototypes */

static char buffer[128];
ksize_t freeRAM;

if ((freeRAM = KS_GetFreeSysRAMSize ()) < 2000)
{
 sprintf (buf, "Only %d free bytes of System RAM", freeRAM);
 putline (buf);
}
else
{
 ... enough RAM available, continue initialization
}

See Also XX_AllocSysRAM, page 274

280 RTXC Kernel Services Reference, Volume 1

KS_GetSysProp

June 18, 2002

KS_GetSysProp
Get the system properties.

Synopsis const SYSPROP * KS_GetSysProp (void)

Inputs This service has no inputs.

Description The KS_GetSysProp kernel service returns a pointer to a SYSPROP
structure containing the system properties used to initialize the
system through the INIT_SysProp service.

Example 8-5 shows the organization of the SYSPROP structure.

Example 8-5. System Properties Structure

typedef struct
{
 KATTR attributes; /* system attributes */
 unsigned long version; /* kernel version number */
 char *sysrambase; /* base address of system RAM */
 ksize_t sysramsize; /* size (bytes) of system RAM */
 char *kernelstackbase; /* base address of kernel stack */
 ksize_t kernelstacksize; /* size (bytes) of kernel stack */
 unsigned long reserve1; /* reserved */
 unsigned long reserve2; /* reserved */
} SYSPROP;

Output The function always returns a pointer to a SYSPROP structure.

Example Example 8-6 reads the clock rate that was established when the
system was initialized and sends it to the console.

Example 8-6. Read System Properties

#include <stdio.h> /* standard i/o */
#include "rtxcapi.h" /* RTXC Kernel Services prototypes */
static char buf[128];
SYSPROP *psysprop = KS_GetSysProp ();

putline (buf);
... continue

Chapter 8: Special Services 281

KS_GetSysProp

June 18, 2002

See Also INIT_SysProp, page 284

282 RTXC Kernel Services Reference, Volume 1

KS_GetVersion

June 18, 2002

KS_GetVersion
Get the version number of the RTXC Kernel.

Synopsis unsigned long KS_GetVersion (void)

Inputs This service has no inputs.

Description The KS_GetVersion kernel service returns the version number of
the RTXC Kernel.

Output The function returns a value that contains the version number
formatted as follows:

Note: The developer defines bits 31 through 16 during
system generation. This bit field is the developer’s version
number for the application.

Example Example 8-7 on page 283 obtains the RTXC Kernel version number
and displays it on the console.

Bits 31–16 System Use

Bits 15–08 Version number (hexadecimal)

Bits 07–00 Release number (hexadecimal)

Chapter 8: Special Services 283

KS_GetVersion

June 18, 2002

Example 8-7. Read Version Number

#include <stdio.h> /* standard i/o */
#include "rtxcapi.h" /* RTXC Kernel Services prototypes */

static char buf[128];
union RTXCver
{
 unsigned long version;
 struct {
 unsigned short sysnum; /* reserved for system use */
 unsigned char ver; /* version number */
 unsigned char rel; /* release number */
 } vr;
}curVR;

curVR.version = KS_GetVersion (); /* get RTXC version */
sprintf (buf, "Current RTXC version.release is %d.%d",
 curVR.vr.ver, curVR.vr.rel);
putline (buf); /* display version # */

... continue

284 RTXC Kernel Services Reference, Volume 1

INIT_SysProp

June 18, 2002

INIT_SysProp
Initialize the RTXC system properties.

Synopsis KSRC INIT_SysProp (const SYSPROP *psysprop)

Input

Description The INIT_SysProp service performs the required initialization
procedure and must be called before any other RTXC kernel service
or system function. It passes the system properties, as defined by the
user during system generation and found in the SYSPROP structure
pointed to by psysprop, to the kernel. The system properties specify
information about how the RTXC Kernel is to operate.

Example 8-5 on page 280 shows the organization of the SYSPROP
structure.

The system attributes specify the object classes that are defined for
the application. The attributes element of the SYSPROP structure
supports the attributes and corresponding masks listed in Table 8-1.

psysprop A pointer to a SYSPROP structure.

Table 8-1. System Attributes and Masks

Attribute Mask

Tasks K_ATTR_TASKS

Threads K_ATTR_THREADS

Semaphores K_ATTR_SEMAPHORES

Queues K_ATTR_QUEUES

Mailboxes K_ATTR_MAILBOXES

Partitions K_ATTR_PARTITIONS

Pipes K_ATTR_PIPES

Chapter 8: Special Services 285

INIT_SysProp

June 18, 2002

Output The service returns a KSRC value as follows:

RC_GOOD if the service completes successfully.

RC_VERSION_MISMATCH if the version number passed in the
SYSPROP structure is different from the version stored within
the RTXC Kernel.

Example During system initialization, the startup code must initialize the
kernel properties before initializing the needed kernel object classes.
The system generation process produces a structure of type SYSPROP
that contains the information about the system necessary for its
initialization. Example 8-8 on page 286 externally references that
structure and outputs any error messages to the console.

Mutexes K_ATTR_MUTEXES

Event Sources K_ATTR_SOURCES

Counters K_ATTR_COUNTERS

Alarms K_ATTR_ALARMS

Exceptions K_ATTR_EXCEPTIONS

Table 8-1. System Attributes and Masks (continued)

Attribute Mask

286 RTXC Kernel Services Reference, Volume 1

INIT_SysProp

June 18, 2002

Example 8-8. Initialize Kernel Properties

#include "rtxcapi.h" /* RTXC KC prototypes */

extern const SYSPROP sysprop;

KSRC userinit (void)
{
 KSRC ksrc;
 static char buf[128];

 /* initialize the system properties

 if ((ksrc = INIT_SysProp (&sysprop)) != RC_GOOD)
 {
 putline ("Kernel initialization failure\n");
 return ksrc; /* end initialization process */
 }
 /* kernel is initialized */

 /* Proceed now with init of kernel object classes */

... Continue with system initialization

}

See Also KS_GetSysProp, page 280

Appendix I: Fatal Error Codes 287

June 18, 2002

A P P E N D I X I Fatal Error Codes

This appendix lists the fatal error codes
returned by RTXC/ss kernel services.

F
FE_ILLEGAL_ALARM

The specified alarm ID is not valid.
KS_CloseAlarm 234
KS_DefAlarmName 240
KS_GetAlarmName 248
KS_TestAlarm 262
KS_TestAlarmT 266
KS_TestAlarmW 269
XX_AbortAlarm 226
XX_ArmAlarm 230
XX_CancelAlarm 232
XX_DefAlarmAction 237
XX_DefAlarmActionArm 239
XX_DefAlarmProp 242
XX_DefAlarmSema 244
XX_GetAlarmProp 250
XX_GetAlarmSema 252
XX_GetAlarmTicks 254
XX_RearmAlarm 260

FE_ILLEGAL_COUNTER
The specified counter ID is not valid.
KS_CloseCounter 192
KS_DefCounterName 196
KS_GetCounterName 206
KS_GetElapsedCounterTicks 211
KS_TestAlarmT 266
XX_ClearCounterAttrib 190
XX_DefAlarmProp 242

XX_DefCounterProp 200
XX_GetCounterAcc 202
XX_GetCounterProp 208
XX_SetCounterAcc 218
XX_SetCounterAttrib 220

FE_ILLEGAL_EVENTSOURCE
The specified event source ID is not
valid.
KS_CloseEventSource 161
KS_DefEventSourceName 162
KS_DefEventSourceProp 165
KS_GetEventSourceName 173
XX_ClearEventSourceAttr 158
XX_DefCounterProp 200
XX_GetEventSourceAcc 169
XX_GetEventSourceProp 175
XX_SetEventSourceAcc 183
XX_SetEventSourceAttr 185

FE_ILLEGAL_EXCPTN
The specified Exception ID is not valid.
KS_CloseException 88
KS_DefExceptionName 90
KS_DefExceptionProp 92
KS_GetExceptionName 98
KS_GetExceptionProp 100

FE_ILLEGAL_LEVEL
The specified level is not valid.
KS_RaiseThreadLevel 70
TS_LowerThreadLevel 64

FE_ILLEGAL_PIPE
The specified pipe ID is not valid.

288 RTXC Kernel Services Reference, Volume 1

June 18, 2002

KS_ClosePipe 110
KS_DefPipeName 118
KS_GetPipeName 128
XX_DefPipeAction 113
XX_DefPipeProp 116
XX_GetEmptyPipeBuf 120
XX_GetFullPipeBuf 122
XX_GetPipeBufSize 124
XX_GetPipeProp 130
XX_JamFullGetEmptyPipeBuf 133
XX_JamFullPipeBuf 136
XX_PutEmptyGetFullPipeBuf 145
XX_PutEmptyPipeBuf 147
XX_PutFullGetEmptyPipeBuf 150
XX_PutFullPipeBuf 152

FE_ILLEGAL_SEMA
The specified semaphore ID is invalid.
244
KS_DefAlarmSema 244

FE_ILLEGAL_THREAD
The specified thread ID is not valid.
KS_DefThreadName 34
KS_GetThreadName 56
TS_GetThreadBaseLevel 42
XX_ClearThreadGateBits 24
XX_DecrThreadGate 26
XX_DefAlarmAction 237
XX_DefAlarmActionArm 239
XX_DefPipeAction 113
XX_DefThreadArg 28
XX_DefThreadEntry 30
XX_DefThreadEnvArg 32
XX_DefThreadProp 37
XX_GetThreadArg 40
XX_GetThreadEnvArg 49
XX_GetThreadGate 50
XX_GetThreadGatePreset 54
XX_GetThreadProp 59
XX_IncrThreadGate 61

XX_ORThreadGateBits 67
XX_PresetThreadGate 68
XX_ScheduleThread 73
XX_ScheduleThreadArg 76
XX_SetThreadGate 78
XX_SetThreadGatePreset 80
XX_UnscheduleThread 84

FE_INVALID_ALARMACTION
The specified alarm action value is not
one of the four possible actions.
XX_DefAlarmAction 237
XX_DefAlarmActionArm 239

FE_INVALID_ALARMEVENT
The specified semaphore event is not AA
or AE.
KS_DefAlarmSema 245
KS_GetAlarmSema 252

FE_INVALID_PIPEACTION
The specified pipe action value is not one
of the four possible actions.
XX_DefPipeAction 113

FE_INVALID_PIPECOND
The specified pipe condition value is not
either PUTEMPTY or PUTFULL.
XX_DefPipeAction 113

FE_NULL_EXCPTNHANDLER
The specified Exception handler address
is null.
KS_DefExceptionProp 92

FE_NULL_PIPEBUFFER
The specified Pipe buffer address is null.
XX_JamFullPipeBuf 137
XX_PutEmptyPipeBuf 147
XX_PutFullPipeBuf 153

FE_NULL_PIPEFREEBASE
The specified Pipe free base address is
null.
XX_DefPipeProp 116

Appendix I: Fatal Error Codes 289

June 18, 2002

FE_NULL_PIPEFULLBASE
The specified Pipe full base address is
null.
XX_DefPipeProp 116

FE_NULL_PIPEPBUFSIZE
The pointer to the buffer size is null.
XX_GetFullPipeBuf 122
XX_PutEmptyGetFullPipeBuf 145

FE_NULL_PIPESIZEBASE
The specified Pipe base size address is
null.
XX_DefPipeProp 116

FE_NULL_THREADENTRY
The specified Thread entry address is
null.
XX_DefThreadEntry 30
XX_DefThreadProp 37

FE_UNINITIALIZED_ALARM
The specified alarm has not yet been
initialized.
KS_TestAlarm 262
KS_TestAlarmT 266
KS_TestAlarmW 269
XX_AbortAlarm 226
XX_ArmAlarm 230
XX_CancelAlarm 232
XX_DefAlarmAction 237
XX_DefAlarmActionArm 239
XX_DefAlarmSema 244
XX_GetAlarmProp 250
XX_GetAlarmSema 252
XX_GetAlarmTicks 254
XX_RearmAlarm 260

FE_UNINITIALIZED_COUNTER
The specified counter has not yet been
initialized.
KS_GetElapsedCounterTicks 211
KS_TestAlarmT 266
XX_ClearCounterAttrib 190

XX_GetCounterAcc 202
XX_GetCounterProp 208
XX_SetCounterAcc 218
XX_SetCounterAttrib 220

FE_UNINITIALIZED_EVENTSOURCE
The specified event source has not yet
been initialized.
XX_ClearEventSource 158
XX_GetEventSourceAcc 169
XX_GetEventSourceProp 175
XX_SetEventSourceAcc 183
XX_SetEventSourceAttr 185

FE_UNINITIALIZED_EXCPTN
The specified Exception has not yet been
initialized.
KS_GetExceptionProp 100

FE_UNINITIALIZED_PIPE
The specified pipe has not yet been
initialized.
XX_DefPipeAction 113
XX_GetEmptyPipeBuf 120
XX_GetFullPipeBuf 122
XX_GetPipeBufSize 124
XX_GetPipeProp 130
XX_JamFullGetEmptyPipeBuf 133
XX_JamFullPipeBuf 136
XX_PutEmptyGetFullPipeBuf 145
XX_PutEmptyPipeBuf 147
XX_PutFullGetEmptyPipeBuf 150
XX_PutFullPipeBuf 152

FE_UNINITIALIZED_SEMA
KS_DefAlarmSema 244

FE_UNINITIALIZED_THREAD
The specified thread has not yet been
initialized.
TS_GetThreadBaseLevel 42
XX_ClearThreadGateBits 24
XX_DecrThreadGate 27
XX_DefAlarmAction 237

290 RTXC Kernel Services Reference, Volume 1

June 18, 2002

XX_DefAlarmActionArm 239
XX_DefPipeAction 113
XX_DefThreadArg 28
XX_DefThreadEntry 30
XX_DefThreadEnvArg 32
XX_GetThreadArg 40
XX_GetThreadEnvArg 49
XX_GetThreadGate 50
XX_GetThreadGatePreset 54
XX_GetThreadProp 59
XX_IncrThreadGate 61
XX_ORThreadGateBits 67
XX_PresetThreadGate 68
XX_ScheduleThread 73
XX_ScheduleThreadArg 76
XX_SetThreadGate 78
XX_SetThreadGatePreset 80
XX_UnscheduleThread 84

FE_ZERO_PIPEBUFSIZE
The buffer size in the specified pipe is
zero.
XX_DefPipeProp 116
XX_JamFullPipeBuf 137
XX_PutFullPipeBuf 153

FE_ZERO_PIPENUMBUF
The number of buffers in the specified
pipe is zero.
XX_DefPipeProp 116

 Index 291

June 18, 2002

Index

A
aborting alarm 226
alarm

aborting 226
Alarm_Aborted event 244, 252
Alarm_Expired event 244, 252
ALARMPROP structure 242, 250
allocating 258
arming 230, 238
closing 234
code examples

Abort Alarm 227
Allocate and Name Alarm 259
Arm Alarm 231
Arm Alarm and Define Alarm

Expiration Action
Operation 239

Cancel Alarm 233
Close Alarm 235
Define Alarm End Action

Operation 237
Define Alarm Name 241
Define Alarm Properties 243
Define Alarm Semaphore 245
Initialize Alarm Object Class 229
Look Up Alarm by Name 257
Read Alarm Handle and Register It

271
Read Alarm Name 248

Read Alarm Object Class
Properties 247

Read Alarm Properties 251
Read Alarm Semaphore 253
Read Number of Counter Ticks

Remaining on Alarm 255
Rearm and Restart Alarm from

Zone 3 261
Test Alarm 263
Test Alarm—Wait for Expiration

269
Test Alarm—Wait Number of

Ticks for Expiration 267
defining end action 236, 238
defining object class properties 228
defining properties 242
expiration 236
handle 256
KCLASSPROP structure 228, 246
name 256
naming 240, 258
properties 250
reading name 248
reading object class properties 246
rearming 260
registering 270
remaining time 262
services summary table 18
starting 230

292 RTXC Kernel Services Reference, Volume 1

June 18, 2002

stopping 232
testing 262, 265, 268
waiting for expiration 265, 268

Alarm services
brief description 18
XX_AbortAlarm 226
XX_ArmAlarm 230
XX_CancelAlarm 232
KS_CloseAlarm 234
XX_DefAlarmAction 236
XX_DefAlarmActionArm 238
KS_DefAlarmName 240
XX_DefAlarmProp 242
KS_DefAlarmSema 244
KS_GetAlarmClassProp 246
KS_GetAlarmName 248
XX_GetAlarmProp 250
KS_GetAlarmSema 252
XX_GetAlarmTicks 254
INIT_AlarmClassProp 228
KS_LookupAlarm 256
KS_OpenAlarm 258
KS_RearmAlarm 260
KS_TestAlarm 262
KS_TestAlarmT 265
KS_TestAlarmW 268
KS_UseAlarm 270

Alarm_Aborted event 244, 252
Alarm_Expired event 244, 252
ALARMPROP structure 242, 250
allocating

alarm 258
counter 216
event source 179
exception 104
pipe 140

arming alarm 230, 238

C
C compiler syntactical differences 3
classes, kernel service 7
clearing

counter attributes 190
event source attributes 158
thread gate bits 23

closing
alarm 234
counter 192
event source 160
exception 88
pipe 110

code examples
Abort Alarm 227
Alarm Properties Structure 242
Allocate and Name Alarm 259
Allocate and Name Counter 217
Allocate and Name Event Source 180
Allocate and Name Exception 105
Allocate Dynamic Pipe 141
Allocate System RAM from Zone 3 275
Arm Alarm 231
Arm Alarm and Define Alarm

Expiration Action Operation 239
Assign Counter Name 197
Assign Event Source Name 163
Cancel Alarm 233
Clear Counter Attribute 191
Clear Event Source Attribute 159
Clear Thread Gate Bits 24
Close Alarm 235
Close Counter 193
Close Event Source 161
Close Exception 89
Close Pipe Upon Receiving Signal 111
Counter Properties Structure 198

Index 293

June 18, 2002

Decrement Thread Gate 27
Define Alarm End Action Operation 237
Define Alarm Name 241
Define Alarm Properties 243
Define Alarm Semaphore 245
Define Counter Properties 201
Define Dynamic Pipe Name 119
Define Dynamic Thread Name 35
Define Event Source Properties 165
Define Exception Name 91
Define Exception Properties 93
Define Fatal Error Function 277
Define Pipe End Action Operation 114
Define Pipe Properties 117
Define Thread Argument Pointer 29
Define Thread Entry Point 31
Define Thread Environment Arguments

Pointer 33
Define Thread Properties 37
Disable Thread Scheduling 38
Enable Thread Scheduling 39
Event Source Properties Structure 164
Exception Properties Structure 92
Get Empty Buffer from Pipe 121
Get Full Buffer from Pipe 123
Get Thread Argument 41
Increment Thread Gate 61
Initialize Alarm Object Class 229
Initialize Counter Object Class

Properties 195
Initialize Event Source Object Class

Properties 168
Initialize Exception Object Class 95
Initialize Kernel Properties 286
Initialize Pipe Object Class 143
Initialize Thread Object Class 83
Look Up Alarm by Name 257

Look Up Counter by Name 215
Look Up Event Source by Name 178
Look Up Exception by Name 103
Look Up Pipe by Name 139
Look Up Thread by Name 63
Lower Current Thread Execution

Priority Level 65
Object Class Properties Structure 44
Obtain Elapsed Counter Ticks between

Two Events 212
Perform Consumer Fast Buffer

Exchange on Pipe 146
Perform Fast Buffer Exchange at Front

of Pipe 134
Perform Fast Producer Buffer Exchange

on Pipe 151
Pipe Properties Structure 115
Process Source Event for Clock Tick 182
Put Full Buffer at Front of Pipe 137
Put Full Buffer into Pipe 153
Raise Current Thread Execution Priority

Level 71
Read Alarm Handle and Register It 271
Read Alarm Name 248
Read Alarm Object Class Properties 247
Read Alarm Properties 251
Read Alarm Semaphore 253
Read Amount of Available System RAM

from Zone 3 279
Read and Preset Thread Gate 53
Read Counter Accumulator 203
Read Counter Handle and Register It

223
Read Counter Name 207
Read Counter Object Class Properties

205
Read Counter Properties 209

294 RTXC Kernel Services Reference, Volume 1

June 18, 2002

Read Current Thread ID 55
Read Event Source Accumulator 170
Read Event Source Handle and Register

It 188
Read Event Source Name 174
Read Event Source Object Class

Properties 172
Read Event Source Properties 176
Read Exception Handle and Register It

108
Read Exception Name 98
Read Exception Object Class Properties

97
Read Exception Properties 101
Read Fatal Error Function 278
Read Number of Counter Ticks

Remaining on Alarm 255
Read Pipe Buffer Size 125
Read Pipe Handle and Register It 155
Read Pipe Name 129
Read Pipe Object Class Properties 127
Read Pipe Properties 131
Read System Properties 280
Read Thread Base Execution Priority

Level 43
Read Thread Environment Arguments

Pointer 49
Read Thread Execution Priority Level 47
Read Thread Gate 51
Read Thread Gate Preset 54
Read Thread Name 57
Read Thread Object Class Properties 46
Read Thread Properties 59
Read Version Number 283
Rearm and Restart Alarm from Zone 3

261
Return Empty Buffer to Pipe 148

Schedule Execution of a Thread with a
new Argument 77

Schedule Thread Execution 73
Set Counter Accumulator 219
Set Counter Attribute Bits 221
Set Event Source Accumulator 184
Set Event Source Attribute Bits 186
Set Thread Gate and Thread Gate Preset

79
Set Thread Gate Bits 67
Set Thread Gate Preset 81
Set Thread Gate with Thread Gate Preset

69
System Properties Structure 280
Test Alarm 263
Test Alarm—Wait for Expiration 269
Test Alarm—Wait Number of Ticks for

Expiration 267
Thread Properties Structure 36
Unschedule Thread Execution 85

counter
allocating 216
clearing attributes 190
closing 192
code examples

Allocate and Name Counter 217
Assign Counter Name 197
Clear Counter Attribute 191
Close Counter 193
Define Counter Properties 201
Initialize Counter Object Class

Properties 195
Look Up Counter by Name 215
Obtain Elapsed Counter Ticks

between Two Events 212
Read Counter Accumulator 203
Read Counter Handle and Register

It 223

Index 295

June 18, 2002

Read Counter Name 207
Read Counter Object Class

Properties 205
Read Counter Properties 209
Set Counter Accumulator 219
Set Counter Attribute Bits 221

COUNTERPROP structure 198, 208
defining object class properties 194
defining properties 198
handle 214
KCLASSPROP structure 194, 204
name 206, 214
naming 196, 216
properties 208
reading object class properties 204
registering 222
services summary table 16
setting attributes 220

Counter services
brief description 16
XX_ClearCounterAttr 190
KS_CloseCounter 192
KS_DefCounterName 196
XX_DefCounterProp 198
XX_GetCounterAcc 202
KS_GetCounterClassProp 204
KS_GetCounterName 206
XX_GetCounterProp 208
XX_GetElapsedCounterTicks 210
INIT_CounterClassProp 194
KS_LookupCounter 214
KS_OpenCounter 216
XX_SetCounterAcc 218
XX_SetCounterAttr 220
KS_UseCounter 222

COUNTERPROP structure 198, 208
Current Task

in examples 3

Current Thread
in examples 3
preemption 26

D
decrementing thread gate 26
defining

alarm end action 236, 238
alarm object class properties 228
alarm properties 242
counter object class properties 194
counter properties 198
event source object class properties 167
event source properties 164
exception object class properties 94
exception properties 92
pipe object class properties 142
pipe properties 115
thread argument pointer 28
thread entry point 30
thread environment 32
thread object class properties 82
thread priority level 64, 70
thread properties 36

disabling thread scheduling 38

E
elapsed ticks, computing 210
enabling thread scheduling 39
end action functions 236, 238
environment arguments structure 32, 48
error function, system 276
event source

allocating 179
clearing attributes 158
closing 160
code examples

296 RTXC Kernel Services Reference, Volume 1

June 18, 2002

Allocate and Name Event Source
180

Assign Event Source Name 163
Clear Event Source Attribute 159
Close Event Source 161
Define Event Source Properties 165
Initialize Event Source Object

Class Properties 168
Look Up Event Source by Name

178
Process Source Event for Clock

Tick 182
Read Event Source Accumulator

170
Read Event Source Handle and

Register It 188
Read Event Source Name 174
Read Event Source Object Class

Properties 172
Read Event Source Properties 176
Set Event Source Accumulator 184
Set Event Source Attribute Bits 186

defining object class properties 167
defining properties 164
EVNTSRCPROP structure 164, 175
handle 177
KCLASSPROP structure 167, 171
name 173, 177
naming 162, 179
properties 175
reading object class properties 171
registering 187
services summary table 14
setting attributes 185

Event Source services
brief description 14
XX_ClearEventSourceAttr 158
KS_CloseEventSource 160
KS_DefEventSourceName 162

XX_DefEventSourceProp 164
XX_GetEventSourceAcc 169
KS_GetEventSourceClassProp

171
KS_GetEventSourceName 173
XX_GetEventSourceProp 175
INIT_EventSourceClassProp 167
KS_LookupEventSource 177
KS_OpenEventSource 179
XX_ProcessEventSourceTick 181
XX_SetEventSourceAcc 183
XX_SetEventSourceAttr 185
KS_UseEventSource 187

events
Alarm_Aborted 244, 252
Alarm_Expired 244, 252
elapsed ticks between 210
processing 181

EVNTSRCPROP structure 164, 175
examples, list of xiii
exception

allocating 104
closing 88
code examples

Allocate and Name Exception 105
Close Exception 89
Define Exception Name 91
Define Exception Properties 93
Initialize Exception Object Class 95
Look Up Exception by Name 103
Read Exception Handle and

Register It 108
Read Exception Name 98
Read Exception Object Class

Properties 97
Read Exception Properties 101

defining object class properties 94
defining properties 92

Index 297

June 18, 2002

EXCPTNPROP structure 92, 100
handle 102
KCLASSPROP structure 94, 96
name 98, 102
naming 90, 104
properties 100
reading object class properties 96
registering 107
services summary table 11

Exception services
brief description 11
KS_CloseException 88
KS_DefExceptionName 90
XX_DefExceptionProp 92
KS_GetExceptionClassProp 96
KS_GetExceptionName 98
KS_GetExceptionProp 100
TS_GetExceptionProp 100
INIT_ExceptionClassProp 94
KS_LookupException 102
KS_OpenException 104
KS_UseException 107

EXCPTNPROP structure 92, 100

F
function call, general form 4
function prototypes 2
function, system error 276

H
handle

alarm 256
counter 214
event source 177
exception 102
pipe 138
thread 62

I
incrementing thread gate 60
INIT_AlarmClassProp 228
INIT_CounterClassProp 194
INIT_EventSourceClassProp 167
INIT_ExceptionClassProp 94
INIT_PipeClassProp 142
INIT_SysProp 284
INIT_ThreadClassProp 82
IS_ClearThreadGateBits 23
IS_DecrThreadGate 26
IS_DefThreadArg 28
IS_DefThreadEntry 30
IS_GetCounterAcc 202
IS_GetEmptyPipeBuf 120
IS_GetEventSourceAcc 169
IS_GetFullPipeBuf 122
IS_GetPipeBufSize 124
IS_IncrThreadGate 60
IS_JamFullGetEmptyPipeBuf 132
IS_JamFullPipeBuf 136
IS_ORThreadGateBits 66
IS_ProcessEventSourceTick 181
IS_PutEmptyGetFullPipeBuf 144
IS_PutEmptyPipeBuf 147
IS_PutFullGetEmptyPipeBuf 149
IS_PutFullPipeBuf 152
IS_ScheduleThread 72
IS_ScheduleThreadArg 75
IS_UnscheduleThread 84

K
KCLASSPROP structure

alarm 228, 246
counter 194, 204
event source 167, 171
exception 94, 96

298 RTXC Kernel Services Reference, Volume 1

June 18, 2002

pipe 126, 142
thread 44, 82

kernel component, RTXC/ss 8
kernel service

arguments 5
classes 7
description format 2
function call general form 4
function prototypes 2
INIT_AlarmClassProp 228
INIT_CounterClassProp 194
INIT_EventSourceClassProp 167
INIT_ExceptionClassProp 94
INIT_PipeClassProp 142
INIT_SysProp 284
INIT_ThreadClassProp 82
KS_AllocSysRAM 274
KS_CloseAlarm 234
KS_CloseCounter 192
KS_CloseEventSource 160
KS_CloseException 88
KS_ClosePipe 110
KS_DefAlarmName 240
KS_DefAlarmSema 244
KS_DefCounterName 196
KS_DefEventSourceName 162
KS_DefExceptionName 90
KS_DefPipeName 118
KS_DefThreadName 34
KS_GetAlarmClassProp 246
KS_GetAlarmName 248
KS_GetAlarmSema 252
KS_GetCounterClassProp 204
KS_GetCounterName 206
KS_GetEventSourceClassProp

171
KS_GetEventSourceName 173

KS_GetExceptionClassProp 96
KS_GetExceptionName 98
KS_GetExceptionProp 100
KS_GetPipeClassProp 126
KS_GetPipeName 128
KS_GetSysProp 280
KS_GetThreadName 56
KS_GetVersion 282
KS_LookupAlarm 256
KS_LookupCounter 214
KS_LookupEventSource 177
KS_LookupException 102
KS_LookupPipe 138
KS_LookupThread 62
KS_OpenAlarm 258
KS_OpenCounter 216
KS_OpenEventSource 179
KS_OpenException 104
KS_OpenPipe 140
KS_RearmAlarm 260
KS_TestAlarm 262
KS_TestAlarmT 265
KS_TestAlarmW 268
KS_UseAlarm 270
KS_UseCounter 222
KS_UseEventSource 187
KS_UseException 107
KS_UsePipe 154
prefix 4
return value types table 6
TS_DisableThreadScheduler 38
TS_EnableThreadScheduler 39
TS_GetExceptionProp 100
TS_GetThreadArg 40
TS_GetThreadBaseLevel 42
TS_GetThreadCurrentLevel 47
TS_GetThreadGateLoadPreset 52

Index 299

June 18, 2002

TS_GetThreadID 55
TS_LowerThreadLevel 64
TS_RaiseThreadLevel 70
XX_AbortAlarm 226
XX_ArmAlarm 230
XX_CancelAlarm 232
XX_ClearCounterAttr 190
XX_ClearEventSourceAttr 158
XX_ClearThreadGateBits 23
XX_DecrThreadGate 26
XX_DefAlarmAction 236
XX_DefAlarmActionArm 238
XX_DefAlarmProp 242
XX_DefCounterProp 198
XX_DefEventSourceProp 164
XX_DefExceptionProp 92
XX_DefFatalErrorHandler 276
XX_DefPipeAction 112
XX_DefPipeProp 115
XX_DefThreadArg 28
XX_DefThreadEntry 30
XX_DefThreadEnvArg 32
XX_DefThreadProp 36
XX_GetAlarmProp 250
XX_GetAlarmTicks 254
XX_GetCounterAcc 202
XX_GetCounterProp 208
XX_GetElapsedCounterTicks 210
XX_GetEmptyPipeBuf 120
XX_GetEventSourceAcc 169
XX_GetEventSourceProp 175
XX_GetFatalErrorHandler 278
XX_GetFreeSysRAMSize 279
XX_GetFullPipeBuf 122
XX_GetPipeBufSize 124
XX_GetPipeProp 130
XX_GetThreadClassProp 44

XX_GetThreadEnvArg 48
XX_GetThreadGate 50
XX_GetThreadGatePreset 54
XX_GetThreadProp 58
XX_IncrThreadGate 60
XX_JamFullGetEmptyPipeBuf 132
XX_JamFullPipeBuf 136
XX_ORThreadGateBits 66
XX_PresetThreadGate 68
XX_ProcessEventSourceTick 181
XX_PutEmptyGetFullPipeBuf 144
XX_PutEmptyPipeBuf 147
XX_PutFullGetEmptyPipeBuf 149
XX_PutFullPipeBuf 152
XX_ScheduleThread 72
XX_ScheduleThreadArg 75
XX_SetCounterAcc 218
XX_SetCounterAttr 220
XX_SetEventSourceAcc 183
XX_SetEventSourceAttr 185
XX_SetThreadGate 78
XX_SetThreadGatePreset 80
XX_UnscheduleThread 84

kernel service return code 5
kernel version number 282
KS_AbortAlarm 226
KS_AllocSysRAM 274
KS_ArmAlarm 230
KS_CancelAlarm 232
KS_ClearCounterAttr 190
KS_ClearEventSourceAttr 158
KS_ClearThreadGateBits 23
KS_CloseAlarm 234
KS_CloseCounter 192
KS_CloseEventSource 160
KS_CloseException 88
KS_ClosePipe 110

300 RTXC Kernel Services Reference, Volume 1

June 18, 2002

KS_DecrThreadGate 26
KS_DefAlarmAction 236
KS_DefAlarmActionArm 238
KS_DefAlarmName 240
KS_DefAlarmProp 242
KS_DefAlarmSema 244
KS_DefCounterName 196
KS_DefCounterProp 198
KS_DefEventSourceName 162
KS_DefEventSourceProp 164
KS_DefExceptionName 90
KS_DefExceptionProp 92
KS_DefFatalErrorHandler 276
KS_DefPipeName 118
KS_DefPipeProp 115
KS_DefThreadArg 28
KS_DefThreadEntry 30
KS_DefThreadEnvArg 32
KS_DefThreadName 34
KS_DefThreadProp 36
KS_GetAlarmClassProp 246
KS_GetAlarmName 248
KS_GetAlarmProp 250
KS_GetAlarmSema 252
KS_GetAlarmTicks 254
KS_GetCounterAcc 202
KS_GetCounterClassProp 204
KS_GetCounterName 206
KS_GetCounterProp 208
KS_GetElapsedCounterTicks 210
KS_GetEmptyPipeBuf 120
KS_GetEventSourceAcc 169
KS_GetEventSourceClassProp 171
KS_GetEventSourceName 173
KS_GetEventSourceProp 175
KS_GetExceptionClassProp 96
KS_GetExceptionName 98

KS_GetExceptionProp 100
KS_GetFatalErrorHandler 278
KS_GetFreeSysRAMSize 279
KS_GetFullPipeBuf 122
KS_GetPipeBufSize 124
KS_GetPipeClassProp 126
KS_GetPipeName 128
KS_GetPipeProp 130
KS_GetSysProp 280
KS_GetThreadClassProp 44
KS_GetThreadEnvArg 48
KS_GetThreadGate 50
KS_GetThreadGatePreset 54
KS_GetThreadName 56
KS_GetThreadProp 58
KS_GetVersion 282
KS_IncrThreadGate 60
KS_JamFullGetEmptyPipeBuf 132
KS_JamFullPipeBuf 136
KS_LookupAlarm 256
KS_LookupCounter 214
KS_LookupEventSource 177
KS_LookupException 102
KS_LookupPipe 138
KS_LookupThread 62
KS_OpenAlarm 258
KS_OpenCounter 216
KS_OpenEventSource 179
KS_OpenException 104
KS_OpenPipe 140
KS_ORThreadGateBits 66
KS_PresetThreadGate 68
KS_ProcessEventSourceTick 181
KS_PutEmptyGetFullPipeBuf 144
KS_PutEmptyPipeBuf 147
KS_PutFullGetEmptyPipeBuf 149
KS_PutFullPipeBuf 152

Index 301

June 18, 2002

KS_RearmAlarm 260
KS_ScheduleThread 72
KS_ScheduleThreadArg 75
KS_SetCounterAcc 218
KS_SetCounterAttr 220
KS_SetEventSourceAcc 183
KS_SetEventSourceAttr 185
KS_SetThreadGate 78
KS_SetThreadGatePreset 80
KS_TestAlarm 262
KS_TestAlarmT 265
KS_TestAlarmW 268
KS_UseAlarm 270
KS_UseCounter 222
KS_UseEventSource 187
KS_UseException 107
KS_UsePipe 154
KSRC 5

L
list of examples xiii
list of tables xi
loading Current Thread gate 52

N
name

alarm 248, 256
counter 206, 214
event source 173, 177
exception 98, 102
pipe 128
thread 56, 62

naming
alarm 240, 258
counter 196, 216
event source 162, 179
exception 90, 104

pipe 118, 140
thread 34

O
object class properties

alarm 246
Alarm class 228
counter 194, 204
event source 167, 171
exception 94, 96
pipe 126, 142
thread 44, 82

P
pipe 152

allocating 140
closing 110
code examples

Allocate Dynamic Pipe 141
Close Pipe Upon Receiving Signal

111
Define Dynamic Pipe Name 119
Define Pipe End Action Operation

114
Define Pipe Properties 117
Get Empty Buffer from Pipe 121
Get Full Buffer from Pipe 123
Initialize Pipe Object Class 143
Look Up Pipe by Name 139
Perform Consumer Fast Buffer

Exchange on Pipe 146
Perform Fast Buffer Exchange at

Front of Pipe 134
Perform Fast Producer Buffer

Exchange on Pipe 151
Put Full Buffer at Front of Pipe 137
Put Full Buffer into Pipe 153
Read Pipe Buffer Size 125

302 RTXC Kernel Services Reference, Volume 1

June 18, 2002

Read Pipe Handle and Register It
155

Read Pipe Name 129
Read Pipe Object Class Properties

127
Read Pipe Properties 131
Return Empty Buffer to Pipe 148

defining properties 115
getting empty buffer 120
getting empty buffers 132, 136, 149
getting full buffer 122
getting full buffers 144
KCLASSPROP structure 126, 142
name 128
naming 118, 140
object class properties 142
PIPEPROP structure 115, 130
properties 130
putting empty buffers 144
putting full buffers 132, 136, 149, 152
reading object class properties 126
reading usable buffer size 124
registering 154
returning empty 147
services summary table 12

Pipe services
brief description 12
KS_ClosePipe 110
XX_DefPipeAction 112
KS_DefPipeName 118
XX_DefPipeProp 115
XX_GetEmptyPipeBuf 120
XX_GetFullPipeBuf 122
XX_GetPipeBufSize 124
KS_GetPipeClassProp 126
KS_GetPipeName 128
XX_GetPipeProp 130
INIT_PipeClassProp 142

XX_JamFullGetEmptyPipeBuf 132
XX_JamFullPipeBuf 136
KS_LookupPipe 138
KS_OpenPipe 140
XX_PutEmptyGetFullPipeBuf 144
XX_PutEmptyPipeBuf 147
XX_PutFullGetEmptyPipeBuf 149
XX_PutFullPipeBuf 152
KS_UsePipe 154

PIPEPROP structure 115, 130
preemption

Current Thread 26
thread 23

priority level
lowering thread 64
raising thread 70

properties
alarm 242, 250
alarm object class 228, 246
counter 198, 208
counter object class 194, 204
event source 164, 175
event source object class 167, 171
exception 92, 100
exception object class 94, 96
pipe 130
pipe object class 126
system 280
thread 58
thread object class 44

R
raising thread priority level 70
RAM

free 279
obtaining size of free 279

reading

Index 303

June 18, 2002

alarm object class properties 246
counter object class properties 204
Current Thread gate preset 52
event source object class properties 171
exception object class properties 96
pipe object class properties 126
pipe usable buffer size 124
thread base priority level 42
thread current priority level 47
thread environment arguments pointer

48
thread environment arguments

structure 48
thread gate 50
thread gate preset 54
thread handle 62
thread ID 55
thread name 56
thread object class properties 44
thread properties 58

rearming alarm 260
registering

alarm 270
counter 222
event source 187
exception 107
pipe 154

resetting thread gate 50
RTOS Software Development Kit 2
RTXC/ss component 8
rtxcapi.h file 2

S
scheduling

thread 23, 26, 38, 39, 60, 66, 72
thread with new argument 75

SDK. See RTOS Software Development Kit

SELFTASK 3
SELFTHREAD 3
service prefix 4
setting

counter attributes 220
event source attributes 185
thread gate and preset 78
thread gate bits

thread 66
thread gate preset 80

special service
code examples

Allocate System RAM from Zone 3
275

Define Fatal Error Function 277
Initialize Kernel Properties 286
Read Amount of Available System

RAM from Zone 3 279
Read Fatal Error Function 278
Read System Properties 280
Read Version Number 283

Special services
brief description 20
KS_AllocSysRAM 274
XX_DefFatalErrorHandler 276
XX_GetFatalErrorHandler 278
XX_GetFreeSysRAMSize 279
KS_GetSysProp 280
KS_GetVersion 282
INIT_SysProp 284
summary table 20

starting alarm 230
stopping alarm 232
structure

alarm KCLASSPROP 228, 246
ALARMPROP 242, 250
counter KCLASSPROP 194, 204
COUNTERPROP 198, 208

304 RTXC Kernel Services Reference, Volume 1

June 18, 2002

environment arguments 32, 48
event source KCLASSPROP 167, 171
EVNTSRCPROP 164, 175
Exception EXCPTNPROP 100
exception KCLASSPROP 94, 96
EXCPTNPROP 92
pipe KCLASSPROP 126, 142
PIPEPROP 115, 130
SYSPROP 280, 284
Thread environment arguments 32
thread KCLASSPROP 44, 82
Thread object class properties 44, 82
Thread properties 36, 44, 58
Thread property 58
THREADPROP 36, 58

SYSPROP structure 280, 284
system error function 276, 278
system properties 280

SYSPROP structure 280, 284

T
table

Alarm Services Summary 18
Counter Services Summary 16
Event Source Services Summary 14
Exception Services Summary 11
Kernel Service Return Value Types 6
Pipe Services Summary 12
Special Services Summary 20
Thread Management Services Summary

8
tables, list of xi
testing alarm 262, 265, 268
thread

argument pointer 40
code examples

Clear Thread Gate Bits 24

Decrement Thread Gate 27
Define Dynamic Thread Name 35
Define Thread Argument Pointer

29
Define Thread Entry Point 31
Define Thread Environment

Arguments Pointer 33
Define Thread Properties 37
Disable Thread Scheduling 38
Enable Thread Scheduling 39
Get Thread Argument 41
Increment Thread Gate 61
Initialize Thread Object Class 83
Look Up Thread by Name 63
Lower Current Thread Execution

Priority Level 65
Raise Current Thread Execution

Priority Level 71
Read and Preset Thread Gate 53
Read Current Thread ID 55
Read Thread Base Execution

Priority Level 43
Read Thread Environment

Arguments Pointer 49
Read Thread Execution Priority

Level 47
Read Thread Gate 51
Read Thread Gate Preset 54
Read Thread Name 57
Read Thread Object Class

Properties 46
Read Thread Properties 59
Schedule Execution of a Thread

with a new Argument 77
Schedule Thread Execution 73
Set Thread Gate and Thread Gate

Preset 79
Set Thread Gate Bits 67
Set Thread Gate Preset 81
Set Thread Gate with Thread Gate

Index 305

June 18, 2002

Preset 69
Unschedule Thread Execution 85

defining argument pointer 28
defining entry point 30
defining environment 32
defining properties 36
disabling scheduling 38
enabling scheduling 39
handle 138
KCLASSPROP structure 44, 82
lowering priority level 64
name 56, 62
naming 34
object class properties 82
preemption 23, 26
properties 58
raising priority level 70
reading base priority level 42
reading current priority level 47
reading environment arguments pointer

48
reading environment arguments

structure 48
reading handle 62
reading ID 55
reading name 56
reading object class properties 44
reading properties 58
scheduling 23, 26, 38, 39, 60, 66, 72
scheduling with new argument 75
services summary table 8
unscheduling 84

Thread environment arguments structure
32

thread gate
clearing bits 23
decrementing 26
loading Current Thread gate 52

reading and resetting 50
reading Current Thread preset 52
reading preset 54
setting bits 66
setting gate and preset 78
setting preset 80

thread gate, incrementing 60
Thread object class properties structure 44,

82
Thread properties structure 36, 58
Thread property structure 44
Thread services

brief description 8
XX_ClearThreadGateBits 23
XX_DecrThreadGate 26
XX_DefThreadArg 28
XX_DefThreadEntry 30
XX_DefThreadEnvArg 32
KS_DefThreadName 34
XX_DefThreadProp 36
TS_DisableThreadScheduler 38
TS_EnableThreadScheduler 39
TS_GetThreadArg 40
TS_GetThreadBaseLevel 42
XX_GetThreadClassProp 44
TS_GetThreadCurrentLevel 47
XX_GetThreadEnvArg 48
XX_GetThreadGate 50
TS_GetThreadGateLoadPreset 52
XX_GetThreadGatePreset 54
TS_GetThreadID 55
KS_GetThreadName 56
XX_GetThreadProp 58
XX_IncrThreadGate 60
INIT_ThreadClassProp 82
KS_LookupThread 62
TS_LowerThreadLevel 64

306 RTXC Kernel Services Reference, Volume 1

June 18, 2002

XX_ORThreadGateBits 66
XX_PresetThreadGate 68
TS_RaiseThreadLevel 70
XX_ScheduleThread 72
XX_ScheduleThreadArg 75
XX_SetThreadGate 78
XX_SetThreadGatePreset 80
XX_UnscheduleThread 84

THREADPROP structure 36, 58
TS_AbortAlarm 226
TS_ArmAlarm 230
TS_CancelAlarm 232
TS_ClearCounterAttr 190
TS_ClearEventSourceAttr 158
TS_ClearThreadGateBits 23
TS_DecrThreadGate 26
TS_DefAlarmAction 236
TS_DefAlarmActionArm 238
TS_DefAlarmProp 242
TS_DefCounterProp 198
TS_DefEventSourceProp 164
TS_DefExceptionProp 92
TS_DefFatalErrorHandler 276
TS_DefPipeProp 115
TS_DefThreadArg 28
TS_DefThreadEntry 30
TS_DefThreadEnvArg 32
TS_DefThreadProp 36
TS_DisableThreadScheduler 38
TS_EnableThreadScheduler 39
TS_GetAlarmProp 250
TS_GetAlarmTicks 254
TS_GetCounterAcc 202
TS_GetCounterProp 208
TS_GetElapsedCounterTicks 210
TS_GetEmptyPipeBuf 120
TS_GetEventSourceAcc 169

TS_GetEventSourceProp 175
TS_GetExceptionProp 100
TS_GetFatalErrorHandler 278
TS_GetFreeSysRAMSize 279
TS_GetFullPipeBuf 122
TS_GetPipeBufSize 124
TS_GetPipeProp 130
TS_GetThreadArg 40
TS_GetThreadBaseLevel 42
TS_GetThreadClassProp 44
TS_GetThreadCurrentLevel 47
TS_GetThreadEnvArg 48
TS_GetThreadGate 50
TS_GetThreadGateLoadPreset 52
TS_GetThreadGatePreset 54
TS_GetThreadID 55
TS_GetThreadProp 58
TS_IncrThreadGate 60
TS_JamFullGetEmptyPipeBuf 132
TS_JamFullPipeBuf 136
TS_LowerThreadLevel 64
TS_ORThreadGateBits 66
TS_PresetThreadGate 68
TS_ProcessEventSourceTick 181
TS_PutEmptyGetFullPipeBuf 144
TS_PutEmptyPipeBuf 147
TS_PutFullGetEmptyPipeBuf 149
TS_PutFullPipeBuf 152
TS_RaiseThreadLevel 70
TS_ScheduleThread 72
TS_ScheduleThreadArg 75
TS_SetCounterAcc 218
TS_SetCounterAttr 220
TS_SetEventSourceAcc 183
TS_SetEventSourceAttr 185
TS_SetThreadGate 78
TS_SetThreadGatePreset 80

Index 307

June 18, 2002

TS_UnscheduleThread 84

U
unscheduling thread 84

V
version number, kernel 282

X
XX_AbortAlarm 226
XX_ArmAlarm 230
XX_CancelAlarm 232
XX_ClearCounterAttr 190
XX_ClearEventSourceAttr 158
XX_ClearThreadGateBits 23
XX_DecrThreadGate 26
XX_DefAlarmAction 236
XX_DefAlarmActionArm 238
XX_DefAlarmProp 242
XX_DefCounterProp 198
XX_DefEventSourceProp 164
XX_DefExceptionProp 92
XX_DefFatalErrorHandler 276
XX_DefPipeAction 112
XX_DefPipeProp 115
XX_DefThreadArg 28
XX_DefThreadEntry 30
XX_DefThreadEnvArg 32
XX_DefThreadProp 36
XX_GetAlarmProp 250
XX_GetAlarmTicks 254
XX_GetCounterAcc 202
XX_GetCounterProp 208
XX_GetElapsedCounterTicks 210
XX_GetEmptyPipeBuf 120
XX_GetEventSourceAcc 169

XX_GetEventSourceProp 175
XX_GetFatalErrorHandler 278
XX_GetFreeSysRAMSize 279
XX_GetFullPipeBuf 122
XX_GetPipeBufSize 124
XX_GetPipeProp 130
XX_GetThreadClassProp 44
XX_GetThreadEnvArg 48
XX_GetThreadGate 50
XX_GetThreadGatePreset 54
XX_GetThreadProp 58
XX_IncrThreadGate 60
XX_JamFullGetEmptyPipeBuf 132
XX_JamFullPipeBuf 136
XX_ORThreadGateBits 66
XX_PresetThreadGate 68
XX_ProcessEventSourceTick 181
XX_PutEmptyGetFullPipeBuf 144
XX_PutEmptyPipeBuf 147
XX_PutFullGetEmptyPipeBuf 149
XX_PutFullPipeBuf 152
XX_ScheduleThread 72
XX_ScheduleThreadArg 75
XX_SetCounterAcc 218
XX_SetCounterAttr 220
XX_SetEventSourceAcc 183
XX_SetEventSourceAttr 185
XX_SetThreadGate 78
XX_SetThreadGatePreset 80
XX_UnscheduleThread 84

Z
zones

listing services with more than one 4
service prefix 4

	Contents
	List of Tables
	List of Examples
	Introduction To RTXC/ss Kernel Services
	Using This Manual
	Kernel Service Description Format
	Prototypes
	Table�1�1. Kernel Service Description Format�

	General Form of Kernel Service Call
	Arguments to Kernel Services
	Kernel Service Return Codes
	Diagnostic Mode and Fatal Errors
	Table�1�2. Kernel Service Return Value Types�

	Kernel Service Classes

	RTXC/ss Component Services
	Thread Management Services
	Table�1�3. Thread Services Summary�

	Exception Services
	Table�1�4. Exception Services Summary

	Pipe Services
	Table�1�5. Pipe Services Summary�

	Event Source Management Services
	Table�1�6. Event Source Services Summary�

	Counter Management Services
	Table�1�7. Counter Services Summary�

	Alarm Management Services
	Table�1�8. Alarm Services Summary�

	Special Services
	Table�1�9. Special Services Summary�

	Thread Services
	XX_ClearThreadGateBits
	Example�2�1. Clear Thread Gate Bits

	XX_DecrThreadGate
	Example�2�2. Decrement Thread Gate

	XX_DefThreadArg
	Example�2�3. Define Thread Argument Pointer

	XX_DefThreadEntry
	Example�2�4. Define Thread Entry Point

	XX_DefThreadEnvArg
	Example�2�5. Define Thread Environment Arguments Pointer

	KS_DefThreadName
	Example�2�6. Define Dynamic Thread Name

	XX_DefThreadProp
	Example�2�7. Thread Properties Structure
	Example�2�8. Define Thread Properties

	TS_DisableThreadScheduler
	Example�2�9. Disable Thread Scheduling

	TS_EnableThreadScheduler
	Example�2�10. Enable Thread Scheduling

	TS_GetThreadArg
	Example�2�11. Get Thread Argument

	TS_GetThreadBaseLevel
	Example�2�12. Read Thread Base Execution Priority Level

	KS_GetThreadClassProp
	Example�2�13. Object Class Properties Structure
	Table�2�1. Thread Class Attributes and Masks
	Example�2�14. Read Thread Object Class Properties

	TS_GetThreadCurrentLevel
	Example�2�15. Read Thread Execution Priority Level

	XX_GetThreadEnvArg
	Example�2�16. Read Thread Environment Arguments Pointer

	XX_GetThreadGate
	Example�2�17. Read Thread Gate

	TS_GetThreadGateLoadPreset
	Example�2�18. Read and Preset Thread Gate

	XX_GetThreadGatePreset
	Example�2�19. Read Thread Gate Preset

	TS_GetThreadID
	Example�2�20. Read Current Thread ID

	KS_GetThreadName
	Example�2�21. Read Thread Name

	XX_GetThreadProp
	Example�2�22. Read Thread Properties

	XX_IncrThreadGate
	Example�2�23. Increment Thread Gate

	KS_LookupThread
	Example�2�24. Look Up Thread by Name

	TS_LowerThreadLevel
	Example�2�25. Lower Current Thread Execution Priority Level

	XX_ORThreadGateBits
	Example�2�26. Set Thread Gate Bits

	XX_PresetThreadGate
	Example�2�27. Set Thread Gate with Thread Gate Preset

	TS_RaiseThreadLevel
	Example�2�28. Raise Current Thread Execution Priority Level

	XX_ScheduleThread
	Example�2�29. Schedule Thread Execution

	XX_ScheduleThreadArg
	Example�2�30. Schedule Thread Execution with New Argument

	XX_SetThreadGate
	Example�2�31. Set Thread Gate and Thread Gate Preset

	XX_SetThreadGatePreset
	Example�2�32. Set Thread Gate Preset

	INIT_ThreadClassProp
	Example�2�33. Initialize Thread Object Class

	XX_UnscheduleThread
	Example�2�34. Unschedule Thread Execution

	Exception Services
	KS_CloseException
	Example�3�1. Close Exception

	KS_DefExceptionName
	Example�3�2. Define Exception Name

	XX_DefExceptionProp
	Example�3�3. Exception Properties Structure
	Example�3�4. Define Exception Properties

	INIT_ExceptionClassProp
	Example�3�5. Initialize Exception Object Class

	KS_GetExceptionClassProp
	Table�3�1. Exception Class Attributes and Masks
	Example�3�6. Read Exception Object Class Properties

	KS_GetExceptionName
	Example�3�7. Read Exception Name

	XX_GetExceptionProp
	Example�3�8. Read Exception Properties

	KS_LookupException
	Example�3�9. Look Up Exception by Name

	KS_OpenException
	Example�3�10. Allocate and Name Exception

	KS_UseException
	Example�3�11. Read Exception Handle and Register It

	Pipe Services
	KS_ClosePipe
	Example�4�1. Close Pipe Upon Receiving Signal

	XX_DefPipeAction
	Example�4�2. Define Pipe End Action Operation

	XX_DefPipeProp
	Example�4�3. Pipe Properties Structure
	Example�4�4. Define Pipe Properties

	KS_DefPipeName
	Example�4�5. Define Dynamic Pipe Name

	XX_GetEmptyPipeBuf
	Example�4�6. Get Empty Buffer from Pipe

	XX_GetFullPipeBuf
	Example�4�7. Get Full Buffer from Pipe

	XX_GetPipeBufSize
	Example�4�8. Read Pipe Buffer Size

	KS_GetPipeClassProp
	Table�4�1. Pipe Class Attributes and Masks
	Example�4�9. Read Pipe Object Class Properties

	KS_GetPipeName
	Example�4�10. Read Pipe Name

	XX_GetPipeProp
	Example�4�11. Read Pipe Properties

	XX_JamFullGetEmptyPipeBuf
	Example�4�12. Perform Fast Buffer Exchange at Front of Pipe

	XX_JamFullPipeBuf
	Example�4�13. Put Full Buffer at Front of Pipe

	KS_LookupPipe
	Example�4�14. Look Up Pipe by Name

	KS_OpenPipe
	Example�4�15. Allocate Dynamic Pipe

	INIT_PipeClassProp
	Example�4�16. Initialize Pipe Object Class

	XX_PutEmptyGetFullPipeBuf
	Example�4�17. Perform Consumer Fast Buffer Exchange on Pipe

	XX_PutEmptyPipeBuf
	Example�4�18. Return Empty Buffer to Pipe

	XX_PutFullGetEmptyPipeBuf
	Example�4�19. Perform Fast Producer Buffer Exchange on Pipe

	XX_PutFullPipeBuf
	Example�4�20. Put Full Buffer into Pipe

	KS_UsePipe
	Example�4�21. Read Pipe Handle and Register It

	Event Source Services
	XX_ClearEventSourceAttr
	Example�5�1. Clear Event Source Attribute

	KS_CloseEventSource
	Example�5�2. Close Event Source

	KS_DefEventSourceName
	Example�5�3. Assign Event Source Name

	XX_DefEventSourceProp
	Example�5�4. Event Source Properties Structure
	Table�5�1. Event Source Attributes and Masks
	Example�5�5. Define Event Source Properties

	INIT_EventSourceClassProp
	Example�5�6. Initialize Event Source Object Class Properties

	XX_GetEventSourceAcc
	Example�5�7. Read Event Source Accumulator

	KS_GetEventSourceClassProp
	Table�5�2. Event Source Class Attributes and Masks
	Example�5�8. Read Event Source Object Class Properties

	KS_GetEventSourceName
	Example�5�9. Read Event Source Name

	XX_GetEventSourceProp
	Example�5�10. Read Event Source Properties

	KS_LookupEventSource
	Example�5�11. Look Up Event Source by Name

	KS_OpenEventSource
	Example�5�12. Allocate and Name Event Source

	XX_ProcessEventSourceTick
	Example�5�13. Process Source Event for Clock Tick

	XX_SetEventSourceAcc
	Example�5�14. Set Event Source Accumulator

	XX_SetEventSourceAttr
	Example�5�15. Set Event Source Attribute Bits

	KS_UseEventSource
	Example�5�16. Read Event Source Handle and Register It

	Counter Services
	XX_ClearCounterAttr
	Example�6�1. Clear Counter Attribute

	KS_CloseCounter
	Example�6�2. Close Counter

	INIT_CounterClassProp
	Example�6�3. Initialize Counter Object Class Properties

	KS_DefCounterName
	Example�6�4. Assign Counter Name

	XX_DefCounterProp
	Example�6�5. Counter Properties Structure
	Table�6�1. Counter Attributes and Masks
	Example�6�6. Define Counter Properties

	XX_GetCounterAcc
	Example�6�7. Read Counter Accumulator

	KS_GetCounterClassProp
	Table�6�2. Counter Class Attributes and Masks
	Example�6�8. Read Counter Object Class Properties

	KS_GetCounterName
	Example�6�9. Read Counter Name

	XX_GetCounterProp
	Example�6�10. Read Counter Properties

	XX_GetElapsedCounterTicks
	Example�6�11. Obtain Elapsed Counter Ticks between Two Events

	KS_LookupCounter
	Example�6�12. Look Up Counter by Name

	KS_OpenCounter
	Example�6�13. Allocate and Name Counter

	XX_SetCounterAcc
	Example�6�14. Set Counter Accumulator

	XX_SetCounterAttr
	Example�6�15. Set Counter Attribute Bits

	KS_UseCounter
	Example�6�16. Read Counter Handle and Register It

	Alarm Services
	XX_AbortAlarm
	Example�7�1. Abort Alarm

	INIT_AlarmClassProp
	Example�7�2. Initialize Alarm Object Class

	XX_ArmAlarm
	Example�7�3. Arm Alarm

	XX_CancelAlarm
	Example�7�4. Cancel Alarm

	KS_CloseAlarm
	Example�7�5. Close Alarm

	XX_DefAlarmAction
	Example�7�6. Define Alarm End Action Operation

	XX_DefAlarmActionArm
	Example�7�7. Arm Alarm and Define Alarm Expiration Action Operation

	KS_DefAlarmName
	Example�7�8. Define Alarm Name

	XX_DefAlarmProp
	Example�7�9. Alarm Properties Structure
	Example�7�10. Define Alarm Properties

	KS_DefAlarmSema
	Example�7�11. Define Alarm Semaphore

	KS_GetAlarmClassProp
	Table�7�1. Alarm Class Attributes and Masks
	Example�7�12. Read Alarm Object Class Properties

	KS_GetAlarmName
	Example�7�13. Read Alarm Name

	XX_GetAlarmProp
	Example�7�14. Read Alarm Properties

	KS_GetAlarmSema
	Example�7�15. Read Alarm Semaphore

	XX_GetAlarmTicks
	Example�7�16. Read Number of Counter Ticks Remaining on Alarm

	KS_LookupAlarm
	Example�7�17. Look Up Alarm by Name

	KS_OpenAlarm
	Example�7�18. Allocate and Name Alarm

	XX_RearmAlarm
	Example�7�19. Rearm and Restart Alarm from Zone 3

	KS_TestAlarm
	Example�7�20. Test Alarm

	KS_TestAlarmT
	Example�7�21. Test Alarm—Wait Number of Ticks for Expiration

	KS_TestAlarmW
	Example�7�22. Test Alarm—Wait for Expiration

	KS_UseAlarm
	Example�7�23. Read Alarm Handle and Register It

	Special Services
	XX_AllocSysRAM
	Example�8�1. Allocate System RAM from Zone 3

	XX_DefFatalErrorHandler
	Example�8�2. Define Fatal Error Function

	XX_GetFatalErrorHandler
	Example�8�3. Read Fatal Error Function

	XX_GetFreeSysRAMSize
	Example�8�4. Read Amount of Available System RAM from Zone 3

	KS_GetSysProp
	Example�8�5. System Properties Structure
	Example�8�6. Read System Properties

	KS_GetVersion
	Example�8�7. Read Version Number

	INIT_SysProp
	Table�8�1. System Attributes and Masks�
	Example�8�8. Initialize Kernel Properties

	Fatal Error Codes
	Index

