

June 21, 2002

RTXC Kernel User’s Guide,
Volume 1

Levels, Threads, Exceptions, Pipes,
Event Sources, Counters, and
Alarms

Quadros
Systems Inc.

®

June 21, 2002

Disclaimer

Quadros Systems, Inc. makes no representations or warranties with
respect to the contents or use of this manual, and specifically disclaims
any express or implied warranties of merchantability or fitness for any
particular purpose. Quadros Systems, Inc. reserves the right to revise
this publication and to make changes to its content, at any time, without
obligation to notify any person or entity of such revisions or changes.

Quadros Systems, Inc. makes no representations or warranties with
respect to any Quadros software, and specifically disclaims any express
or implied warranties of merchantability or fitness for any particular
purpose. Quadros Systems, Inc. reserves the right to make changes to
any and all parts of Quadros software, at any time, without any
obligation to notify any person or entity of such changes.

Trademarks

Quadros is a registered trademark of Quadros Systems, Inc. RTXC,
RTXC Quadros, and RTXC DSP are trademarks of Quadros Systems, Inc.

Other product and company names mentioned in this document may
be the trademarks or registered trademarks of their respective owners.

Copyright © 2002 Quadros Systems, Inc. All rights reserved. No part of
this publication may be reproduced, photocopied, stored on a retrieval
system, or transmitted without the express written consent of the
publisher.

Quadros Systems, Inc.
10450 Stancliff, Suite 110
Houston, TX 77099-4336
USA

RTXC Kernel User’s Guide, Volume 1
Part Number: RTXC-UGV1-0602
June 2002
RTXC Kernel, Version 1.0

Contents iii

June 21, 2002

Contents

C H A P T E R 1 Introduction ..1

RTXC Kernel Features..3

C H A P T E R 2 Levels and Threads–Meeting Functional Requirements...................7

Level Definition...9
Level Organization ..10
Ready Table ...10
Level Properties ...11
Level Attributes ...11
Number of Static Threads ..11
Number of Dynamic Threads ..11
Level Priority..12

Introducing Threads..12
Thread Definition..13
Thread Organization...13
Thread States...14
Readying Threads for Execution ..15
Thread Properties..16
Optional Properties...18
Thread Scheduling Protocols ...21
Thread Contexts ..25
Using Threads...26

C H A P T E R 3 Exceptions–Claiming Interrupt Vectors ...31

Exception Definition..33
Exception Properties..33

Exception Attributes..34
Priority Level..34
Interrupt Vector ..34
ISR Prologue Address...35

iv RTXC Kernel User’s Guide, Volume 1

June 21, 2002

Exception Vectors.. 35

C H A P T E R 4 Pipes–Buffered Data Movement.. 37

Introducing Pipes.. 38
Pipe Definition .. 39
Pipe Organization ... 39
Pipe Properties .. 40

Pipe Attributes .. 40
Number of Buffers ... 41
Maximum Buffer Size.. 41
Address of Pipe... 41
Pointer to Full Buffer List .. 41
Pointer to Free Buffer List ... 41
Pointer to Buffer Size List.. 43

Pipe States ... 43
Optional Properties... 43
Using Pipes ... 43

Producer Operations .. 44
Consumer Operations.. 49
Jamming Data into a Pipe.. 51
Pipe Actions and Conditions ... 52

C H A P T E R 5 Event Sources, Counters, and Alarms–Keeping Track of Events ... 61

The Event Management Hierarchy.. 62
Introducing Event Sources ... 63

Event Counting... 64
Event Source Definition... 64
Event Source Properties ... 65
Using Event Sources .. 66

Introducing Counters ... 66
Counter Definition ... 67
Counter Properties ... 67
Tick Conversion.. 68
Application Time .. 70
System Time ... 70
Using Counters .. 72
Reading Counter Ticks... 72
Elapsed Ticks .. 72

Introducing Alarms .. 73
Alarm Management ... 74

Contents v

June 21, 2002

Alarm Definition...76
Alarm Properties ...77
Optional Properties...80
Using Alarms ..81

I N D E X ..89

vi RTXC Kernel User’s Guide, Volume 1

June 21, 2002

List of Examples vii

June 21, 2002

List of Examples

Example 2-1 Level Properties Structure ...11
Example 2-2 Thread Code Model..14
Example 2-3 Thread Properties Structure ..17
Example 2-4 Using Thread Arguments..19
Example 2-5 Accessing Thread Environment Arguments Structure21
Example 3-1 Exception Properties Structure ...33
Example 4-1 Pipe Properties Structure ..40
Example 4-2 Producer Putting Data into Pipe ...46
Example 4-3 Producer Putting Data into Pipe Using Combined Operations48
Example 4-4 Consumer Getting Data from Pipe...50
Example 4-5 Pipe Action when Putting Full Buffers into Pipe54
Example 4-6 Pipe Actions with Multiple Producers and Single Consumer57
Example 5-1 Event Source Properties Structure..65
Example 5-2 Counter Properties Structure ..67
Example 5-3 Computing Elapsed Time between Two Events73
Example 5-4 Alarm Properties Structure ...77
Example 5-5 Creating a Dynamic Alarm..83
Example 5-6 Rearming a Software Watchdog Alarm..84
Example 5-7 Waiting for Alarm Expiration with Possibility of Alarm

Cancel or Abort ..85
Example 5-8 Waiting for Alarm Expiration without Possibility of Alarm

Cancel or Abort ..86

viii RTXC Kernel User’s Guide, Volume 1

June 21, 2002

List of Figures ix

June 21, 2002

List of Figures

Figure 2-1 Ready Table Layout ..10
Figure 2-2 Ready Table Array for Four Levels ..15
Figure 2-3 Thread Order for Scheduling Examples ...23
Figure 2-4 Round Robin Time Sequence for First Example23
Figure 2-5 Round Robin Time Sequence for Second Example.........................24
Figure 2-6 Priority Time Sequence for Second Example...................................25
Figure 4-1 Basic Pipe Operations..39
Figure 4-2 Multiple Pipe, Single Consumer Organization56
Figure 5-1 Event Management Hierarchy ..62
Figure 5-2 Event Management Hierarchy, Realistic Example...........................63
Figure 5-3 Possible Duration of a 1-Tick Alarm Period, Case A.......................75
Figure 5-4 Possible Duration of a 1-Tick Alarm Period, Case B76
Figure 5-5 One-Shot Alarm ...78
Figure 5-6 Cyclic Alarm ...79

x RTXC Kernel User’s Guide, Volume 1

June 21, 2002

Chapter 1: Introduction 1

June 21, 2002

C H A P T E R 1 Introduction

In This Chapter
We introduce the RTXC/ss component of the RTXC RTOS and
describe the contents of this book.

The RTXC Kernel ..2

RTXC Kernel Features .. 3

RTXC/ss Features...4

How to Use This Book ... 5

2 RTXC Kernel User’s Guide, Volume 1

The RTXC Kernel

June 21, 2002

The RTXC Kernel
The RTXC Kernel is the heart of the RTXC RTOS, a multitasking real-
time operating system (RTOS) for the development of embedded
applications. It comes in two variants, the RTXC DSP Kernel with
support for using digital signal processors (DSP), and the RTXC
Quadros Kernel for non-DSP processors.

The RTXC Kernel provides a software framework for real-world, real-
time systems, consisting of two major components, RTXC/ss and
RTXC/ms, each of which can schedule the use of the CPU according
to the demands of the application. The RTXC/ss component features
a single stack model with a low-latency thread scheduler and a small
footprint, making it ideally suited for applications requiring high
frequency interrupt processing, such as in digital signal processing.
The RTXC/ms component provides a multiple independent stack
model for a fully pre-emptive multitasking scheduler with a rich set
of kernel services well suited to deterministic, hard real-time system
requirements.

The RTXC Kernel is highly scalable in that the user may select the
basic framework of either the RTXC/ss component or the RTXC/ms
component alone, or both components combined. It is further
scalable by the selection of various properties within each kernel
object class and the services that operate on those classes. The RTXC
RTOS includes a configuration utility program, RTXCgen, to assist
the user in configuring the kernel with the set of resources and
features most suitable to the needs of the application.

The RTXC RTOS permits the user to develop applications using
assembly language, C, or C++. Each distribution of the RTXC RTOS
is ported to a specific processor and bound to the application source
language, making access to kernel services convenient for the
developer. The RTXC Kernel has an implementation history dating
from 1978, and thus provides a sound foundation for development
of software over a broad range of real-time applications.

The RTXC Kernel consists of a library of functions that provide a rule-
based architecture for the design and implementation of embedded
real-time systems. A set of object classes and the kernel services that
operate on them are the embodiment of the architecture of the RTXC

Chapter 1: Introduction 3

RTXC Kernel Features

June 21, 2002

Kernel. Users gain access to the RTOS by calling various kernel
services through a comprehensive application program interface
(API) to achieve desired system behavior. This API library uses
kernel service names that help make the product easy to learn and
easy to use. The programmer can spend less time dealing with
system matters and more time on developing the application.

The RTXC Kernel software should be used as any other software
library. You do not need to know how the RTXC Kernel operates
internally. Rather, you need to know only which RTXC Kernel service
to use to achieve a desired result. Thus, the RTXC Kernel becomes
much like a large-scale integrated circuit hardware component.

Users of the RTXC RTOS have access to this book and the other
volumes of the RTXC Library to learn more about the product and to
resolve technical issues.

RTXC Kernel Features
The RTXC Kernel features support real-time, multitasking
applications using either RTXC/ss or RTXC/ms, or a combination of
RTXC/ss and RTXC/ms. General features of the RTXC Kernel
include:

Three levels of code and data scalability for optimized
configurations:

Class

Class Properties

Kernel Services

Standard programmer interface in C language on all processors

4 RTXC Kernel User’s Guide, Volume 1

RTXC/ss Features

June 21, 2002

RTXC/ss Features
The RTXC/ss component supports the following features:

Multi-thread processing with selectable scheduling methods:

Preemptive between Levels

Priority within the same Level

Round robin

Static kernel objects:

Levels and Threads

Pipes

Event Sources, Counters, and Alarms

Exceptions

Multiple thread priority levels

Fixed thread priorities within a level

No context saved or restored for threads operating at same level

Pre-emptive scheduling of threads between levels

Single stack for all operations

Low latency for fast processes

Small RAM and ROM usage

Chapter 1: Introduction 5

How to Use This Book

June 21, 2002

How to Use This Book

Note: The RTXC Kernel User’s Guide, Volume 1 contains
information needed by users of both the Single Stack and
the Dual Mode configurations of the RTXC Kernel. If you
purchase the Single Stack configuration of the RTXC Kernel,
you receive only Volume 1 of this book, and you can ignore
references in this text to the RTXC/ms Kernel component.

If you purchase the Dual Mode configuration, you receive
both Volume 1 and Volume 2.

The RTXC Kernel User’s Guide, Volume 1 assumes the reader has
fundamental knowledge about multitasking real-time kernels and
expands on that knowledge by explaining the inputs and outputs of
the RTXC Kernel as a software component of an embedded
application. This book focuses on RTXC/ss, the Single Stack
component of the RTXC Kernel, and includes the following chapters
and appendixes:

Chapter 1, “Introduction,” describes the contents of the volume.

Chapter 2, “Levels and Threads—Meeting Functional
Requirements,” discusses how the RTXC/ss component of the RTXC
Kernel uses levels and threads to meet the functional requirements
of the application.

Chapter 3, “Exceptions—Claiming Interrupt Vectors,” discusses
how the RTXC/ss component of the RTXC Kernel uses exceptions to
prepare for servicing interrupts.

Chapter 4, “Pipes—Buffered Data Movement,” discusses how the
RTXC/ss component of the RTXC Kernel uses pipes to move data
between threads.

Chapter 5, “Event Sources, Counters, and Alarms—Keeping Track of
Events,” discusses how the RTXC/ss component of the RTXC Kernel
uses event sources, counters, and alarms to manage time- and tick-
based operations of the application.

6 RTXC Kernel User’s Guide, Volume 1

How to Use This Book

June 21, 2002

Chapter 2: Levels and Threads—Meeting Functional Requirements 7

June 21, 2002

C H A P T E R 2 Levels and Threads–Meeting

Functional Requirements

In This Chapter
We discuss how the RTXC/ss component uses levels and threads to
meet the functional requirements of the application. We present
level and thread concepts, organizations, and properties. Then we
expand on the policies and present methods of thread scheduling.
Finally, we present a functional overview of the thread management
capabilities of the RTXC/ss component.

Introducing Levels..9
Level Definition..9
Level Organization... 10
Ready Table .. 10
Level Properties ..11
Level Attributes ...11
Number of Static Threads ..11
Number of Dynamic Threads...11
Level Priority .. 12

Introducing Threads... 12
Thread Definition..13
Thread Organization...13
Thread States ... 14
Readying Threads for Execution...15
Thread Properties .. 16
Optional Properties ... 18

Thread Arguments .. 18
Environment Arguments... 19
Thread Gates ...20

Thread Scheduling Protocols .. 21
Round Robin Scheduling ..22
Priority Scheduling ..24

8 RTXC Kernel User’s Guide, Volume 1

June 21, 2002

Thread Contexts ...25
Using Threads ... 26

Thread Definition.. 26
Thread Scheduling.. 26
Using the Thread Argument..27
Using Thread Environment Arguments............................... 28
Using Thread Gates.. 28

Null Thread.. 30

Chapter 2: Levels and Threads—Meeting Functional Requirements 9

Introducing Levels

June 21, 2002

Introducing Levels
Levels are a special class within the design of the RTXC/ss
component. Levels have properties but no associated kernel services
other than for initialization of the class properties. The purpose of
the Levels class is to organize the operation of its child class,
Threads. The architecture of RTXC/ss component is based on a
design philosophy that uses a single stack, permitting a low latency
code execution model based on threads. Threads are more
completely defined later in this chapter.

Levels represent the priorities at which threads execute. An
application based on the RTXC/ss component can employ one or
more levels at which to execute threads. Execution of threads is based
upon a scheduling policy using the priority of each level. Threads
associated with levels that have a high priority execute before threads
at lower priority levels. Within a level, all threads operate at a fixed
priority and cannot preempt one another. However, a thread
operating at one level can preempt another thread operating at a
lower priority level.

The following rule applies:

Rule: In a system using the RTXC/ss component, there must be
at least one level.

Level Definition

During system generation for a system configuration using the
RTXC/ss component, you may define from one to 16 total levels.

A level handle must be within the range of the total number of levels
defined for the application. Where a reference to a level is applicable,
you may refer to it by its handle, which is a LEVEL type datum. There
are two rules applicable to level definition:

Rule: All levels must be statically defined.

Rule: The RTXC Kernel does not support dynamic levels.

10 RTXC Kernel User’s Guide, Volume 1

Introducing Levels

June 21, 2002

Level Organization

A level consists of two main parts: its data structure, called a Level
Control Block (LCB), and a set of pointers to its associated threads.
The level’s handle is the LCB’s index in the LCB array. The RTXC/ss
Scheduler uses the information in the LCB to control the execution
of threads associated with that level. The key element in the LCB is
the Ready Table.

Ready Table

The Ready Table is a single datum that contains one bit for each
thread associated with the level. A thread becomes ready to receive
control of the CPU when application code, an interrupt handling
routine, another thread, or a task, if the RTXC/ms component is
present, schedules its execution. In scheduling the thread, the kernel
sets a bit in the Ready Table corresponding to the thread. A thread’s
bit being set does not necessarily mean that the thread immediately
gains control of the CPU. Other conditions must also be present, as
explained later in this chapter.

Each bit in the Ready Table has an order number that associates it
with a particular thread. The order numbers begin at 1, starting from
the most significant bit, as illustrated in Figure 2-1, and represent
the priorities of the associated threads. Thus, a thread’s execution
priority consists of two parts: its level and its order number.

Figure 2-1. Ready Table Layout

The actual size of the datum used for the Ready Table is a function
of the processor. Depending on the target processor, it size could be
8, 16, 24, or 32 bits.

MSB LSB

Priority

Highest Lowest

Order

Chapter 2: Levels and Threads—Meeting Functional Requirements 11

Introducing Levels

June 21, 2002

Level Properties

Level objects have several properties, all of which you define during
the system configuration process using RTXCgen. Once set, there are
no kernel services available in the RTXC/ss component to modify
these properties under program control. The RTXC Kernel defines a
LEVELPROP properties structure for use during the initialization
process. The members of the structure represent the properties and
have the organization shown in Example 2-1.

Example 2-1. Level Properties Structure

typedef struct
{
 KATTR attributes; /* attributes */
 KCOUNT n_static; /* number of static threads */
 KCOUNT n_dynamic; /* number of dynamic threads */
} LEVELPROP;

Level Attributes

A level has a single value for the attributes property denoting the
method by which the RTXC/ss Scheduler grants control of the CPU
to threads whose corresponding bits in the Ready Table are set to 1.
The value denotes either Priority or Round_Robin scheduling. The
default value is Priority scheduling.

Number of Static Threads

The n_static property specifies the number of statically defined
threads the user has defined for the priority level. The RTXCgen
program automatically determines the value of n_static. An
application using only the RTXC/ss component can employ only
static threads.

Number of Dynamic Threads

The n_dynamic property, which specifies the number of dynamic
threads, applies only if the application configuration includes the
RTXC/ss and RTXC/ms components. Dynamic threads are not
available for use in a system having only the RTXC/ss component.

12 RTXC Kernel User’s Guide, Volume 1

Introducing Threads

June 21, 2002

Only Zone 3 operations using RTXC/ms component services can
create and destroy dynamic threads.

Level Priority

During the system configuration process using RTXCgen, the user
defines each level in the application and implicitly defines the level’s
priority. Unlike all other RTXC Kernel classes where the object’s
handle implies no priority, the handle of a level does. The level’s
handle represents its index in the array of LCBs and the index, a
level’s position in the hierarchy of levels, defines its priority with
respect to thread execution. Levels share the same inverse priority
model as Zones: thread and task priorities decrease as the numerical
value of the priority increases. Therefore, the first level has the
highest priority, the second level has the next lower priority, and so
on.

Note: The handle of a level is equal to its priority. The
handle of a level is equivalent to its index in the array of
LCBs. For example, if three levels exist, their indexes, and
therefore their priorities, are 1, 2, and 3, respectively. The
level with index 1 has the highest priority. Index 2 is the next
highest priority, and so on.

Introducing Threads
In a real-time embedded system, the system designer decomposes
the application’s functional requirements into a suite of functional
entities. In applications based on the RTXC/ss component, these
entities are called threads, a code design and execution technique that
features minimum RAM requirements and minimum system
overhead. The RTXC/ss component provides a simple model for
executing threads, which are workhorse program elements. The
nature of each thread is, of course, application-dependent, and is left
to the imagination of the system designer. Threads implement the
design policies concerning management of the application
processes and solving the application’s functional requirements.

Chapter 2: Levels and Threads—Meeting Functional Requirements 13

Introducing Threads

June 21, 2002

References to the RTXC Kernel in this chapter mean any
configuration of the RTXC Kernel that contains the RTXC/ss
component.

Thread Definition

Each thread is specific to a given level. During system generation,
you may define, for each specified level, the threads that execute at
the priority represented by that level. You may define only static
threads, the number of which must be less than or equal to the size
(in bits) of the Ready Table.

Because the size of the Ready Table governs the maximum number
of threads at a given level, RTXCgen associates each thread with a bit
in the Ready Table for its level. Therefore, the assignment of bits
refers to the thread’s order, as depicted in Figure 2-1 on page 10,
proceeding from the MSB to the LSB of the Ready Table.

A thread handle must be within the range of the total number of
threads defined for all levels in the application. The application
program code refers to a thread by its handle, which is a THREAD type
datum. A thread handle of zero (0) is legal in a kernel service for the
Thread object class and is a shorthand definition for the Current
Thread, which is the thread currently in control of the CPU.

Thread Organization

In the RTXC Kernel, a thread consists of two parts: its program code
and a data structure called a Thread Control Block (ThCB). Each
thread requires a ThCB, and it is the ThCB’s index in the ThCB array
that constitutes the thread’s handle. The RTXC/ss Scheduler controls
the execution of the thread code by managing the data in the ThCB.

The RTXC Kernel treats the code for a thread like a function.
Consequently, threads should be written as a function called by the
RTXC/ss Scheduler and returning to it as well. One difference
between a RTXC thread and a RTXC task is that the task never returns
to its caller.

There is one code model for RTXC threads as shown in Example 2-2
on page 14. It receives two possible arguments in the calling
sequence: its argument and a pointer to its environment arguments.

14 RTXC Kernel User’s Guide, Volume 1

Introducing Threads

June 21, 2002

These arguments and the conditions for their use are more fully
explained later in this chapter.

After gaining control of the CPU, the thread performs its required
operations and when finished, returns to the RTXC/ss Scheduler.

Example 2-2. Thread Code Model

void threadname (thread argument, environment argument pointer)
{
 ... Data declarations
 ... Thread initialization

 ... Thread operations

 return;
}

Thread States

The RTXC Kernel maintains a state for each thread in an application.
A thread is always in one of the following states:

During startup, the kernel initializes all threads to the Not Ready
state and also receives the definition of each static thread. Later, at
the request of an interrupt handling routine, another thread, or a
task (if the RTXC/ms component is present), the kernel schedules a
thread’s execution using the XX_ScheduleThread or
XX_ScheduleThreadArg kernel services. At that point, the
requested thread’s state becomes Ready. In the Ready state, there are
no impediments to the thread’s execution, other than gaining control
of the CPU.

When a thread gains control of the CPU, the RTXC/ss Scheduler
changes the thread’s state to Running. When the thread returns

Ready The thread is available for execution as evidenced by its
order bit in the appropriate level’s Ready Table being set to
1.

Not Ready The thread is not scheduled and is not capable of receiving
CPU control.

Running The thread has CPU control.

Chapter 2: Levels and Threads—Meeting Functional Requirements 15

Introducing Threads

June 21, 2002

control of the CPU to the RTXC/ss Scheduler, the thread’s state
becomes Not Ready unless it has been rescheduled by an interrupt
handling routine or a thread executing at a higher priority level.

Readying Threads for Execution

The key to running threads in the RTXC/ss component is the set of
Ready Tables for all defined levels. Together they assume the
characteristics of a two-dimensional array where the rows represent
levels (priority) and the columns are bits (order) representing the
threads assigned to each level. Figure 2-2 depicts such an array using
four levels. Level 1 is the highest priority level.

Figure 2-2. Ready Table Array for Four Levels

The Ready Tables, taken as an array, compose an instantaneous,
ordered representation of threads that are ready to get control of the
CPU. Threads become Ready at varying rates and move into the
Ready Tables as they become scheduled. Consequently, the Ready
Tables constantly change as the RTXC/ss Scheduler gives CPU
control to Ready threads while threads at higher priority levels or
exception handling routines schedule more threads. The rules
regarding levels are:

Rule: The highest priority level that has a thread in a ready state
becomes the Current Level.

Rule: The scheduling policy of the level determines which thread
receives control of the CPU at the Current Level.

MSB LSB

Priority

Highest Lowest

Order

L1

L3

L2

L4

16 RTXC Kernel User’s Guide, Volume 1

Introducing Threads

June 21, 2002

The RTXC/ss Scheduler must determine which ready thread is the
next one to receive control of the CPU. To do so, it must first
determine the highest priority level that has threads in a Ready state.
When it determines the level, it selects the thread to run next in
accordance with the scheduling policy of the level. For information
about thread scheduling policies, see “Thread Scheduling Protocols”
on page 21. After selecting the appropriate thread, the RTXC/ss
Scheduler changes the thread’s state to Running and gives it control
of the CPU. The rules for thread execution are:

Rule: The Current Thread is the thread in control of the CPU.

Rule: The Current Thread must run to completion.

Rule: The Current Thread cannot suspend its execution and
return to the point of suspension.

Rule: The Current Thread must execute using the common stack.

Rule: The Current Thread has no context on entry.

Rule: The Current Thread leaves no context upon exit.

Rule: Threads at a lower priority level will not run until all threads
at higher priority levels are in a Not Ready state.

Thread Properties

Each thread in an application serves a defined purpose represented
by the thread’s code and properties. The Thread object class has a set
of properties and individual threads have properties. Together, those
properties define the information the RTXC Kernel needs to manage
threads.

Through RTXCgen, the developer defines thread properties for static
threads. The caller, another thread or a task, can define a thread’s
properties through the XX_DefThreadProp service, where XX_ is
either TS_ (Zone 2) or KS_ (Zone 3). The kernel service passes the
values of the thread’s properties in a THREADPROP structure to define
the thread. When a thread retrieves information about its own or
another thread’s properties, the XX_GetThreadProp service
returns the information in a THREADPROP structure. Example 2-3 on
page 17 shows the organization of the THREADPROP structure.

Chapter 2: Levels and Threads—Meeting Functional Requirements 17

Introducing Threads

June 21, 2002

Note: The XX_ in the service name indicates that the
service has variants for use in more than one operating
zone. Depending on the service, XX_ may stand for two or
more of the following actual prefixes: IS_ (Zone 1), TS_
(Zone 2), or KS_ (Zone 3).

Example 2-3. Thread Properties Structure

typedef struct
{
 KATTR attributes /* thread attributes /*
 TLEVEL level /* thread base level */
 TORDER order /* thread order (priority) */
 void (*threadentry)(void *, void *); /* entry point */
} THREADPROP;

The following rule about thread properties applies:

Rule: The definition of a thread’s properties may only occur when
the thread’s state is Not_Ready.

Violating the preceding rule may produce unpredictable results. It is
permissible, however, for a thread to read its own properties or
modify existing properties through the use of RTXC Kernel services.

attributes Contains attributes of the thread.

level The level at which the thread runs, that is to say, its
priority level. The level of a thread as defined in the
THREADPROP structure is also called its base level.

order Corresponds to the bit number in the level’s Ready
Table. If the scheduling policy of the level is Priority,
the order element of THREADPROP also represents the
thread’s priority with respect to other threads at the
same level. If the level’s scheduling policy is
Round_Robin, there is no priority implied by the value
of the order element.

threadentry A pointer to the thread’s entry point. The address can be
anywhere in the User Code Space.

18 RTXC Kernel User’s Guide, Volume 1

Introducing Threads

June 21, 2002

Optional Properties

The RTXC Kernel supports optional properties for the Thread object
class. Using the system configuration utility, RTXCgen, the user
selects the set of optional Thread class properties that suits the needs
of the application. Selection of these properties controls how the
RTXC Kernel configures the Thread Control Block and the code that
supports the options. When selected, they permit the developer to
make use of the thread properties through the use of specific kernel
services.

The optional Thread class properties are:

Thread Arguments

Environment Arguments

Thread Gates

To change the way the RTXC Kernel treats threads with respect to
these optional properties, the user must use RTXCgen to change the
optional property selection state and then recompile the RTXC code.

Thread Arguments

The Thread Arguments property controls the first argument in a
thread’s calling sequence. The thread’s argument can be a scalar or a
pointer as determined by the user. If the optional Thread Arguments
property is enabled through RTXCgen, calls to either the
XX_DefThreadArg or XX_ScheduleThreadArg kernel
services control the value of a thread’s argument. If the Thread
Arguments property is disabled, the RTXC/ss Scheduler always
treats the first calling parameter to every thread as a NULL pointer
((void *)0).

If the optional Thread Arguments property is enabled, the RTXC/ss
Scheduler passes the thread’s argument (or a pointer to the thread’s
argument) as it was defined by the last use of the
XX_DefThreadArg or XX_ScheduleThreadArg kernel service
for that thread. Until a code entity invokes either of these services,
the RTXC Kernel maintains that thread’s argument as a NULL
pointer.

Chapter 2: Levels and Threads—Meeting Functional Requirements 19

Introducing Threads

June 21, 2002

Example 2-4 shows how a thread receives its thread argument as a
pointer to a structure. The example uses data from the structure as
input into a procedure. In this example, the thread does not use
environment arguments and the calling parameter is ignored.

Example 2-4. Using Thread Arguments

#define SELF (THREAD)0

struct muxdata
 {
 int *dataset; /* pointer to dataset */
 int setsize; /* amount of data in dataset */
 };

void threadname (struct muxdata *args, (void *)0)
{
... Data declarations

 ... Thread operations
 /* pass pointer to dataset and dataset size to number */
 /* crunching function */

 crunchnumbers (args->dataset, args->setsize);

 return;
}

Environment Arguments

In RTXCgen, the optional Thread class Environment Arguments
property controls the ability of threads to use environment
arguments. If the user enables the property through RTXCgen, the
RTXC/ss Scheduler passes the existing value of the thread’s
environment arguments pointer to the thread whenever the thread
gains control of the CPU.

The pointer to the thread’s environment arguments is the second
parameter in the calling sequence to a thread. The default value of
the pointer in the thread’s ThCB is a NULL pointer ((void *)0) and
the RTXC Kernel maintains it as such until it is otherwise defined by
a call to the XX_DefThreadEnvArg kernel service.

Environment arguments exist to permit multiple threads to share a
common body of code or as a place for a thread to keep intermediate

20 RTXC Kernel User’s Guide, Volume 1

Introducing Threads

June 21, 2002

results between execution cycles. When threads share a common
code body, it is necessary to distinguish one from another. Each
thread using the common code can specify and make use of a
separate structure that contains information the thread needs to
define its runtime environment.

An environment arguments structure can also be of value to the
thread that does not share code. Quite often, the thread may need to
know the value of some variable created or modified during a
previous cycle of the thread, the value of a state variable, or the port
identity for some input or output operation. The RTXC Kernel
imposes no restriction on the form or content of the environment
arguments. The RTXC Kernel only uses pointers to the structure;
therefore, only the defining thread and the using thread know its
organization. The following rule applies:

Rule: The environment argument structure for a thread can be
located anywhere in the User RAM space.

The RTXC Kernel provides the XX_DefThreadEnvArg service,
where XX_ is the zonal prefix TS_ or KS_, to define the address of the
structure to the object thread. The XX_GetThreadEnvArg service,
where XX_ is the zonal prefix TS_ or KS_, returns the address of the
structure.

Example 2-5 on page 21 shows how to access members of an
environment arguments structure. The example uses the port and
channel numbers in the thread’s environment argument structure to
acquire the channel status. While the channel status is not IDLE, the
thread does some operations and then terminates when the channel
status becomes IDLE.

Thread Gates

The RTXC Kernel allows the definition of an optional set of values
collectively called the thread gate. When enabled by the inclusion of
this scalable property during system configuration using RTXCgen,
the ThCB is extended to contain two additional variables: the Thread
Gate and the Thread Gate Preset.

Chapter 2: Levels and Threads—Meeting Functional Requirements 21

Introducing Threads

June 21, 2002

Example 2-5. Accessing Thread Environment Arguments Structure

struct myargs
 {
 int port; /* port number */
 int chnl; / channel number */
 };

void threadname ((void *)0, struct myargs *args)
{
... Data declarations

 int chnl_stat; /* channel status /

 ... Thread operations
 /* pointer to environment arguments structure passed in as call */
 /* parameter to the thread. Second call parameter is NULL. */

 while ((chnl_stat = getchnlstat (args->port, args->chnl))
 != IDLE)
 {
 ...do something
 }

 return;
}

The purpose of a thread gate is to establish conditions for scheduling
a thread. When used, the thread gate must assume a particular value
before the RTXC/ss Scheduler can make the thread ready. The thread
gate preset serves as a value to use in atomically resetting the value
of the thread gate as a result of certain operations on the thread gate.
Kernel services exist that perform operations on the thread gate and
thread gate preset values for program entities in Zones 1, 2 and 3.

For more information about using thread gates, see “Using Thread
Gates” on page 28.

Thread Scheduling Protocols

The RTXC/ss component accomplishes the policy of multitasking by
the method it uses to schedule threads for operation. As previously
stated, the RTXC basic rules do not enforce any specific thread
scheduling protocol. They only state general rules regarding
preemption, CPU control, and Current Thread definition.

22 RTXC Kernel User’s Guide, Volume 1

Introducing Threads

June 21, 2002

The thread scheduling methods used by the RTXC/ss Scheduler are
specific to the level at which a thread runs. During system
configuration, you specify a scheduling policy for each level. The
RTXC Kernel supports the following methods (or protocols) for
scheduling threads within an overall multitasking policy:

Round robin

Priority

Some general rules apply to thread scheduling regardless of the
scheduling policy in use at the Current Level.

Rule: A new thread cannot be granted control of the CPU while
another thread at the same level is running.

Rule: Once in control of the CPU, the Current Thread must run to
completion

Rule: A thread that becomes ready at a level with higher priority
than that of the Current Level preempts the Current Thread and
gains control of the CPU, becoming the new Current Thread.

Rule: A preempted thread eventually becomes the Current Thread
again and resumes operation at the point where it was
preempted.

Round Robin Scheduling

Round robin scheduling is probably the oldest and simplest of the
multitasking methods. Threads receive control of the CPU from the
RTXC/ss Scheduler beginning at the order number of the Current
Thread and going to the order number of the next ready thread in the
same Ready Table. To illustrate, consider Figure 2-3 on page 23 in
which threads A, B, D and G have descending order values and are
associated with the bits of the Ready Table pointed to by the blocks
containing their names.

Chapter 2: Levels and Threads—Meeting Functional Requirements 23

Introducing Threads

June 21, 2002

Figure 2-3. Thread Order for Scheduling Examples

In the first round robin example, all four threads are ready. The
RTXC/ss Scheduler gives control of the CPU to Thread A, then B,
then D and finally, thread G, assuming no other thread was
scheduled in the interim. Figure 2-4 demonstrates this time
sequence of events.

Figure 2-4. Round Robin Time Sequence for First Example

But consider a second example where only threads B and G are ready.
The RTXC/ss Scheduler first gives control to thread B. While thread
B is running, an interrupt handling routine schedules thread A,
making it ready. Even though thread A has a higher order number,
the next thread to get CPU control will be thread G because it is the
next ready thread whose order number is lower than the Current
Thread, B. Figure 2-5 on page 24 shows the time sequence for the
events.

MSB LSB

Order

A B D G

Thread A

Thread B

Thread D

Thread G

Ready

Running

Time

24 RTXC Kernel User’s Guide, Volume 1

Introducing Threads

June 21, 2002

Figure 2-5. Round Robin Time Sequence for Second Example

Figure 2-5 also demonstrates what happens when there are no more
Ready threads in the Ready Table whose order number follows that
of the Current Thread. In the example, no Ready thread follows
thread G. However, thread A is Ready; so the RTXC/ss Scheduler
restarts the round robin at the MSB of the Ready Table, the order
number corresponding to thread A.

Priority Scheduling

For a level using the priority scheduling policy, the RTXC/ss
Scheduler grants control of the CPU to threads within the level
according to their order number. The main rule of priority
scheduling applies:

Rule: Higher order numbered threads run before those of lower
order number within the same level.

Figure 2-6 on page 25 depicts the priority scheduled time sequence
of thread executions of the four threads from the second example.
Threads A, B, D and G, are being scheduled by interrupt handling
routines. The time sequence begins with thread B as the Current
Thread.

Thread A

Thread B

Thread D

Thread G

Ready

Running

Time

Not-Ready

Chapter 2: Levels and Threads—Meeting Functional Requirements 25

Introducing Threads

June 21, 2002

Figure 2-6. Priority Time Sequence for Second Example

From the time sequence, it is easy to see the application of the
general rules of thread scheduling at work. Thread B begins the
sequence. Thread A becomes ready shortly after while B is still
running. Notice there is no preemption. Also note that immediately
after B terminates, thread A becomes Current Thread even though
thread G was ready before thread A. Thread A is selected instead of
thread G because thread A has a higher order number (priority) than
thread G (see Figure 2-3 on page 23) within the priority level. Thread
G eventually gets CPU control after A completes. While G is
running, thread A and D are scheduled and become ready. Neither
thread A nor D can get control of the CPU yet. When thread G
completes, thread A runs again. During the execution of thread A,
thread B becomes ready. When A completes, thread B runs followed
by thread D, even though D has been waiting in a ready state since
thread G last executed. And so on.

Thread Contexts

A thread has no context such as that for a task. Because of the nature
of the RTXC/ss component’s single stack design, a thread cannot
block or wait for some other process to cause it to continue.
Consequently, a thread receives control of the CPU at its entry point

Thread A

Thread B

Thread D

Thread G

Ready

Running

Time

Not-Ready

26 RTXC Kernel User’s Guide, Volume 1

Introducing Threads

June 21, 2002

but without any defined processor context. It is the responsibility of
the thread to establish on the system stack any local variables it needs
during its execution cycle. Any information needed from one cycle
to the next is best maintained either globally or in a structure defined
as the thread’s environment arguments.

On completion of its execution cycle, the thread must clean up any
local variables it put on the system stack before it returns to the
RTXC/ss Scheduler. There is no processor context relative to the
thread that is saved upon completion of the thread’s execution cycle.

Using Threads

The RTXC Kernel provides a large complement of services for use in
managing threads. Some of them have been mentioned in previous
paragraphs in this chapter. This manual does not try to explain all of
them because most of them have functionality that is self-evident.
However, the following topics deserve special mention.

Thread Definition

Before a thread can execute, the application must define it to the
system along with all of its properties. Use the
XX_DefThreadProp service to define a thread’s properties before
using it. The RTXC Kernel supports static threads and manages them
through a Thread Control Block (ThCB). RTXC Kernel services
reference a thread by its handle, which is a THREAD type datum.

Thread execution must follow this rule:

Rule: A thread can only begin execution at its entry address.

Thread Scheduling

When a process schedules a thread, the thread only has its state
changed to Ready by virtue of its order bit set in the Ready Table of
its assigned level. The thread does not necessarily begin its execution
cycle at that moment. Figure 2-6 on page 25 depicts the difference
between a thread being scheduled (its Ready state), and when it
receives control of the CPU (its Running state). The thread does not
receive control of the CPU until the RTXC/ss Scheduler determines

Chapter 2: Levels and Threads—Meeting Functional Requirements 27

Introducing Threads

June 21, 2002

that it has met all conditions necessary to make it the Current Thread
according to the scheduling policy for its assigned level.

Using the Thread Argument

After the definition of the thread’s properties, an interrupt handling
routine, another thread, or a task may use it in a kernel service. The
XX_ScheduleThread or XX_ScheduleThreadArg services
make the thread ready to run by setting the bit corresponding to the
thread’s order number in the Ready Table of its assigned level. The
XX_ prefix for those services represents the zonal prefixes IS_ (Zone
1), TS_ (Zone 2), or KS_ (Zone 3). The difference between the two
services is the use of the thread’s optional Argument property. That
property is defined as a void * so that it can be a scalar datum or a
pointer. The Argument property allows the scheduling program to
pass data easily to the thread.

The value passed by the XX_ScheduleThreadArg service is
maintained in the thread’s ThCB until such time as the thread
becomes the Current Thread. At that time, the RTXC/ss Scheduler
passes the value to the thread as the first of two arguments in
accordance with the prototype for a thread.

Warning: If another XX_ScheduleThreadArg service
executes before the thread receives CPU control as the result
of a previous XX_ScheduleThreadArg request, the value
of the first argument is overwritten. This condition may lead
to unpredictable results.

In some applications, it is not necessary to schedule a thread with an
argument each time the thread needs to execute. If so, the designer
has two choices. One is to use no argument at all. The second is to
define the argument one time using the XX_DefThreadArg
kernel service. That service causes the defined argument to be
maintained in the thread’s ThCB. From there, the RTXC/ss
Scheduler uses the argument repeatedly when making the thread
the Current Thread, until the argument needs to be redefined. In
both cases where the argument is not defined at the time of
scheduling, the designer uses the XX_ScheduleThread kernel

28 RTXC Kernel User’s Guide, Volume 1

Introducing Threads

June 21, 2002

service to make the thread ready. The RTXC/ss Scheduler passes the
thread the argument as previously defined, or a NULL pointer as the
case may be, when the thread receives control of the CPU.

Using Thread Environment Arguments

When the RTXC/ss Scheduler passes control to a thread, the second
parameter in the calling sequence is a pointer to the thread’s
environment arguments or a NULL pointer. The thread’s
environment arguments is a structure containing information that
this invocation of the thread needs to use as it executes. Typically, use
of environment structures accompanies the use of shared code
entities, with the values of the various elements providing the
information about the specific environment of the thread.
Example 2-5 on page 21 shows an example of how to use
environment arguments for a thread.

Using Thread Gates

Thread gates permit the designer to achieve very sophisticated
control over the scheduling of a thread. The thread gate is simply a
numeric, unsigned value that the thread, as well as other processes,
can operate on to achieve a desired behavior of the thread. There are
four ways in which to operate on a thread gate:

1. If the value of the thread gate is initially zero, the
XX_ORThreadGateBits service logically ORs one or more
bits into the thread gate, making the value greater than zero and
simultaneously causing the thread state to become Ready. The
value of the thread gate retains the result of the operation,
allowing the thread code to read it and interpret the meaning
assigned to the bits that were set.

2. If the value of the thread gate is initially zero, the
XX_IncrThreadGate kernel service increments the thread
gate, making the value greater than zero and simultaneously
causing the thread state to become Ready. The value of the thread
gate retains the result of the operation, allowing the thread code
to read it and use it as a counter of the number of times the
thread was scheduled.

Chapter 2: Levels and Threads—Meeting Functional Requirements 29

Introducing Threads

June 21, 2002

3. If the value of the thread gate is initially non-zero, the
XX_DecrThreadGate kernel service decrements the thread
gate by one. If the resulting value of the thread gate is zero, the
thread’s state immediately becomes Ready and the value of the
thread gate is simultaneously changed to the value of the thread
gate preset. Use of this method allows a thread to be scheduled
only when a certain number of events has occurred.

4. If the value of the thread gate is initially non-zero, the
XX_ClearThreadGateBits kernel changes the value by
clearing one or more bits in it, reducing the value according to
the value of the bits being cleared. If the resulting value of the
thread gate is zero, the thread’s state immediately becomes
Ready and the value of the thread gate is simultaneously changed
to the value of the thread gate preset. Use of this method allows
a thread to be scheduled only when a set of specific events has
occurred.

Methods 1 and 2, in which the thread gate value changes from zero
to non-zero, schedule the associated thread with the new thread gate
value. When the thread executes, it can read the thread gate value to
determine the circumstances that caused the execution cycle. Two
kernel services read the thread gate value.

The XX_GetThreadGate kernel service reads the thread gate
value without modifying it. This service is an information retrieval
tool only and can be called by any thread, including the Current
Thread, as well as by tasks from Zone 3.

The second kernel service, TS_GetThreadGateLoadPreset, is
available only to the Current Thread. This service returns the current
value of the thread gate and also resets the thread gate value to the
value of the thread gate preset property. Thus, if other processes
perform additional thread gate operations on the thread between the
time it is scheduled and the time it reads the thread gate value, it can
detect those operations and take appropriate action.

30 RTXC Kernel User’s Guide, Volume 1

Introducing Threads

June 21, 2002

Null Thread

The Null Thread is a special process in the RTXC/ss component. It is
not an actual thread associated with a level because it only runs when
all threads on all levels are in a Not_Ready state. It operates logically
in Zone 3 and must use the system stack for any local variables. In a
system using only the RTXC/ss component, the Null Thread is user-
defined. It may be a simple spin loop or it can perform more complex
operations particular to the application.

When it begins running, the Null Thread stays in control of the CPU
until it or an interrupt handling routine schedules a thread. Because
any such thread will, by definition, be of higher priority than the Null
Thread, the RTXC/ss Scheduler preempts the Null Thread and gives
control of the CPU to the higher priority thread. When the RTXC/ss
Scheduler once again grants CPU control to the Null Thread, it
continues from the point of its preemption.

If the system includes both the RTXC/ss and RTXC/ms components,
the Null Thread functions are assumed by the RTXC/ms component,
providing a very powerful tool to perform Zone 3 operations.

Chapter 3: Exceptions—Claiming Interrupt Vectors 31

June 21, 2002

C H A P T E R 3 Exceptions–Claiming Interrupt

Vectors

In This Chapter
We discuss how the RTXC Kernel handles interrupts through the
Exception object class. We first present the basic principles, rules,
and organization of Exceptions and how the kernel uses them to
prepare for servicing interrupts. Then we present some general
usage concepts and more detailed information on Exceptions and
interrupt servicing.

Introducing Exceptions .. 32

Exception Definition... 33

Exception Properties .. 33
Exception Attributes .. 34
Priority Level .. 34
Interrupt Vector ... 34
ISR Prologue Address .. 35

Exception Vectors... 35

32 RTXC Kernel User’s Guide, Volume 1

Introducing Exceptions

June 21, 2002

Introducing Exceptions
An embedded system usually has a relationship with an external
process that it may be monitoring or controlling. The external
process commonly requires servicing, sometimes at varying rates or
periods. Devices connected to or associated with the process can
make demands upon the system to take some action with respect to
the process. These demands take the form of exceptions to the
normal flow of processing. For each such exception or interrupt
source, there may be a dedicated portion of code called an interrupt
service routine (ISR) required to handle the demand.

The RTXC Kernel provides a generalized interrupt service scheme
using the Exception object class. An exception object specifies the
connection between an interrupt source and the application code
that services it. When an interrupt or exception occurs, the RTXC
Kernel uses that connection to transfer control from the interrupted
process to the interrupt servicing procedure specific to the particular
device causing the interrupt.

This chapter deals only with how to use the RTXC Kernel to claim
interrupt vectors to establish the relationship between the exception
source and the code that processes the exception request.

The exception object associated with each interrupt contains
properties that direct the transfer of CPU control to the associated
interrupt service routine. The exception properties do not dictate the
technique of servicing the associated interrupt or whether the
interrupt is even known to or processed by the RTXC Kernel. The
user must make that specification by the nature of the interrupt
service code. The following rule applies to all interrupts falling under
control of the RTXC Kernel:

Rule: Every interrupt service routine defined or controlled to any
degree by the Kernel must have an associated exception kernel
object.

An exception kernel object contains only data that represents the
defined properties of the exception. The main purpose for the
Exception as a class is that it promotes the possibility of having
device drivers that are loadable at runtime by permitting the

Chapter 3: Exceptions—Claiming Interrupt Vectors 33

Exception Definition

June 21, 2002

interrupt vectors associated with the devices to be claimed while the
system is in operation. There are few RTXC Kernel services
associated with the Exception class. Except for services for specifying
the properties of an exception, the services in this class are primarily
associated with the use of dynamic exceptions.

As with all RTXC objects, exception kernel objects must reside in
RAM.

Exception Definition
The kernel refers to exceptions by their handle, which is an EXCPTN
type value. An exception handle must be within the range of the total
number of exceptions defined for the application. During system
generation, RTXCgen supports any combination of static and
dynamic exceptions up to a total dependent on the size of a datum of
the EXCPTN type.

There is no difference between the handle of a static exception and a
dynamic exception. An exception handle of zero (0) is illegal if used
in a kernel service for the exception object class.

Exception Properties
The Exception has several properties that determine the path of
interrupt processing. The RTXC Kernel defines an EXCPTNPROP
structure for use in claiming a vector for the application. The
members of the EXCPTNPROP property structure represent the
properties to which the developer has direct access. The
EXCPTNPROP structure is organized as shown in Example 3-1.

Example 3-1. Exception Properties Structure

typedef struct
{
 KATTR attributes; /* reserved for system use */
 unsigned char level; /* interrupt level */
 unsigned char vector; /* vector # */
 void (*handler)(void); /* address of interrupt service prologue */
} EXCPTNPROP;

34 RTXC Kernel User’s Guide, Volume 1

Exception Properties

June 21, 2002

The XX_DefExceptionProp service defines the properties of an
exception using the values for the elements in the EXCPTNPROP
structure. The XX_GetExceptionProp service, available only in
Zone 2 and 3, reads the properties of a given exception and puts the
property values into an EXCPTNPROP structure.

Exception Attributes

The attributes property of the exception object is reserved for internal
system use.

Priority Level

The value of the exception level property represents the hardware
interrupt priority level (IPL) at which the processor recognizes the
interrupt request and begins interrupt processing. This property
may not apply to all processors using the RTXC Kernel. Consult the
target processor’s reference manual.

Interrupt Vector

The kernel associates each exception with an interrupt vector
location in memory. The vector property contains the vector number,
which is an index into the processor’s vector table. Depending on the
processor, the vector may contain the address of the prologue of the
interrupt servicing code or a branch or jump to the prologue. The
RTXC Kernel permits all interrupt vectors to be resident in either
RAM or ROM. The user makes the choice of interrupt vector
memory type during system configuration. That choice determines
how the RTXC Kernel claims interrupt vectors.

The use of RAM or ROM vectors has implications that are dependent
on the processor. Consult the Binding Manual for the target
processor for specific information on vector setup. One rule applies
to vector claiming due to the way different processors treat interrupt
vectors:

Rule: If a user writes a routine to claim an interrupt vector, it must
match the method the Kernel uses.

Chapter 3: Exceptions—Claiming Interrupt Vectors 35

Exception Vectors

June 21, 2002

ISR Prologue Address

The handler property specifies the beginning memory address of the
prologue segment of the interrupt service routine.

The prologue begins an ISR by saving the interrupted context of the
processor to the extent the ISR requires.

Exception Vectors
The principal use of the Exception class is to provide a way of
associating an interrupt vector with code that performs the interrupt
servicing. A secondary use is to allow a designer to employ dynamic
exceptions that associate a device with an interrupt vector at runtime,
making it possible to have device drivers that the system can load
dynamically.

There are no design or specific use methods for the RTXC Exception
class because the exception object is merely an associative object.
The details about the code in interrupt servicing routines is fully
covered in the RTXC Kernel I/O and Device Driver Development Guide.

However, the user should understand the handling of vectors so as
to define an exception properly.

The RTXC Kernel allows the placement of interrupt vectors in either
RAM or ROM. The developer makes the decision where to place
them during system generation as a configuration choice. The
XX_DefExceptionProp service not only associates the exception
with a particular vector but also sets up a pointer to the exception’s
interrupt servicing routine.

When using RAM vectors, all vectors are in an unknown state with
undefined content at the time of system reset. At some time, the
application code uses XX_DefExceptionProp to make the
necessary exception property definitions. The exception definition
procedure includes establishing a direct reference to the beginning
of the exception’s interrupt processing code, usually considered as
the beginning of the prologue. RAM vectors are generally the most
efficient in that the processor usually does not execute any extra
instructions to get to the prologue. Some processors, however, do not

36 RTXC Kernel User’s Guide, Volume 1

Exception Vectors

June 21, 2002

treat the vector content as an address of the prologue but rather as a
jump, or other branch control instruction, to the prologue. To
determine which method is appropriate, you should refer to your
processor’s reference manual. Refer to the Binding Manual for
specific information about RAM vectors for the target processor.

The RTXC Kernel also supports the use of ROM-based interrupt
vectors. ROM vectors require the user to set the content of interrupt
vectors to be a direct or indirect reference to the interrupt service
prologue in the manner described for the particular processor. With
the vector in ROM, the XX_DefExceptionProp service cannot
change the contents of the vector. ROM vectors do not cause any
increase in interrupt latency compared to RAM vectors.

Chapter 4: Pipes—Buffered Data Movement 37

June 21, 2002

C H A P T E R 4 Pipes–Buffered Data Movement

In This Chapter
We discuss the use of pipes as one of three data movement methods
supported by the RTXC Kernel. We first present the basic principles,
rules and organization of pipes. Then, to help you understand how
to use this object class, we present some general usage concepts
supported by extensive examples.

Introducing Pipes ... 38

Pipe Definition.. 39

Pipe Organization... 39

Pipe Properties .. 40
Pipe Attributes .. 40
Number of Buffers ... 41
Maximum Buffer Size .. 41
Address of Pipe .. 41
Pointer to Full Buffer List .. 41
Pointer to Free Buffer List ... 41
Pointer to Buffer Size List .. 43

Pipe States .. 43

Optional Properties .. 43

Using Pipes... 43
Producer Operations ...44
Consumer Operations ...49
Jamming Data into a Pipe ..51
Pipe Actions and Conditions ... 52

38 RTXC Kernel User’s Guide, Volume 1

Introducing Pipes

June 21, 2002

Introducing Pipes
The RTXC Kernel provides a method of moving data between
program entities executing in different zones. The Pipe object class
allows a zone 1 interrupt handler to pipe data to a thread or task,
running at zones 2 and 3, respectively. A thread in zone 2 can pipe
data to another thread, a task, or an interrupt handler. A zone 3 task
can pipe data to another task, a thread or an interrupt handler.
Therefore, pipes serve as a medium of data transfer that can operate
in both the RTXC/ss and RTXC/ms components.

A pipe is an intervening object providing a standard interface
between a producer and a consumer. Conceptually, a pipe is a pair of
circular lists, one that holds empty buffers and one that contains full
buffers. The producer and consumer may each be an interrupt
handler, a thread, or a task. The producer puts data into the pipe
using a buffer and the consumer gets it from the pipe as a buffer.
Pipes are useful for handling such operations as stream input/
output or other type of operations where data buffering is useful.

In an application, a pipe is generally employed with a single
producer and a single consumer. However, the RTXC pipe model
allows more than one task to insert data into a pipe (multiple
producers) and more than one task to remove data from a pipe
(multiple consumers). This capability leads to the following rule:

Rule: Any thread or task may put data into or get data from any
pipe.

By definition, all pipes use a buffer allocation model where the pipe
content represents the chronological order of buffer entry into and
extraction from the pipe. However, there are RTXC Kernel services
that permit last-in-first-out entries and extractions when necessary.
Like queues, there is no priority to the entries into a pipe.

Figure 4-1 on page 39 shows the four basic services the RTXC Kernel
provides to circulate empty and full buffers through the pipe. No
kernel services exist for the purpose of moving data into or out of a
buffer. Copying of data into an allocated buffer as well as accessing
data in a full buffer is the responsibility of the producer and
consumer application programs, respectively. Additional RTXC

Chapter 4: Pipes—Buffered Data Movement 39

Pipe Definition

June 21, 2002

Kernel services provide combinational variants of the basic four pipe
operations.

Figure 4-1. Basic Pipe Operations

Pipe Definition
Pipe handles are PIPE type numerical values. You can define, during
system generation, any combination of static and dynamic pipes up
to a total number dependent on the capacity of a datum of the PIPE
type. You also define the sizes of each static pipe at that time.

A pipe handle must be within the range of the total number of pipes
defined for the application. There is no difference between the
handle of a static pipe and the handle of a dynamic pipe. A pipe
handle of zero (0) is illegal if used in a kernel service for the Pipe
object class.

Pipe Organization
A pipe has two parts: the Pipe Control Block (PiCB) and the set of
data buffers it controls, both of which must reside in RAM. The PiCB
must reside in System RAM. It contains information the RTXC
Kernel services use to move buffers into and out of the pipe correctly.
The set of pipe buffers must be located in User RAM.

Producer

Pipe

Consumer

Put Full

Get Full Put Empty

Get Empty

40 RTXC Kernel User’s Guide, Volume 1

Pipe Properties

June 21, 2002

Pipe Properties
RTXC pipes have several properties that can be defined and accessed
by the developer. The RTXC Kernel defines a PIPEPROP properties
structure for use in operations involving pipe properties. The
members of the pipe property structure represent the properties to
which the developer has direct access. The PIPEPROP structure has
the organization shown in Example 4-1.

Example 4-1. Pipe Properties Structure

typedef struct
{
 KATTR attributes;
 KCOUNT numbufs; /* number of buffers managed by pipe */
 ksize_t bufsize; /* max useful size of buffer */
 void * base;
 void ** fullbase; /* pointer to address of full buffer list */
 void ** freebase; /* pointer to address of free buffer list */
 int * sizebase; /* pointer to list of full buffer sizes; *
} PIPEPROP;

The XX_DefPipeProp service defines the properties of a pipe
using values for the elements in the PIPEPROP structure. The
XX_GetPipeProp service returns a pointer to the PIPEPROP
structure of a given pipe.

The following rules apply to pipe properties:

Rule: A pipe must be defined with a maximum buffer size property
(bufsize) that is greater than zero.

Rule: A pipe must be defined with a number of buffers property
(numbuf) that is greater than zero.

Rule: A pipe must be defined with non-NULL pointers for the
fullbase, freebase, and sizebase list pointers.

Pipe Attributes

Use of the pipe attribute property is currently restricted to and
reserved for internal use by the RTXC Kernel. Future extensions to
the RTXC Kernel will make use of this property and will be user-
accessible.

Chapter 4: Pipes—Buffered Data Movement 41

Pipe Properties

June 21, 2002

Number of Buffers

The numbuf property defines the number of buffers the pipe is to
manage.

Maximum Buffer Size

The bufsize property defines the maximum useful size of a buffer in
the pipe. The user should ensure that all buffers managed by the
pipe have a size greater than or equal to the value of bufsize. Proper
specification of this property allows the use of buffers of unequal size
so long as each meets or exceeds this specification.

Address of Pipe

Each pipe requires a pointer, base, to the User RAM area used as the
body of the pipe. During system generation, the user can specify
whether the kernel is to create the defined number of buffers or if the
application code is to do so. For static pipes defined as being
automatically created, the linker assigns the area for the pipe body
and makes the value of base non-zero. The product of numbuf times
bufsize defines the amount of User RAM necessary to hold the
buffers for the pipe. If the user wishes to define the buffers at
runtime, the RTXCgen program defines base as a NULL pointer. For
dynamic pipes, the application determines and defines the pipe body
area and its address during system operation.

Pointer to Full Buffer List

Each pipe requires a pointer, fullbase, to the User RAM area used as
the list of pointers to the full buffers of the pipe. The producer puts
full buffers into the pipe after having filled them with data. The full
buffer list contains a set of numbuf entries, each of which points to a
full buffer in the pipe.

Pointer to Free Buffer List

Each pipe requires a pointer, freebase, to the User RAM area used as
the list of pointers to the free (empty) buffers of the pipe. The
producer gets empty buffers from the pipe before filling them with

42 RTXC Kernel User’s Guide, Volume 1

Pipe Properties

June 21, 2002

data. The free buffer list contains a set of numbuf entries, each of
which points to an empty buffer in the pipe.

When the initialization process initializes static pipes using the
XX_DefPipeProp kernel service, it uses the value of base to
determine how to complete the definition. If base is a non-zero
pointer, the kernel service divides up the allocated buffer area into
numbuf blocks, each being bufsize long. As each buffer’s address is
determined, the kernel service also puts the pointer to the buffer into
the free buffer list.

Note: Because the number of buffers is user-determined,
the XX_DefPipeProp service is non-deterministic when
used to allocate buffers and create the free buffer list
contents automatically.

If the user’s choice is to have the application code assign the free
buffers to the free buffer list, as indicated by base being a NULL
pointer, the XX_DefPipeProp service only defines the pipe’s
properties. It is the responsibility of the user to allocate and assign
buffers to the free buffer list using the XX_PutEmptyPipeBuf
service. It is the further responsibility of the application code to
ensure that numbuf buffers are allocated, each of which has a size of
at least bufsize.

Note: Because the buffers are not allocated when the
XX_DefPipeProp service is used when base is a NULL
pointer, the operation of the kernel service is deterministic.
Each call to the XX_PutEmptyPipeBuf service to define a
free buffer is also deterministic. This method may require
more code than the automatic assignment method but each
kernel service is deterministic. However, the overall
execution time of this method may actually require more
time than the automatic allocation method previously
described.

Chapter 4: Pipes—Buffered Data Movement 43

Pipe States

June 21, 2002

Pointer to Buffer Size List

Each pipe requires a pointer, sizebase, to the User RAM area used as
the list of sizes of full buffers in the pipe. The RTXC pipe model
allows the user to fill a buffer with less than bufsize entries of data.
Thus, when the producer puts full buffers into the pipe, it is
necessary to define the amount of the buffer actually containing data
so that the consumer knows how much data to process. The full
buffer size list contains numbuf entries.

The RTXC Kernel permits a task to read the properties structure of a
pipe at any time using the XX_GetPipeProp service.

Pipe States
The RTXC Kernel maintains a record of the available free and full
buffers in the pipe at all times. The pipe does not have a single state
but rather one defined by the condition of the free and full buffer
lists. Therefore, the RTXC Kernel automatically maintains the pipe’s
state. There are no user-accessible pipe states.

Optional Properties
The RTXC Kernel supports no optional properties for the Pipe object
class.

Using Pipes
Pipes provide an easy method of moving buffered data from one
point to another in an RTXC Kernel-based application. Generally,
processing of the buffered data takes place in chronological order but
there are circumstances that require LIFO order. The use of pipes in
an application involves the use of two code entities, a producer and a
consumer. It is the job of the producer to allocate an empty buffer, fill
it with data, and then put the full buffer and its size specification into
the pipe. The consumer has to get a full buffer and its size
specification from the pipe, process the data therein, and then put

44 RTXC Kernel User’s Guide, Volume 1

Using Pipes

June 21, 2002

the now-empty buffer back into the pipe. Thus the flow of buffers is
circular from the producer to the consumer and back.

Pipe operations fall into two basic categories: managing empty
buffers and managing full buffers. For each type of buffer there are
two basic operations: getting buffers from pipes and putting buffers
into pipes. The RTXC Kernel provides one basic kernel service for
each basic pipe operation, plus some variants of each.

Note: This section uses the terms free buffers and empty
buffers interchangeably. Both terms mean a buffer that no
longer contains information that either the producer or the
consumer needs.

Producer Operations

The basic pipe operations of a producer are to get an empty buffer,
fill it with data, and put the full buffer into the pipe. Before a
producer can put data into a buffer, it must first acquire an empty
buffer. To do so, the producer uses the XX_GetEmptyPipeBuf
service, which returns a pointer to the next available free buffer in
the pipe’s free buffer list. If a free buffer is not available, the kernel
service returns a NULL pointer and the producer must deal with the
failure of the request.

When the producer has the pointer to the free buffer, it is free to
write data into the buffer in whatever manner is appropriate to the
application. Having filled the buffer with data, the producer then
puts the buffer into the pipe using the XX_PutFullPipeBuf
kernel service, along with a specification about how much data it
wrote into the buffer. The full buffer and its size specification then
become part of the full buffer list of the pipe.

After putting the full buffer into the pipe, the producer may acquire
a new empty buffer or it may defer that operation until its next
execution cycle. The XX_PutFullGetEmptyPipeBuf service
allows the producer to combine the operations of putting the full
buffer into the pipe and getting a new empty buffer. The combined
operations are intended to reduce the amount of overhead required

Chapter 4: Pipes—Buffered Data Movement 45

Using Pipes

June 21, 2002

in making two separate kernel service requests. However, the
following rules apply to using a combined operation service:

Rule: When using a combined operation service for pipes, both
operations must be successful for the service to complete
successfully.

Rule: When using a combined operation service for pipes, both
operations apply to the same pipe.

For example, the XX_PutFullGetEmptyPipeBuf kernel service
requires there to be a place in the pipe’s full buffer list and an empty
buffer available in the pipe’s free buffer list at the time the
application code places the request. If either condition is not true,
the service fails and the producer has to take appropriate action. A
failure is likely to be the result of improper specification of the
number of buffers needed in the pipe.

Example 4-2 on page 46 shows a code fragment of an interrupt
handling routine as a producer putting data into the PIPEXYZ pipe
and then scheduling a consumer, the THREADXYZ thread, when the
buffer is full. Note that the example relies on an external
initialization of the four global variables: bufptr, bufbase,
bufcount, and maxbufsize.

46 RTXC Kernel User’s Guide, Volume 1

Using Pipes

June 21, 2002

Example 4-2. Producer Putting Data into Pipe

#include "rtxcapi.h"
#include "kproject.h"
#include "kpipe.h" /* defines PIPEXYZ */
#include "kthread.h" /* defines THREADXYZ */

/* Global Variables for Use by Producer */
 void * bufptr; /* working pointer to current buffer */
 void * bufbase; /* base pointer to current buffer */
 int bufcount; /* working counter */
 int maxbufsize; /* max value for counter */

/***/
/* Interrupt Handler for Device XYZ */
/***/
void deviceXYZhandler ()
{
 ...service the device and get the data

 if (bufbase == (void *)0)
 {
 if ((bufbase = IS_GetEmptyPipeBuf (PIPEXYZ)) == (void *)0)
 {
 ...no buffers available, no place to store data
 return; /* data missed because consumer is too slow */
 }
 bufptr = bufbase; /* set up working pointer to buffer */
 }
 /* a buffer is available */
 ...store data in buffer using bufptr
 bufcount++;

 if (bufcount == maxbufsize) /* test for end of buffer */
 {
 /* buffer is full. Send it to pipe and setup next buffer */
 IS_PutFullPipeBuf (PIPEXYZ, bufbase, bufcount);
 bufbase = IS_GetEmptyPipeBuf (PIPEXYZ);/* get empty buffer */
 bufptr = bufbase; /* setup working pointers and counts */
 bufcount = 0;
 IS_ScheduleThread (THREADXYZ);/* schedule thread to process data
*/
 }
 return; /* end of interrupt handler */
}

Chapter 4: Pipes—Buffered Data Movement 47

Using Pipes

June 21, 2002

Example 4-3 on page 48 is also a producer. Again, an external code
entity has initialized the working variables in the same manner as
the previous example. It is permissible to have bufbase initialized
to a NULL pointer as the producer determines if it is necessary to
acquire an empty buffer from the pipe. The code that verifies the
existence of a valid buffer pointer protects the producer from the
situation where the XX_PutEmptyGetFullPipeBuf kernel
service fills the full buffer list and has no empty buffer available to
allocate for the next empty buffer. That situation is an indication that
the producer is outrunning the consumer. You may choose to omit
this extra code if it is certain that the consumer can keep up with the
producer. However, even if that is the case, it may be safer to use it
just to avoid the possibility of the producer not having a buffer in
which to store data.

48 RTXC Kernel User’s Guide, Volume 1

Using Pipes

June 21, 2002

Example 4-3. Producer Putting Data into Pipe Using Combined Operations

#include "rtxcapi.h"
#include "kproject.h"
#include "kpipe.h" /* defines PIPEXYZ */
#include "kthread.h" /* defines THREADXYZ */

/* Global Variables for Use by Producer */
 void * bufptr; /* working pointer to current buffer */
 void * bufbase; /* base pointer to current buffer */
 int bufcount; /* working counter */
 int maxbufsize; /* max value for counter */

/***/
/* Interrupt Handler for Device XYZ */
/***/
void deviceXYZhandler ()
{
 ...service the device and get the data

 if (bufbase == (void *)0)
 {
 if ((bufbase = IS_GetEmptyPipeBuf (PIPEXYZ)) == (void *)0)
 {
 ...no buffers available, no place to store data
 return;
 }
 bufptr = bufbase; /* set up working pointer to buffer */
 }
 /* a buffer is available */
 ...store data in buffer using bufptr
 bufcount++;

 if (bufcount == maxbufsize) /* test for end of buffer */
 {
 /* buffer is full. Send it to pipe and setup next buffer */
 bufbase = IS_PutFullGetEmptyPipeBuf (PIPEXYZ, bufbase,
bufcount);
 bufptr = bufbase; /* setup working pointers and counts */
 bufcount = 0;
 IS_ScheduleThread (THREADXYZ);/* schedule thread to process data
*/
 }
 return; /* end of interrupt handler */
}

Chapter 4: Pipes—Buffered Data Movement 49

Using Pipes

June 21, 2002

Consumer Operations

The basic pipe operations of a consumer are to get a full buffer,
process the data in it, and return the empty buffer to the pipe. Before
a producer can process data in a buffer, it must first acquire a full
buffer. To do so, the producer uses the XX_GetFullPipeBuf
kernel service, which returns a pointer to the next available full
buffer in the pipe’s full buffer list along with its size specification. If
a full buffer is not available, the kernel service returns a NULL
pointer and the producer must deal with the failure of the request.

When the producer has the pointer to the full buffer, it can process
the data in the buffer in whatever manner is appropriate to the
application. It is not uncommon for the consumer on one pipe to be
the producer of another pipe. This situation often arises when the
consumer processes data from a pipe by reducing it and sending it
to another pipe.

Having acquired the full buffer and processed its data, the consumer
then frees the buffer to the pipe’s free buffer list using the
XX_PutEmptyPipeBuf service. The empty buffer then becomes
part of the free buffer list of the pipe.

After putting the free buffer into the pipe, the consumer may acquire
a new full buffer or it may defer that operation until its next
execution cycle. The XX_PutEmptyGetFullPipeBuf service
allows the consumer to combine the operations of putting the empty
buffer into the pipe and getting a new full buffer. The combined
operations reduce the amount of overhead required compared to
making two separate kernel service requests. The same rules about
combined operations, as previously stated, apply to consumer
operations as well.

Example 4-4 on page 50 shows a code fragment of a thread,
THREADXYZ, acting as a pipe consumer. It contains two parts, an
initialization function with an entry at threadxyz, and a processing
function whose entry is XYZentryA. The purpose of the
initialization function is to initialize the producer, which is the
interrupt service routine in either Example 4-2 or Example 4-3. In
this example, the initialization function gets an empty buffer from
the PIPEXYZ pipe and initializes with its address. According to the

50 RTXC Kernel User’s Guide, Volume 1

Using Pipes

June 21, 2002

design in Example 4-2 and Example 4-3, the producer would work
equally well if the initialization function of THREADXYZ set the global
variable bufbase to a NULL pointer ((void *)0).

Example 4-4. Consumer Getting Data from Pipe

#include "rtxcapi.h"
#include "kproject.h"
#include "kpipe.h" /* defines PIPEXYZ */
#include "kthread.h" /* defines THREADXYZ */

/* Global Variables for Use by Producer */
extern void * bufptr; /* working pointer to current buffer */
extern void * bufbase; /* base pointer to current buffer */
extern int bufcount; /* working counter */
extern int maxbufsize; /* max value for counter */

/* Environment Arguments for THREADXYZ */
struct
{
 int state;
 int value;
}myenvargs;

void XYZentryA (void *, void *); /* function for processing */
 /* buffers */

/**/
/* ThreadXYZ initialization function */
/**/
void threadxyz ((void *)0, (void *)0) /* no arguments passed */
{
struct myenvargs * myargs;
PIPEPROP xyzprops;

 TS_DefThreadEnvArg (SELFTHREAD, myargs);
 myargs->state = 0; /* initialize the state of the thread */

 TS_GetPipeProp (PIPEXYZ, &xyzprops); /* get pipe properties */
 maxbufsize = xyzprops.bufsize; /* set up maximum buffer size */
 bufbase = TS_GetEmptyPipeBuf (PIPEXYZ); /* get empty buffer */
 /* pointer */

 bufptr = bufbase; /* initialize working pointers for use by */
 /* by exception handler */

 /* at end of initialization, setup new entry point for thread */
 TS_DefThreadEntry (SELFTHREAD, XYZentryA);

Chapter 4: Pipes—Buffered Data Movement 51

Using Pipes

June 21, 2002

 ...then enable device XYZ

 /* after the following return, further processing in this */
 /* thread commences at entry point XYZentryA */

 return;
}

/**/
/* ThreadXYZ processing function. */
/* Processes data in PIPEXYZ according to thread's state */
/**/
void XYZentryA ((void *)0, (struct myenvargs *)myargs)
{
int actualsize; /* actual size of full buffer */
char * newbuf; /* pointer to full buffer */

 switch (myargs->state)
 {
 case 0
 newbuf = TS_GetFullPipeBuf (PIPEXYZ, &actualsize);

 ...process the data in the buffer

 TS_PutEmptyPipeBuf (PIPEXYZ, newbuf);
 break;
 case ??? /* other cases for other states if needed */
 } /* end of switch statement
 return;
}

Jamming Data into a Pipe

For the producer, the normal mode of putting a full buffer into a pipe
is to append it to the tail of the full buffer list, preserving the
chronological nature of the data. Under some conditions, the
producer may need to put a buffer into the pipe that is not in
chronological order. The RTXC pipe model supports the
XX_JamFullPipeBuf services to jam the buffer into the pipe, not
at the tail, but at the head of the pipe. When the producer jams a
buffer into a pipe, that buffer becomes the new head of the pipe’s full
buffer list. As such, the consumer retrieves that buffer because the
consumer’s request for a full buffer always is filled from the head of
the pipe.

52 RTXC Kernel User’s Guide, Volume 1

Using Pipes

June 21, 2002

There is also the XX_JamFullGetEmptyPipeBuf service that
combines jamming operations with getting an empty buffer. Except
that the buffer is put at the head of the full buffer list, the service
works in the same manner and carries the same restrictions as the
XX_PutFullGetEmptyPipeBuf kernel service.

Pipe Actions and Conditions

The RTXC Kernel provides ways for pipes to act on threads as a result
of putting a full or empty buffer into a pipe. Putting an empty buffer
into a pipe makes it available to a producer. Conversely, putting a full
buffer into a pipe makes it available for a consumer. A thread, unlike
a task, cannot wait for something to occur. If the producer is a thread,
it cannot wait for an empty buffer to become available. When it runs,
the empty buffer must be available or the producer may fail to pass
on critical data. The RTXC Kernel supports actions that can occur as
a result of freeing an empty buffer or putting a full one into a pipe.
These actions permit threads to use pipes effectively even though a
thread cannot wait for a buffer in the pipe to become available. The
XX_DefPipeAction service exists for this purpose. It allows a task
or thread to set up one of two basic actions to take when a application
program puts either an empty or a full buffer into a given pipe. Once
defined, the definition remains in place until it is changed by
another call to XX_DefPipeAction to change the action or to
specify no action.

The specified action takes place only when the program uses a kernel
service to put a buffer into a pipe. The action does not occur when
the application gets a buffer from the pipe. Putting a buffer into a
pipe means use of any of the kernel services that put empty and full
buffers into a pipe. The kernel service may put the buffer in normally
or jam it in. The put operation may be a combination operation that
also gets a buffer from the same pipe.

If an interrupt handler calls the kernel service that puts the buffer
into the pipe, then the resulting action must be performed from that
same zone. The situation is identical when a thread calls a buffer put
kernel service. Because there are two zones from which the two basic
actions can take place, the user must specify the zone in which the

Chapter 4: Pipes—Buffered Data Movement 53

Using Pipes

June 21, 2002

action is to occur. Hence, the kernel services have to allow for four
actual action definitions.

The two basic actions are:

The XX_DefPipeAction kernel service requires the specification
of when the action is to occur. The two possible conditions are:

When the action is properly defined, a kernel service that puts a
buffer into the specified pipe according to the given condition will
execute the internal functions to perform one of these two basic
services. The internal functions are dependent on the zone of the
caller to the kernel service that performs the buffer putting
operation.

One action, scheduling a thread, has direct effect. The specified
thread is scheduled and has only to wait until the RTXC/ss Scheduler
gives it control of the CPU. If the specified action is to decrement the
thread’s thread gate, the thread may or may not become ready,
depending on the value of the thread gate.

Example 4-5 on page 54 shows how a producer and a consumer can
use pipe actions to create an effective synchronization of their
operations. In the example, the producer is an interrupt handler and
the consumer is a thread, THREADXYZ.

SCHEDULETHREAD Schedule a thread

DECRTHREADGATE Decrement a thread’s thread gate

PUTEMPTY When putting an empty buffer into the pipe.

PUTFULL When putting a full buffer into the pipe.

54 RTXC Kernel User’s Guide, Volume 1

Using Pipes

June 21, 2002

Example 4-5. Pipe Action when Putting Full Buffers into Pipe

#include "rtxcapi.h"
#include "kproject.h"
#include "kpipe.h" /* defines PIPEXYZ */
#include "kthread.h" /* defines THREADXYZ */

/* Global Variables for Use by Producer */
 void * bufptr; /* working pointer to current buffer */
 void * bufbase; /* base pointer to current buffer */
 int bufcount; /* working counter */
 int maxbufsize; /* max value for counter */

/* Environment Arguments for THREADXYZ */
struct
{
 int state;
 int value;
}myenvargs;

void XYZentryA (void *, void *); /* function for processing buffers
*/

/***/
/* Interrupt Handler for Device XYZ */
/***/
void deviceXYZhandler ()
{
 ...service the device and get the data

 if (bufbase == (void *)0)
 {
 if ((bufbase = IS_GetEmptyPipeBuf (PIPEXYZ)) == (void *)0)
 {
 ...no buffers available, no place to store data
 return; /* data missed because consumer is too slow */
 }
 bufptr = bufbase; /* set up working pointer to buffer */
 }
 /* a buffer is available */
 ...store data in buffer using bufptr
 bufcount++;

 if (bufcount == maxbufsize) /* test for full of buffer */
 {
 /* buffer is full. */
 /* Send it to pipe, schedule THREADXYZ, and get new buffer */
 bufbase = IS_PutFullGetEmptyPipeBuf (PIPEXYZ, bufbase,
 bufcount);

Chapter 4: Pipes—Buffered Data Movement 55

Using Pipes

June 21, 2002

 bufptr = bufbase; /* setup working pointers and counts */
 bufcount = 0;
 }
 return; /* end of interrupt handler */
}

/**/
/* ThreadXYZ initialization function */
/**/
void threadxyz ((void *)0, (void *)0) /* no arguments passed */
{
struct myenvargs * myargs;
PIPEPROP xyzprops;

 /* define action producer takes when putting full buffer */
 TS_DefPipeAction (PIPEXYZ, SCHEDULETHREAD, THREADXYZ, PUTFULL);

 TS_DefThreadEnvArg (SELFTHREAD, myargs);
 myargs->state = 0; /* initialize the state of the thread */

 TS_GetPipeProp (PIPEXYZ, &xyzprops); /* get pipe properties */
 maxbufsize = xyzprops.bufsize; /* set up maximum buffer size */
 bufbase = TS_GetEmptyPipeBuf (PIPEXYZ); /* get empty buffer */
 /* pointer */
 bufptr = bufbase; /* initialize working pointers for use by */
 /* exception handler */

 /* at end of initialization, setup new entry point for thread */
 TS_DefThreadEntry (SELFTHREAD, XYZentryA);

 ...then enable device XYZ

 /* after the following return, further processing in this */
 /* thread commence at entry point XYZentryA */

 return;
}

/**/
/* ThreadXYZ processing function. */
/* Processes data in PIPEXYZ according to thread's state */
/**/
void XYZentryA ((void *)0, (struct myenvargs *)myargs)
{
 int actualsize; /* actual size of full buffer */
 char * newbuf; /* pointer to full buffer /

 switch (myargs->state)
 {
 case 0

56 RTXC Kernel User’s Guide, Volume 1

Using Pipes

June 21, 2002

 newbuf = TS_GetFullPipeBuf (PIPEXYZ, &actualsize);

 ...process the data in the buffer

 TS_PutEmptyPipeBuf (PIPEXYZ, newbuf); /* no pipe action */
 /* here */
 break;

 case ??? /* other cases for other states if needed */

 } /* end of switch statement
 return;
}

Now consider a situation where two producers feed data into two
pipes with a single consumer getting data from both pipes, operating
on it, and then putting the combined data into a third pipe. For
simplicity, the example assumes the consumer (threadxyz) of the
two pipes can keep up with the two producers. The consumer cannot
be scheduled until it has a full buffer in Pipe 1 and Pipe 2 plus an
empty buffer from Pipe 3 for which it is also the producer. Figure 4-2
shows the organization of the example.

Figure 4-2. Multiple Pipe, Single Consumer Organization

Producer 1

Producer 2
Consumer

Pipe 2
Pipe 3

Pipe 1

Put Full

Put Full

Put Full

Get Full

Get Full

Get Empty
Get Empty

Get Empty

Put Empty

Put Empty

Chapter 4: Pipes—Buffered Data Movement 57

Using Pipes

June 21, 2002

The key to making this example work efficiently is the pipe action to
decrement a thread gate. Both producers do that whenever they put
a full buffer into their respective pipes. Similarly, the consumer of
Pipe 3 (not shown) causes a decrement of the thread gate for the
multiple pipe consumer (shown) whenever it puts an empty buffer
into Pipe 3. By that sequence of pipe actions, the process stays
synchronized and efficient. Example 4-6 shows the code fragments
for this organization.

Example 4-6. Pipe Actions with Multiple Producers and Single Consumer

#include "rtxcapi.h"
#include "kproject.h"
#include "kpipe.h" /* defines PIPE1 and PIPE2 and PIPE3*/
#include "kthread.h" /* defines THREADXYZ */

/* Global Variables for Use by Producer 1 */
 void * buf1ptr; /* working pointer to current buffer */
 void * buf1base; /* base pointer to current buffer */
 int buf1count; /* working counter */
 int maxbufsize1; /* max value for counter */

/* Global Variables for Use by Producer 2 */
 void * buf2ptr; /* working pointer to current buffer */
 void * buf2base; /* base pointer to current buffer */
 int buf2count; /* working counter */
 int maxbufsize2; /* max value for counter */

/* Environment Arguments for Consumer (THREADXYZ) */
struct
{
 int state;
 int maxbufsize3;
}myenvargs;

void XYZentryA (void *, void *); /* function for processing buffers
*/

/***/
/* Interrupt Handler Producer for PIPE1 */
/***/
void deviceXYZhandler ()
{
 ...service the device and get the data
 ...store data in buffer using buf1ptr
 buf1count++;

58 RTXC Kernel User’s Guide, Volume 1

Using Pipes

June 21, 2002

 if (buf1count == maxbufsize1) /* test for full of buffer */
 {
 /* buffer is full. */
 /* Send it to pipe, decr THREADXYZ thread gate, */
 /* get new buffer */
 buf1base = IS_PutFullGetEmptyPipeBuf (PIPE1, buf1base,
buf1count);
 buf1ptr = buf1base; /* setup working pointers and counts */
 buf1count = 0;
 }
 return; /* end of interrupt handler */
}

/***/
/* Exception Handler Producer for PIPE2 */
/***/
void deviceQRSexception ()
{
 ...service the device and get the data
 ...store data in buffer using buf2ptr
 buf2count++;

 if (buf2count == maxbufsize2) /* test for full of buffer */
 {
 /* buffer is full. */
 /* Send it to pipe, decr THREADXYZ thread gate, */
 /* get new buffer */
 buf2base = IS_PutFullGetEmptyPipeBuf (PIPE2, buf2base,
 buf2count);
 buf2ptr = buf2base; /* setup working pointers and counts */
 buf2count = 0;
 }
 return; /* end of exception handler */
}

/**/
/* ThreadXYZ initialization function */
/**/
void threadxyz ((void *)0, (void *)0) /* no arguments passed */
{
struct myenvargs * myargs;
PIPEPROP xyzprops;

 /* define action producers take when putting full buffer */
 TS_DefPipeAction (PIPE1, DECRTHREADGATE, THREADXYZ, PUTFULL);
 TS_DefPipeAction (PIPE2, DECRTHREADGATE, THREADXYZ, PUTFULL);
 TS_DefPipeAction (PIPE3, DECRTHREADGATE, THREADXYZ, PUTEMPTY);

 TS_DefThreadEnvArg (SELFTHREAD, myargs);
 myargs->state = 0; /* initialize the state of the thread */

Chapter 4: Pipes—Buffered Data Movement 59

Using Pipes

June 21, 2002

 TS_GetPipeProp (PIPE1, &xyzprops); /* get properties of pipe 1*/
 maxbufsize1 = xyzprops.bufsize; /* set up maximum buffer size */
 buf1base = TS_GetEmptyPipeBuf (PIPE1); /* get empty buffer */
 /* pointer */
 buf1ptr = buf1base; /* initialize working pointers for use */
 /* by exception handler */

 TS_GetPipeProp (PIPE2, &xyzprops); /* get properties of pipe 2*/
 maxbufsize2 = xyzprops.bufsize; /* set up maximum buffer size */
 buf2base = TS_GetEmptyPipeBuf (PIPE2); /* get empty buffer */
 /* pointer */
 buf2ptr = buf2base; /* initialize working pointers for use */
 /* by exception handler */

 TS_GetPipeProp (PIPE3, &xyzprops); /* get properties of pipe 3*/
 myargs->maxbufsize3 = xyzprops.bufsize;/* maximum buffer size */

 /* at end of initialization, setup new entry point for thread */
 TS_DefThreadEntry (SELFTHREAD, XYZentryA);

 /* set thread gate and thread gate preset to 3 */
 TS_SetThreadGate (SELFTHREAD, (GATEKEY)3);

 ...then enable interrupts on devices XYZ and QRS

 /* after the following return, further processing in this */
 /* thread commences at entry point XYZentryA */

 return;
}

/**/
/* ThreadXYZ processing function. */
/* Processes data in PIPEXYZ according to thread's state */
/**/
void XYZentryA ((void *)0, (struct myenvargs *)myargs)
{
int truesize1; /* actual size of full buffer */
char * newbuf1; /* pointer to full buffer /

int truesize2; /* actual size of full buffer */
char * newbuf2; /* pointer to full buffer /

char * buf3base;
int buf3count;

 switch (myargs->state)
 {
 case 0

60 RTXC Kernel User’s Guide, Volume 1

Using Pipes

June 21, 2002

 /* get the two full buffers from Pipes 1 and 2 */
 newbuf1 = TS_GetFullPipeBuf (PIPE1, &truesize1);
 newbuf2 = TS_GetFullPipeBuf (PIPE2, &truesize2);

 /* get the empty buffer from Pipe 3 */
 buf3base = TS_GetEmptyPipeBuf (PIPE3);

 for (...loop conditions)
 {
 ...now process the data in the full buffers and put
 results into the buffer from Pipe 3
 buf3count++; /* increment results buffer size */
 ...continue this processing loop until done
 }

 /* done, release now empty buffers back to Pipes 1 & 2 */
 TS_PutEmptyPipeBuf (PIPE1, newbuf1); /* no pipe action */
 TS_PutEmptyPipeBuf (PIPE2, newbuf2); /* no pipe action */

 /* then put results buffer into Pipe 3 */
 TS_PutFullPipeBuf (PIPE3, buf3base, buf3count);
 /* no pipe action */

 break; /* then quit and wait until next cycle */

 case ??? /* other cases for other states if needed */

 } /* end of switch statement
 return;
}

Chapter 5: Event Sources, Counters, and Alarms—Keeping Track of Events 61

June 21, 2002

C H A P T E R 5 Event Sources, Counters, and

Alarms–Keeping Track of Events

In This Chapter
We first discuss the basic principles of event management hierarchy
in the RTXC Kernel. Next, we present the guidelines for each of the
classes in the hierarchy, Event Sources, Counters, and Alarms. Then
we present some related concepts and basic rules of event counting
within the RTXC Kernel. Last, we discuss the usage of all three
classes and present some examples.

The Event Management Hierarchy..62

Introducing Event Sources...63
Event Counting ..64
Event Source Definition...64
Event Source Properties ..65
Using Event Sources... 66

Introducing Counters .. 66
Counter Definition ...67
Counter Properties...67
Tick Conversion ...68
Application Time..70
System Time ..70
Using Counters .. 72
Reading Counter Ticks... 72
Elapsed Ticks ... 72

Introducing Alarms .. 73
Alarm Management ...74
Alarm Definition ..76
Alarm Properties .. 77
Optional Properties ...80
Optional Properties ...80

62 RTXC Kernel User’s Guide, Volume 1

The Event Management Hierarchy

June 21, 2002

The Event Management Hierarchy
Events occur in a real-time system in various ways; some are periodic
while others are not. Some events are points of synchronization and
others need only to be counted. Synchronization events are generally
associated with RTXC Semaphores. Counted events must be
counted, but they can be used to initiate actions when the
accumulated count reaches a predefined value. To track events that
need to be counted, the RTXC Kernel incorporates the event
management hierarchy using three object classes: Event Sources,
Counters, and Alarms. An example of a type of event source is an
interrupt that occurs periodically from a system clock, sometimes
called a time base. Figure 5-1 shows the event management
hierarchy and the relationships between the three classes

Figure 5-1. Event Management Hierarchy

From Figure 5-1, Event Sources are the parent object of Counters,
which are in turn the parent of Alarms. An application using an
RTXC Kernel configuration that includes the Event Source class may
use one or more Event Source objects. Each Event Source object may
have one or more associated Counter objects. Finally, each of those
Counter objects may have one or more associated Alarm objects.
Figure 5-2 on page 63 depicts a more realistic event management
and counting hierarchy.

Event Source

Counter

Alarm

Chapter 5: Event Sources, Counters, and Alarms—Keeping Track of Events 63

Introducing Event Sources

June 21, 2002

Figure 5-2. Event Management Hierarchy, Realistic Example

This chapter deals with each of these classes in order of their
precedence in the hierarchy. Because event sources, counters and
alarms are accessible to tasks, threads and, sometimes, interrupt
handlers, we indicate mixed-use kernel services by the XX_ prefix,
where XX_ represents the zonal prefixes IS_ (Zone 1), TS_ (Zone 2),
and KS_ (Zone 3). To determine the legal prefixes for a particular
kernel service, see the kernel service descriptions in the RTXC
Quadros and RTXC DSP Kernel Service Reference manuals.

Introducing Event Sources
The Event Source class is the basis of a general purpose counting and
alarm model that enables threads and tasks to operate in conjunction
with or in response to alarms based on counted events. The Event
Source class allows the accumulation of counts and division of event
counts into lower order counters to permit the use of alarms.

Event Source

Counter

Alarm

Event Source

Alarm

Counter

Alarm

Counter

Alarm

64 RTXC Kernel User’s Guide, Volume 1

Introducing Event Sources

June 21, 2002

Consequently, the actual source of an event is immaterial. The event
may originate externally and present itself to the system as an
interrupt, or it may be an internal event generated by the application
software. In either case, there is no distinction between such events
as they relate to the event counting and alarm model.

Event Counting

In the RTXC Kernel, event sources and semaphores both have the
ability to count events. However, semaphores count events only
when there is no task waiting for the event. Therefore, the
semaphore’s counter serves as a record of how many occurrences of
the event the kernel has detected since the last time a task
synchronized with the event. If there is an accumulation of event
occurrences, the synchronization process reduces the value of the
semaphore’s count each time the task attempts to wait on the event.
As a result, the semaphore’s count is eventually reduced to zero, an
indication that all occurrences have been accounted for.

Event sources accumulate a count of event occurrences (event ticks)
in a free-running manner. That is to say, the count increases with
each event occurrence and rolls over to zero when it reaches a
maximum value. However, the primary purpose of an event source
is to establish the set of counter objects associated with the event
source.

It is permissible to treat any type of event as an event source for the
purposes of counting. A typical type of event used for counting is one
that represents the system time base. Such an event is normally a
periodic interrupt. Other types of events can represent the rotation
of a number of degrees on a shaft or axle, the number of switch
closures or openings, and so on.

Event Source Definition

The kernel refers to an event source by its handle, which is an
EVNTSRC type value. You can define, during system generation, any
combination of static and dynamic event sources up to a total
dependent on the size of a data word of the EVNTSRC type.

Chapter 5: Event Sources, Counters, and Alarms—Keeping Track of Events 65

Introducing Event Sources

June 21, 2002

An event source handle must be within the range of the total number
of event sources defined for the application. There is no difference
between the handle of a static or a dynamic event source.

An event source handle of zero (0) has special meaning. It defines
the event source for the application’s time base.

Event Source Properties

Event sources have two properties that are available to the developer.
Each event source object has an accumulator property that collects
the number of event ticks. There is also an attributes property that
specifies whether accumulation of event ticks is enabled or disabled,
and if the event source is associated with the system time base
periodic event tick.

A task or thread can access the definable alarm properties through
an EVNTSRCPROP structure, which is organized as shown in
Example 5-1.

Example 5-1. Event Source Properties Structure

typedef struct
{
 KATTR attributes; /* Enable/Disabled, Use for System Time Base */
 TICKS accumulator; /* initial time count */
} EVNTSRCPROP;

Event Source Attribute

The event source Counting_State attribute defines whether or not the
event source can accumulate counts of event ticks. By definition, the
kernel sets this attribute to ATTR_EVENT_COUNTING_ENABLED. To
disable event tick accumulation temporarily or permanently, a task
or thread sets the attribute to ATTR_EVENT_COUNTING_DISABLED.

Event Count Accumulator

The event tick accumulator contains the number of event ticks
counted while the Counting_State attribute is set to
ATTR_EVENT_COUNTING_ENABLED. The event tick accumulator is a
free-running accumulator. The initialization code defines the initial

66 RTXC Kernel User’s Guide, Volume 1

Introducing Counters

June 21, 2002

value of the accumulator to be zero for all static event sources
objects. A task establishing a dynamic event source, or a task that
needs to redefine the accumulator property for an existing event
source, may set the initial value of accumulator to any legal value of
the TICKS type using the XX_SetEventSourceAcc kernel
service.

Using Event Sources

Event Sources are the basis for establishing a system by which tasks
and threads activate in response to expiration of alarms. Event
Sources may be static or dynamic and are globally accessible to tasks
and threads. RTXC Kernel services exist to define, enable or disable,
update, read, set accumulators for, and perform all the updating of
accumulators for event sources as well as processing the event for all
child counter objects and their alarms.

The key to the entire event management hierarchy is the
XX_ProcessEventSourceTick service. That kernel service
takes care of all of the processing required to update the entire event
management hierarchy for a given event source.

Introducing Counters
Counters accumulate counter ticks in a free-running manner. That
is to say, the counts increase with each counter tick and roll over to
zero when they reach a maximum value for the accumulator data
type. Each counter tick represents a user-defined ratio of the number
of event ticks the counter’s parent event source receives. For
example, if the ratio is 100 event ticks per counter tick on a given
counter, the counter gets one tick added to it for each 100 event ticks.

Besides accumulating counter ticks, a counter can also be the parent
of a set of alarm objects. The RTXC Kernel manages alarms for tasks
and threads in relation to counter tick accumulations. Only when a
counter tick occurs for a given counter does the
XX_ProcessEventSourceTick service test for expiry on the
alarms associated with that counter.

Chapter 5: Event Sources, Counters, and Alarms—Keeping Track of Events 67

Introducing Counters

June 21, 2002

Counter Definition

The kernel refers to a counter by its handle, which is a COUNTER type
value. You can define, during system generation, any combination of
static and dynamic counters up to a total dependent on the size of a
data word of the COUNTER type.

An counter handle must be within the range of the total number of
counters defined for the application. There is no difference between
the handles of static or dynamic counters.

Counter Properties

Counters have three properties that are available to the developer.
Each counter object has an accumulator property that collects the
number of counter ticks. There is also an attributes property that
specifies whether accumulation of counter ticks is enabled or
disabled, and if the counter is the system time base.

A task or thread can access the definable counter properties through
a COUNTERPROP structure, which is organized as shown in
Example 5-2.

Example 5-2. Counter Properties Structure

typedef struct
{
 KATTR attributes; /* Enable/Disabled, Use for System Time Base */
 EVNTSRC evntsrc; /* Event Source associated with this counter /
 KMODULUS modulus; /* modulus (ratio) for dividing event ticks */
} COUNTERPROP;

Counter Attribute

The counter Enable/Disable attribute defines whether or not the
counter can accumulate counter ticks. By definition, the kernel sets
this attribute to a default value of ATTR_COUNTER_ENABLED
(specifically, ~(ATTR_COUNTER_DISABLED)). A task or thread may
disable counter tick accumulation temporarily or permanently by
setting the attribute to ATTR_COUNTER_DISABLED. Besides using
the XX_DefCounterProp kernel services to define all the
properties, including the attributes, of a counter, the

68 RTXC Kernel User’s Guide, Volume 1

Introducing Counters

June 21, 2002

XX_SetCounterAttr service allows a task or a thread to set the
counter’s attributes directly. The XX_ClearCounterAttr service
allows a task or thread to clear specific attribute settings directly.

Event Source

The evntsrc property defines the counter’s parent event source. The
counter receives event ticks from the defined parent event source
and reduces those event ticks to get counter ticks.

Event Tick Modulus

The modulus property contains the number of event ticks to count for
each counter tick. The counter’s modulus is essentially a divider to
be applied to the stream of event ticks from the parent event source.
If the modulus has a value of 10, the counter must receive 10 event
ticks before it counts one counter tick.

Tick Count Accumulator

There is an implicit property of every counter, the counter tick
accumulator, which contains the number of counter ticks counted
while the attribute is set to ATTR_COUNTER_ENABLED. The counter
tick accumulator is free-running and rolls over to zero when it
reaches the maximum value for it’s defined data type plus one. The
XX_DefCounterProp service defines the initial value of the
accumulator to be zero. A task can define the counter’s accumulator
property to begin counting from a specified base value by setting the
initial value of accumulator to any legal value of the TICKS type using
the XX_SetCounterAcc service.

Tick Conversion

When using counters and alarms, it is quite common to encounter
the need to convert a value in engineering units into a number of
ticks or vice versa. The methods to do both conversions are quite
simple as each tick represents a fixed number of engineering units.

Consider the conversion of real time to RTXC counter ticks of the
application time base. Take the real-time value, expressed in some
convenient units such as seconds, milliseconds, or microseconds,
and simply divide it by the real-time duration of a single clock tick on

Chapter 5: Event Sources, Counters, and Alarms—Keeping Track of Events 69

Introducing Counters

June 21, 2002

the counter defined as the application time base. For example, if the
application time base operates at 200 Hz, each tick of that counter
represents an interval of 5 milliseconds. Thus, a real time period of
500 milliseconds is equivalent to 100 ticks of the application time
base counter (500 msec divided by 5 msec per tick).

To calculate the value of a number of counter ticks in engineering
units, reverse the previous process. Multiply the number of counter
ticks by the value of each counter tick in engineering units. To
illustrate, consider a gas meter that has accumulated 1200 ticks. If
each tick represents 1.5 cubic feet of gas, then the conversion
becomes 1200 ticks multiplied by 1.5 cubic feet/tick, yielding a
volume of metered gas of 1,800 cubic feet.

These methods, while correct, can lead to problems should a change
occur to the specification of the counter tick frequency of the time
base counter. It is better to associate a symbol with the value of the
number of engineering units per tick such that it can be used in the
application code without regard to the actual value. It is the
responsibility of the user to make the definition of such a conversion
symbol. However, a single exception exists. For the application time
base counter, RTXCgen defines a standard symbol, CLKTICK.

RTXCgen calculates CLKTICK, the value of a tick in the application
time base counter, and puts it in the kproject.h header file. The
previous example of converting time to ticks on the application time
base counter serves as a good illustration. In that example, RTXCgen
defines CLKTICK to have a value of 5, representing 5 msec/tick. The
following expression converts a 500 msec period to counter ticks on
the application time base counter:

500/CLKTICK

This method of reduction makes application code more robust. First
of all, the conversion occurs at compile time and does not require
any runtime cycles. Second, if the specification of the number of
engineering units per tick changes, it is necessary only to recompile
the application code to adjust any real-world values.

70 RTXC Kernel User’s Guide, Volume 1

Introducing Counters

June 21, 2002

Application Time

Using RTXCgen, the user can specify one counter in the system to be
the application time base whose parent event source should be a
periodic event. Other than that specification, the counter is a normal
RTXC counter in all respects. The counter’s accumulator is a value
representing the current application time.

Because the RTXC Kernel makes no stipulation about which counter
the user can specify for the application time base, a special construct
allows the user to develop program code independently of the
counter definition. The special construct is a counter handle of zero
(0), which instructs an RTXC Kernel service to use the user-defined
counter handle for the operation. RTXCgen defines a macro for this
special construct in the rtxcapi.h file as follows:

#define TIMEBASE (COUNTER)0;

If you build library routines that use current time but do not know
the actual definition of the application time base counter, you should
include rtxcapi.h in your code modules. Then refer to the
counter for current time as TIMBASE.

System Time

Some applications require certain time management at a resolution
much lower than one tick of the application time base counter. Quite
often, it is desirable to measure alarm periods in seconds, or minutes
or even hours or days. Time of this magnitude is usually called
system time or real time, or even clock time. The difference between
application time and system time is simply the granularity of the tick
for each type.

There is no specific provision in the RTXC Kernel for maintaining
system time. However, creating a counter to serve that purpose is
quite easy. Simply define another counter using the same periodic
event source parent as used for the application time base counter. Set
the modulus property of the second counter to a value that ratios the
event ticks to give a counter tick at the desired frequency. When a real
time period is needed for a time period calculation, simply make

Chapter 5: Event Sources, Counters, and Alarms—Keeping Track of Events 71

Introducing Counters

June 21, 2002

reference to the second counter, using one of the conversion
methods already described.

For example, if the application requires a system time counter that
has a resolution of 1 Hz, and the event source provides event ticks at
a frequency of 10,000 Hz, the modulus of the system time counter
needs to be 10,000 to deliver one counter tick per second, or every
10,000 event ticks. Such a counter serves as an effective and accurate
calendar.

Functions exist in most C libraries that can convert a calendar date
and time-of-day into a value equivalent to the number of seconds
since a base date, usually Base Universal Time, which begins
January 1, 1970. Using such a routine to calculate that time
difference as a number of seconds provides a very deterministic
method of maintaining a calendar with one-second accuracy. To seed
the system time counter with such a value, make the necessary
conversion and pass it to the system time counter using the
XX_SetCounterAcc service.

Converting Calendar Date To System Time

ANSI C specifies the mktime library function for converting a
struct_tm type value to a time_t type value using a base date of
January 1, 1970. Any valid date on or after January 1, 1970 and before
March 2038 yields a correct value in 32-bits.

Note: The RTXC Kernel does not require the calendar to be
defined with a date and time to operate properly.

Converting System Time To Calendar Date

ANSI C also defines the gmtime and localtime library functions
and other functions for converting time_t type values to
struct_tm type values. These functions convert the system time
date to a structure containing the calendar date and time-of-day.

72 RTXC Kernel User’s Guide, Volume 1

Introducing Counters

June 21, 2002

Using Counters

Counters are the second element in the event management
hierarchy establishing a system by which tasks and threads activate
in response to expiration of alarms. Each counter has a parent event
source and several counters may share the same parent. Counters
may be static or dynamic. RTXC Kernel services exist to define,
enable or disable, read or set the accumulator for, perform all the
updating of the accumulator for, and process the associated alarms.
Counters are globally accessible to tasks and threads.

Reading Counter Ticks

The RTXC Kernel allows the user to gain access to a counter’s
accumulator through the XX_GetCounterAcc service. The
XX_GetCounterAcc kernel service returns a TICKS type value
representing the current value of the counter’s tick accumulator. The
service does not change the content of the counter’s accumulator.

Elapsed Ticks

There are many applications that need to know the number of
counter ticks that occur between two events. The RTXC Kernel can
easily provide that information. The operation requires two kernel
service calls. At the first event, the first kernel call sets up a variable
that contains the value of the specified counter’s tick accumulator at
that instant. At the second event, a second kernel service subtracts
the counter ticks at the first event from the current value of the
counter’s tick accumulator. The XX_GetElapsedCounterTicks
service returns the difference to the calling task and also updates the
variable to the current value of the counter’s tick accumulator to
prepare for the next event. The computed tick difference is accurate
to less than one tick’s equivalent of the real interval. Example 5-3 on
page 73 shows a code model for using the system time base counter,
TIMEBASE, to measure elapsed time between successive occurrences
of an event associated with the XEVENT semaphore.

Chapter 5: Event Sources, Counters, and Alarms—Keeping Track of Events 73

Introducing Alarms

June 21, 2002

Example 5-3. Computing Elapsed Time between Two Events

#include "rtxcapi.h" /* defines TIMEBASE */
#include "kproject.h" /* defines CLKTICK */
#include "ksema.h" /* defines XEVENT */

TICKS cticks, diff;
int elapsed_time;

...initialize the task

 do something

/* then wait for first event */
KS_TestSemaW (XEVENT); /* use XEVENT sema */

/* got first event, now initialize tick counter */
KS_GetElapsedCounterTicks (TIMEBASE, &cticks); /* ignore return value
*/

for (;;) /* loop for 2nd & successive events */
{
 /* wait for next event */
 KS_TestSemaW (XEVENT);

 /* got next event, now compute tick difference /
 diff = KS_GetElapsedCounterTicks (TIMEBASE, &cticks);

 elapsed_time = diff * CLKTICK; /* calculate elapsed time */
 do something with the elapsed time
}

Note: For the second and subsequent events in
Example 5-3, each call to
XX_GetElapsedCounterTicks returns the elapsed
time between the current and previous events.

Introducing Alarms
RTXC alarms are the lowest level of the event counting hierarchy and
also the closest of the three classes to threads and tasks. Counters
accumulate counter ticks and alarms represent the points at which
certain values of accumulated counter ticks cause some thread or

74 RTXC Kernel User’s Guide, Volume 1

Introducing Alarms

June 21, 2002

task action to happen. If a counter accumulates ticks from a periodic
source, the counter can represent time and associated alarms are
time-based. Other counters perhaps accumulate a count of irregular
events and the units of the counter, and of the associated alarms, are
more process specific.

Application code uses RTXC Kernel services that operate directly on
the alarms to establish points of action with respect to the counter
accumulator. These are called general alarms. Other kernel services
make use of the counters to set up internal alarms for use as a
limitation component of their function. These alarms are referred to
as internal alarms, also called tickout alarms. When the parent
counter counts time, internal alarms are called time-outs. However,
other types of counts can be used with equal ease for the same
purpose if the counter is not time-based.

The RTXC Kernel employs a generalized scheme using one-shot and
cyclic alarms. The kernel can manage multiple alarms
simultaneously and one or more alarm points can occur at the same
counter accumulation value. Kernel services for scheduling and
canceling alarms are an integral part of the kernel service library.
Regardless of their number, the time to service an active alarm is
fixed and, therefore, deterministic.

Alarm Management

The sources of events that eventually become counter ticks on the
various counters are particular to the implementation of the target
system. They may be external, such as an interrupt from the system
time event source, or an internal event within the application code.

The RTXC Kernel manages all alarm operations in units of ticks. If
the alarm’s parent counter ticks occur at a regular frequency, they
represent a passage of time. The user defines the value in
engineering units of one tick.

The basic rule of alarm management in the RTXC Kernel is as
follows:

Rule: All RTXC alarms are measured in counter ticks with respect
to their parent counter.

Chapter 5: Event Sources, Counters, and Alarms—Keeping Track of Events 75

Introducing Alarms

June 21, 2002

Counter ticks serve three purposes in conjunction with RTXC Kernel-
based alarms:

It should be noted when using one-shot, general purpose, or internal
alarms, especially those used with synchronous counters, that there
is a possible error that can result. The problem occurs because the
alarm is practically never activated at the moment its parent counter
receives a tick. Instead, activation normally occurs at some
indeterminate point between the last tick received and the next
counter tick, resulting in an actual duration of the one-shot alarm
period that is less than expected. An alarm period of one tick readily
illustrates this problem.

Figure 5-3 shows the relationship, using time, between the point in
time that a one-tick alarm goes active (that is, the alarm is armed)
and the occurrence of the next tick of the counter.

Figure 5-3. Possible Duration of a 1-Tick Alarm Period, Case A

Figure 5-4 on page 76 depicts the same one-tick alarm count but for
a different arming point between the two ticks.

General
purpose
alarming

Synchronizes a task or schedules a thread with an event
that occurs after a certain amount of ticks occur on a
particular counter.

Internal
alarming

Permits certain kernel services to limit blockage of the
calling task for a specific number of counter ticks.

Elapsed tick
counting

Permits the RTXC Kernel to compute the number of
ticks that occur between two events.

Time

Alarm Activated

Tick Tick
Actual Alarm Duration

76 RTXC Kernel User’s Guide, Volume 1

Introducing Alarms

June 21, 2002

Figure 5-4. Possible Duration of a 1-Tick Alarm Period, Case B

In both figures, the desired (or expected) alarm duration is one tick
but the actual alarm duration is less than that. In Figure 5-3, the
duration is almost one full tick but not quite. In Figure 5-4, the actual
duration of the alarm is very much less than one tick. This is an end-
point consideration of which the user should be aware when
defining a one-shot alarm period, whatever the duration. If the
specified duration of the alarm is greater than one tick, the possible
error only occurs at the first tick. Subsequent ticks are not in error.
Therefore, the following rule applies:

Rule: A one-shot alarm period is not necessarily synchronous with
the parent counter and may result in an error or undesirable
results.

Alarm Definition

The kernel refers to an alarm by its handle, which is an ALARM type
value. You can define, during system generation, any combination of
static and dynamic alarms up to a total number allowed by a datum
of the ALARM type.

An alarm handle must be within the range of the total number of
alarms defined for the application. There is no difference between
the handle of a static alarm and a dynamic alarm.

Internal alarms have no identity with respect to the application and
no kernel services exist with which to manipulate or directly access
internal alarms. The RTXC Kernel automatically manages the
creation and destruction of internal alarms.

Time

Alarm Activated

Tick TickActual Alarm Duration

Chapter 5: Event Sources, Counters, and Alarms—Keeping Track of Events 77

Introducing Alarms

June 21, 2002

One main rule applies to defining alarms:

Rule: Internal alarms are not declared during the system
generation procedure.

Alarm Properties

Alarms have four properties that are available to the developer. In
addition to a property specifying its parent counter, each alarm object
contains two tick values: one to define the expiry point of the first
alarm after the alarm becomes active (the initial alarm), and another
to define the next alarm point increment if it is a cyclic alarm. There
is also an attributes property that the kernel uses for special modes of
operation.

While not directly available to the developer, an alarm has three more
important properties: its state, the active alarm expiry point, and the
list of tasks waiting for the alarm’s expiration. The Alarm object class
properties permit the inclusion of up to two optional semaphores.
One allows a semaphore association with the alarm expiration. The
second associates a semaphore with an alarm abort operation.

A task or thread can access the definable counter properties through
an ALARMPROP structure, shown in Example 5-4.

Example 5-4. Alarm Properties Structure

typedef struct
{
 KATTR attributes; /* reserved for future use */
 COUNTER counter; /* Handle of alarm's parent counter */
 TICKS initial; /* initial expiry point of alarm */
 TICKS recycle; /* recycle count if cyclic alarm */
} ALARMPROP;

When defining an alarm with the XX_DefAlarmProp, the kernel
maintains the value of initial to compute the alarm’s initial point of
expiry whenever it becomes an active alarm.

The XX_GetAlarmProp kernel service reads the current
developer-accessible properties of the given alarm and puts them in
an ALARMPROP structure.

78 RTXC Kernel User’s Guide, Volume 1

Introducing Alarms

June 21, 2002

An alarm having no cyclic tick counts (recycle = 0), is a one-shot
alarm. An alarm having a non-zero value for recycle is a cyclic alarm.
In a cyclic alarm, the value of initial may or may not be equal to the
number of ticks in recycle. The first cycle of the alarm after it is armed
uses the initial value unless it is zero (0), then subsequent alarm
cycles use the recycle value. The following rule applies to alarms:

Rule: Defining an alarm’s properties establishes the relationship
of the alarm with a parent counter.

Rule: Defining the properties of a alarm object does not start the
alarm.

Figure 5-5 and Figure 5-6 show the relationship of initial and recycle
properties to alarm expiry points, Ci, for typical values of initial and
recycle. Figure 5-5 shows a one-shot alarm starting at the counter
accumulator value of C0 with a non-zero value of initial and a recycle
value of 0. The point of expiry of the alarm is C1.

Figure 5-5. One-Shot Alarm

Figure 5-6 on page 79 shows a cyclic alarm starting at the counter
accumulator value of C0 with non-zero values for both initial and
recycle. The point of expiry of the first alarm is C1 followed
successively by alarms at C2, C3, C4, and so on.

Ticks

initial

Alarm Armed

C0 C1

Chapter 5: Event Sources, Counters, and Alarms—Keeping Track of Events 79

Introducing Alarms

June 21, 2002

Figure 5-6. Cyclic Alarm

Alarm Attributes

The alarm Waiter_Mode attribute defines how the RTXC Kernel
manages tasks waiting on an alarm’s expiration. By definition, the
kernel sets this attribute to ATTR_FIFO_ORDER and adds tasks in
chronological order to the list of tasks waiting for the expiration of
the alarm. This setting offers the most efficient for processing
because all waiting tasks receive notice upon expiration of the alarm.

The alarm Waiter_Mode attribute has no effect on RTXC threads.

Counter

The counter property defines the handle of the alarm’s parent
counter. The kernel calculates all points of expiry for the given alarm
using the counter ticks from the parent counter’s accumulator and
either the initial or recycle property.

Initial Tick Count

If the value of initial is non-zero, it represents the increment of ticks
to add to the value of the parent counter’s accumulator to establish
the point of expiry of the first alarm after the alarm becomes armed
(active). If the value of initial is zero, the kernel does not use it but
uses the value of recycle instead.

Recycle Tick Count

For one-shot alarms, the value of the recycle property should be zero.
If the alarm is cyclic, this property contains a non-zero value that the
kernel uses to determine the next point of expiry. When the current
alarm expires, the kernel uses the value of recycle and the parent

Ticks

initial

Alarm Armed

C0 C1

recycle recycle recycle

C4C3C2

80 RTXC Kernel User’s Guide, Volume 1

Introducing Alarms

June 21, 2002

counter’s accumulator to compute the point of expiry of the next
alarm.

Alarm State

A alarm must exist in one of two states, Alarm_Active or
Alarm_Inactive. All alarms initialize as being Alarm_Inactive. When
application code arms an alarm, the alarm’s state becomes
Alarm_Active and remains so until it expires or a task or thread stops
or aborts it with a call to the XX_AbortAlarm or
XX_CancelAlarm kernel services. The state of a one-shot alarm
becomes Alarm_Inactive when it expires. After XX_AbortAlarm or
XX_CancelAlarm stops an active cyclic alarm, the alarm’s state
becomes Alarm_Inactive. The following rule applies to alarms:

Rule: Application code (thread or task) must not manipulate any
properties of an active alarm.

Optional Properties

Each general purpose alarm inherits the optional Semaphores
property of the Alarm object class as defined by the user during the
system generation procedure. If the class allows it, an alarm object
supports up to two semaphores: one associated with the
Alarm_Expiration (AE) event and the other related to the Alarm_Abort
(AA) event. The KS_DefAlarmSema kernel service associates these
semaphores with the alarm. A task may define an alarm semaphore
without regard to the state of the alarm.

Alarm_Expiration Semaphore

The Alarm_Expiration (AE) semaphore, if defined, receives a signal
when the alarm expires, in support of the following rule:

Rule: Expiration of a general purpose alarm is an event.

In typical operation, it is not necessary to associate a semaphore with
an alarm expiration to synchronize one or more tasks with the alarm.
The RTXC Kernel handles synchronization of alarm expiration with
tasks waiting on the event without requiring a semaphore. The AE
semaphore is typically used in conjunction with a task waiting on
multiple semaphores associated with various events.

Chapter 5: Event Sources, Counters, and Alarms—Keeping Track of Events 81

Introducing Alarms

June 21, 2002

The AE semaphore also finds utility as an easy means of setting up a
software watchdog to rearm a one-shot alarm to prevent its
expiration. Tasks in the application use the XX_RearmAlarm kernel
service to give the watchdog alarm a new point of expiration tick
count before the alarm has a chance to expire. Should the watchdog
alarm expire, the signal to the AE semaphore indicates there may be
something amiss in the system. The task detecting the AE event
must deal with any special recovery or system restart operations.
One rule applies:

Rule: Only a task can receive notification that an alarm expiration
(AE) event has occurred.

Alarm_Abort Semaphore

The Alarm_Abort (AA) semaphore, if defined, receives a signal if the
alarm is prematurely stopped by a call to the XX_AbortAlarm
kernel service. A task can use the KS_TestSemaW kernel service as
part of a simple synchronization with the AA event. A task may also
include the AA semaphore in a group of semaphores on which the
task uses the KS_TestSemaMW kernel service to wait for any event
in the group to occur. One rule applies:

Rule: Only a task can receive notification that an alarm abort (AA)
event has occurred.

Using Alarms

General purpose alarms are useful for managing events with respect
to the number of ticks accumulated on the alarm’s parent counter.
Alarms may be static or dynamic and one-shot or cyclic. RTXC Kernel
services exist to start them, restart them, and stop them. The RTXC
Kernel supports the ability of both tasks and threads to use alarms.
Tasks can use alarms for task activation using either one-shot or
cyclic alarms. The kernel permits a task or thread to use more than
one timer at the same time. Threads can only activate alarms. Unlike
a task, threads cannot wait for an alarm because a thread is not
allowed to wait. However, through the use of thread gates, you can
schedule threads as a result of alarm expiration.

82 RTXC Kernel User’s Guide, Volume 1

Introducing Alarms

June 21, 2002

Alarm Creation

The RTXC Kernel requires that an alarm exist before application code
can use it. Specifying a static alarm and defining its properties with
RTXCgen during system initialization creates the static alarm.

On the other hand, a task must specifically create a dynamic alarm
before using it. If the Dynamics attribute is enabled for the Alarm
class, a task creates a dynamic alarm by opening it and then defining
its properties. When opening a dynamic alarm, the task may or may
not assign a name to the alarm. Assigning a name is sensible when
the name can be used by other tasks. However, if the alarm is to be
used solely within the scope of the requesting task, assigning a name
has little consequence other than to require memory space.

Because a task can create and use more than one alarm concurrently,
it is good practice to have the task open all of the dynamic alarms it
needs before starting the main body of the task. The task may use the
alarm handle in subsequent alarm management kernel services.
Any task using alarms should maintain the handle of each dynamic
alarm until such time as the alarm is closed by the
KS_CloseAlarm kernel service.

Allocating and defining dynamic alarms early typically ensures they
will be available when their first use occurs. However, even in a
design where dynamic alarms are created early, a condition may
arise where no dynamic alarm is available when a task attempts to
open one. Should this occur, the task must handle the situation and
take corrective action. An unsuccessful alarm opening may indicate
the presence of a problem elsewhere in the system. However, the
absence of available dynamic alarms usually results from improper
configuration.

Example 5-5 on page 83 shows a code fragment in which a task
opens and defines a dynamic one-shot alarm without a name. The
alarm’s parent counter is the application time base, TIMEBASE, and
the initial period is 500 msec.

For static alarms, the process is much simpler. The user defines the
properties of the alarm using RTXCgen. During system startup, the
initialization procedure defines the properties of all static alarms
through repetitive calls to the XX_DefAlarmProp kernel service.

Chapter 5: Event Sources, Counters, and Alarms—Keeping Track of Events 83

Introducing Alarms

June 21, 2002

Subsequently, all that is required to use a static alarm is to arm it at
the appropriate point in the application code.

Example 5-5. Creating a Dynamic Alarm

#include "rtxcapi.h" /* defines TIMEBASE */
#include "kproject.h" /* defines CLKTICK */

ALARM dynalarm; /* gets handle of dynamic alarm */
static ALARMPROP aprop;

...task operations

/* open new dynamic alarm and verify it exists */
if ((KS_OpenAlarm ((char *)0, &dynalarm)) != RC_GOOD)
{
 ...failure to open alarm. deal with it
}
else /* alarm opened successfully. */
{
 /* now define its properties */
 aprop.attributes = 0;
 aprop.counter = TIMEBASE;
 aprop.initial = (TICKS)500/CLKTICK;
 aprop.recycle = (TICKS)0;
 KS_DefAlarmProp (dynalarm, &tprop);

 /* alarm okay to use now */
}

Arming an Alarm

After the application code defines an alarm’s properties, it may use
the alarm by calling the XX_ArmAlarm kernel service. Arming an
alarm changes its state to Alarm_Active and sets up the alarm’s initial
expiry point using the value of the initial property as previously
described. The alarm remains in the active state until the initial
alarm expires, if it is a one-shot alarm, or, if it is a cyclic alarm, until
application code cancels or aborts the alarm. The following rule
applies to arming an alarm:

Rule: Application code may not arm an active alarm.

84 RTXC Kernel User’s Guide, Volume 1

Introducing Alarms

June 21, 2002

To extend Example 5-5 to include the task starting the dynamic
periodic alarm, or to activate a static alarm, simply add the following
statement at the appropriate point in the task’s code:

KS_ArmAlarm (dynalarm);

If a thread is activating the alarm, use the XX_ArmAlarm Zone 2
kernel service.

Rearming an Alarm

The XX_RearmAlarm kernel service redefines the values of the
initial and recycle properties of a given alarm and establishes a new
point of expiry of the alarm based on the redefined value of initial.
Rearming an alarm is possible without regard to the alarm’s state
and has no effect on the alarm’s AE or AA semaphores, if defined.

Consider that the dynamic one-shot alarm created in Example 5-5 on
page 83 is actually a watchdog alarm (WDT). Assuming another task
knows the alarm’s handle, it can reset the WDT by a single RTXC
Kernel service. Example 5-6 shows the code model for rearming the
WDT.

Example 5-6. Rearming a Software Watchdog Alarm

#include "rtxcapi.h"
#include "kproject.h" /* defines CLKTICK */

ALARM dynalarm;
ALARMPROP aprop;

/* alarm has already been created and armed */

if (KS_RearmAlarm (dynalarm,(TICKS)500/CLKTICK,(TICKS)0) == (TICKS)0)
{
 ...alarm had already expired. do something
}
else
 ...WDT restarted. Continue

Alarm Expiration

Alarm expiration is an event on which one or more tasks may
synchronize. The RTXC Kernel supports a design that allows

Chapter 5: Event Sources, Counters, and Alarms—Keeping Track of Events 85

Introducing Alarms

June 21, 2002

multiple tasks to wait for the same alarm to expire using the
KS_TestAlarmW kernel service. However, unlike some other
object classes, the following rule applies:

Rule: The kernel unblocks all tasks waiting on a alarm’s expiration
whenever expiration occurs.

In Example 5-7, a task arms the TIMERX static cyclic alarm and uses
its expiration to synchronize the task’s normal operation. The
possibility exists that other tasks can cancel or abort the alarm.

Example 5-7. Waiting for Alarm Expiration with Possibility of Alarm Cancel or Abort

#include "rtxcapi.h"
#include "kalarms.h"

...task operations

KS_ArmAlarm (TIMERX); /* arm cyclic alarm */

/* do the following forever */
for (;;)
{
 /* wait for alarm to expire */
 if (KS_TestAlarmW (TIMERX, (TICKS *)0) != RC_GOOD)
 {
 ...alarm was inactive or was aborted. Treat it specially
 }
 else
 /* alarm expired. do task operations */
}

In Example 5-7, a task arms the TIMERX static cyclic alarm and uses
its expiration to synchronize the task’s normal operation. In
Example 5-8 on page 86, there is no other task that can cancel or
abort the alarm.

86 RTXC Kernel User’s Guide, Volume 1

Introducing Alarms

June 21, 2002

Example 5-8. Waiting for Alarm Expiration without Possibility of Alarm Cancel or Abort

#include "rtxcapi.h"
#include "kalarms.h"

...task operations

KS_ArmAlarm (TIMERX); /* arm cyclic alarm */

/* do the following forever */
for (;;)
{
 /* wait for alarm to expire */
 KS_TestAlarmW (TIMERX, (TICKS *)0);

 /* alarm expired. do task operations */
}

Aborting an Alarm

Sometimes a task needs to stop an active alarm prematurely. The
XX_AbortAlarm kernel service cancels the specified alarm and
signals the alarm’s AA semaphore, if defined. This function, if
successful, makes the alarm inactive and returns the number of ticks
remaining until the alarm would have reached its point of expiration.
If the task attempts to stop an inactive alarm with
XX_AbortAlarm, the kernel service returns a value of zero (0) to
indicate the alarm’s state.

Freeing Alarms

A task may determine that it no longer needs a dynamic alarm. The
KS_CloseAlarm kernel service releases the handle of the alarm
and frees the RAM used by the alarm object. The following rule
applies:

Rule: A task can free only dynamic alarms.

Reading Ticks Remaining on a Alarm

The RTXC Kernel provides two ways of determining the number of
ticks remaining on the current alarm. One such service is
XX_GetAlarmTicks and the other is KS_TestAlarm. Both kernel
services read the number of counter ticks remaining on the active

Chapter 5: Event Sources, Counters, and Alarms—Keeping Track of Events 87

Introducing Alarms

June 21, 2002

alarm and return the number to the caller. The second service
however, also determines the state of the alarm and returns a
corresponding indication. If the KS_TestAlarm service returns an
indicator that the alarm is inactive and the remaining time is non-
zero, the alarm was stopped previously by a call to the
XX_AbortAlarm or XX_CancelAlarm kernel service.

Actions Taken at Alarm Expiry

The RTXC Kernel provides ways for alarms to act on threads as a
result of alarm expiry. These actions permit threads to use alarms
effectively even though a thread cannot wait, as a task can, for the
alarm to expire. Two kernel services exist for this purpose. The first,
XX_DefAlarmAction allows a task or thread to set up one of two
basic actions to take when the alarm expires. Once defined, the
definition remains in place until it is changed by another call to
XX_DefAlarmAction or until the alarm becomes inactive.

Detection of alarm expiry occurs in the zone that calls
XX_ProcessEventSourceTick. If an exception handler calls
the kernel service, then the resulting action must be called from that
same zone. The situation is identical when a thread calls the
XX_ProcessEventSourceTick kernel service. Because there
are two zones from which the two basic expiry actions can take place,
the kernel services have to allow for four actual action definitions.

The two basic actions are:

Schedule a thread.

Decrement a thread’s thread gate.

When the action is defined, the XX_ProcessEventSourceTick
kernel service executes the internal functions to perform one of
these two basic services upon determining the alarm has expired.
The internal functions are dependent on the zone of the caller to the
XX_ProcessEventSourceTick kernel service.

One action, scheduling a thread, has direct effect. The specified
thread is scheduled and has only to wait until the RTXC/ss Scheduler
gives it control of the CPU. If the specified action is to decrement the
thread’s thread gate, the thread may or may not become ready,
depending on the value of the thread gate.

88 RTXC Kernel User’s Guide, Volume 1

Introducing Alarms

June 21, 2002

 Index 89

June 21, 2002

Index

A
abort alarm semaphore 81
aborting an alarm 86
accumulator 68
actions

pipe 53
taken at alarm expiration 87

alarm
aborting 86
actions taken at alarm expiration 87
activation rule 83
active alarm rule 80
Alarm_Abort event 80
Alarm_Active state 80
Alarm_Expiration event 80
Alarm_Inactive state 80
allocating 82
arming 83
attributes 79
closing 82
code examples

Creating a Dynamic Alarm 83
Rearming a Software Watchdog

Alarm 84
Waiting for Alarm Expiration 85, 86

counter association 79
counter association rule 77, 78
creating 82

defining 76, 82
defining properties of 77
defining rule 78
defining semaphore for 80
definition of 73
expiration event 84
expiration notification rule 81
expiration rule 85
freeing rule 86
general purpose 75
handle 76
illustrations

Cyclic Alarm 79
One-Shot Alarm 78
Possible Duration of a 1-Tick Alarm

Period 75
initial tick count 79
internal 75
number allowed 76
one-shot rule 76
properties 77
properties structure 77
reading remaining ticks 86
rearming 84
recycle tick count 79
releasing 86
rules 74, 76, 77, 78, 80, 81, 83, 85, 86
semaphore, abort 81
semaphore, expiration 80

90 RTXC Kernel User’s Guide, Volume 1

June 21, 2002

states 80
tick counting 74
tick rule 74
Waiter_Mode attribute 79

Alarm services
KS_CloseAlarm 82, 86
KS_DefAlarmProp 82
KS_DefAlarmSema 80
KS_TestAlarm 86
TS_ArmAlarm 84
XX_AbortAlarm 80, 81, 86, 87
XX_ArmAlarm 83
XX_CancelAlarm 80, 87
XX_DefAlarmAction 87
XX_DefAlarmProp 77
XX_GetAlarmProp 77
XX_GetAlarmTicks 86
XX_RearmAlarm 81, 84
XX_TestAlarmW 85

Alarm_Abort event 80
Alarm_Active state 80
Alarm_Expiration event 80
Alarm_Inactive state 80
allocating

alarms 82
pipe buffers 38, 42, 43

API library 3
application time 70
arming an alarm 83
attribute

Counting_State 65
Dynamics 82
Enable/Disable 67
Waiter_Mode 79

attributes
alarm 79
counter 67

event source 65
exception 34
pipe 40
thread 17

B
base address of pipe 41
buffers 39

basic services for 38

C
chapter summary 5
closing alarm 82
code examples

Accessing Thread Environment
Arguments Structure 21

Alarm Properties Structure 77
Computing Elapsed Time Between Two

Events 73
Consumer Getting Data from Pipe 50
Counter Properties Structure 67
Creating a Dynamic Alarm 83
Event Source Properties Structure 65
Exception Properties Structure 33
Level Properties Structure 11
Pipe Action when Putting Full Buffers

into Pipe 54
Pipe Actions with Multiple Producers

and Single Consumer 57
Pipe Properties Structure 40
Producer Putting Data into Pipe 46
Producer Putting Data into Pipe Using

Combined Operations 48
Rearming a Software Watchdog Alarm

84
Thread Code Model 14
Thread Properties Structure 17

Index 91

June 21, 2002

Using Thread Arguments 19
Waiting for Alarm Expiration 85, 86

control block
Level 10
Pipe 39
Thread 13

converting to and from ticks 68
counter 66

attribute 67
code example, Computing Elapsed Time

Between Two Events 73
defining 67
definition of 66
Enable/Disable attribute 67
event source association 68
event tick modulus 68
handle 67
measuring elapsed ticks 72
number allowed 67
properties 67
properties structure 67
reading ticks 72
tick count accumulator 68

Counter services
XX_ClearCounterAttr 68
XX_DefCounterProp 67, 68
XX_GetCounterAcc 72
XX_GetElapsedCounterTicks 72,

73
XX_SetCounterAcc 68, 71
XX_SetCounterAttr 68

counter tick
defining frequency of 74
uses of 75

counting 73
elapsed ticks 75
events 64

Counting_State attribute 65
Current Level, rules 15
Current Thread

definition of 13
rules 22

current time 70

D
data buffers 39
data movement with pipes 38
defining

alarm properties 77
alarm semaphore 80
alarms 76, 82
counter ticks 74
counters 67
event sources 64
exception properties 34
exceptions 33
pipe properties 40
pipes 39
static threads 16
threads 13, 26

dynamic threads
number of 11

Dynamics attribute 82

E
elapsed ticks 72
Enable/Disable attribute 67
entry point, thread 17
environment arguments 19

rules for thread 20
using 28

event 62
alarm expiration 84
Alarm_Abort 80

92 RTXC Kernel User’s Guide, Volume 1

June 21, 2002

Alarm_Expiration 80
counting 64, 66
definition of 63

event management hierarchy 62
illustration 62, 63

event source
accumulator 65
attribute 65
count accumulation 64
Counting_State attribute 65
defining 64
definition of 63
Event Management Hierarchy,

illustration 62, 63
handle 65
number allowed 65
properties 65
properties structure 65

event source association 68
Event Source services
XX_ProcessEventSourceTick 66,

87
XX_SetEventSourceAcc 66

event tick modulus 68
evntsrc property 68
example code. See code examples.
exception

attributes 34
defining 33
defining properties of 34
definition of 32
dynamically load device drivers 35
handle 33
handler property 35
interrupt claiming rule 34
interrupt handling 32
interrupt service routine rule 32

interrupt vector 34
level property 34
principal use of 35
prologue address 35
properties 33
properties structure 33
rules 32, 34
vectors 35

Exception services
XX_DefExceptionProp 34, 35
XX_GetExceptionProp 34

exceptions, number allowed 33

F
freebase pointer 41
fullbase pointer 41

G
gmtime library function 71

H
handle

alarm 76
counter 67
event source 65
exception 33
pipe 39
thread 13

I
illustrations

Basic Pipe Operations 39
Cyclic Alarm 79
Event Management Hierarchy 62
Event Management Hierarchy, Realistic

Example 63

Index 93

June 21, 2002

Multiple Pipe, Single Consumer
Organization 56

One-Shot Alarm 78
Possible Duration of a 1-Tick Alarm

Period 75
Priority Time Sequence for Second

Example 25
Ready Table array 15
Ready Table layout 10
Round Robin Time Sequence for First

Example 23
Round Robin Time Sequence for Second

Example 24
Thread Order for Scheduling Examples

23
interrupt handling 32
interrupt service routine. See exception
interrupt vector 34

K
kernel

description 2
features 3

kernel service
KS_CloseAlarm 82, 86
KS_DefAlarmProp 82
KS_DefAlarmSema 80
KS_TestAlarm 86
KS_TestSemaMW 81
KS_TestSemaW 81
TS_ArmAlarm 84
TS_GetThreadGateLoadPreset 29
XX_AbortAlarm 80, 81, 86, 87
XX_ArmAlarm 83
XX_CancelAlarm 80, 87
XX_ClearCounterAttr 68
XX_ClearThreadGateBits 29

XX_DecrThreadGate 29
XX_DefAlarmAction 87
XX_DefAlarmProp 77
XX_DefCounterProp 67, 68
XX_DefExceptionProp 34, 35
XX_DefPipeAction 52, 53
XX_DefPipeProp 40, 42
XX_DefThreadArg 18, 27
XX_DefThreadEnvArg 19, 20
XX_DefThreadProp 16, 26
XX_GetAlarmProp 77
XX_GetAlarmTicks 86
XX_GetCounterAcc 72
XX_GetElapsedCounterTicks 72,

73
XX_GetEmptyPipeBuf 44
XX_GetExceptionProp 34
XX_GetFullPipeBuf 49
XX_GetPipeProp 40, 43
XX_GetThreadEnvArg 20
XX_GetThreadGate 29
XX_GetThreadProp 16
XX_IncrThreadGate 28
XX_JamFullGetEmptyPipeBuf 52
XX_JamFullPipeBuf 51
XX_ORThreadGateBits 28
XX_ProcessEventSourceTick 66,

87
XX_PutEmptyGetFullPipeBuf 47,

49
XX_PutEmptyPipeBuf 42, 49
XX_PutFullGetEmptyPipeBuf 44,

45, 52
XX_PutFullPipeBuf 44
XX_RearmAlarm 81, 84
XX_ScheduleThread 14, 27
XX_ScheduleThreadArg 14, 18, 27

94 RTXC Kernel User’s Guide, Volume 1

June 21, 2002

XX_SetCounterAcc 68, 71
XX_SetCounterAttr 68
XX_SetEventSourceAcc 66
XX_TestAlarmW 85

kernel services 3
KS_CloseAlarm 82, 86
KS_DefAlarmProp 82
KS_DefAlarmSema 80
KS_TestAlarm 86
KS_TestSemaMW 81
KS_TestSemaW 81

L
LCB. See Level Control Block.
level

control block 10
definition of 9
priority 12
properties structure 11
Ready Table 10
Ready Table layout, illustration 10
rules 9

Level Control Block (LCB) 10
level for thread 17
levels, minimum number of 9
library function

gmtime 71
localtime 71
mktime 71

localtime library function 71

M
maximum buffer size for pipe 41
mktime library function 71
modulus property 68
moving data 38
multitasking 21

N
n_dynamic property 11
n_static property 11
Not_Ready state, thread 14
Null Thread 30
number of pipe buffers 41

O
optional properties, Thread class 18
order for thread 17
organization of pipes 39

P
PiCB. See Pipe Control Block
pipe

actions 53
actions and conditions 52
allocating buffers 42, 43
attributes 40
automatic creation of buffers 42
base address 41
buffer list pointers rule 40
buffer ordering 38
buffer size list address 43
buffer size rules 40
code examples

Consumer Getting Data from Pipe 50
Pipe Action when Putting Full

Buffers into Pipe 54
Pipe Actions with Multiple Producers

and Single Consumer 57
Producer Putting Data into Pipe 46
Producer Putting Data into Pipe

Using Combined Operations 48
combined operation services rules 45
consumer operations 49
consumer’s job 43

Index 95

June 21, 2002

control block 39
data buffers 39
defining 39
defining properties of 40
definition of 38
free buffer base address 41
full buffer base address 41
handle 39
illustrations

Basic Pipe Operations 39
Multiple Pipe, Single Consumer

Organization 56
jamming data into 51
maximum buffer size 41
number of buffers 41
number of buffers rule 40
organization 39
producer operations 44
producer’s job 43
properties 40
properties structure 40
PUTEMPTY condition 53
PUTFULL condition 53
reading properties 43
rules 38, 40, 45
states 43

Pipe Control Block (PiCB) 39
Pipe services
XX_DefPipeAction 52, 53
XX_DefPipeProp 40, 42
XX_GetEmptyPipeBuf 44
XX_GetFullPipeBuf 49
XX_GetPipeProp 40, 43
XX_JamFullGetEmptyPipeBuf 52
XX_JamFullPipeBuf 51
XX_PutEmptyGetFullPipeBuf 47,

49
XX_PutEmptyPipeBuf 42, 49

XX_PutFullGetEmptyPipeBuf 44,
45, 52

XX_PutFullPipeBuf 44
priority of level 12
priority scheduling 22

definition of 24
time sequence, illustration 25

prologue address 35
properties

alarm 77
counter 67
defining for alarm 77
event source 65
exception 33
n_dynamic 11
n_static 11
optional Thread class 18
pipes 40
thread 16

properties structure
counter 67
event source 65
exception 33
level 11
pipe 40
thread 16

PUTEMPTY condition 53
PUTFULL condition 53

R
reading pipe properties 43
Ready state, thread 14
Ready Table

array, illustration 15
definition of 10
layout, illustration 10
maximum number of threads 13

96 RTXC Kernel User’s Guide, Volume 1

June 21, 2002

rearming an alarm 84
releasing an alarm 86
remaining ticks on alarm 86
round robin scheduling 22

definition of 22
time sequence, illustration 23, 24

RTXC/ss component, features 4
rules

active alarm 80
alarm activation 83
alarm and counter association 77, 78
alarm defining properties 78
alarm expiration 85
alarm expiration notification 81
alarm tick 74
buffer list pointers 40
combined operation services 45
Current Level 15
Current Thread 16, 22
exception 32
freeing alarm 86
interrupt claiming 34
number of pipe buffers 40
one level minimum 9
one-shot alarm 76
pipe 38
pipe buffer size 40
static levels only 9
thread environment arguments 20
thread properties 17
thread scheduling 22, 24
thread starting address 26

Running state, thread 14

S
scalability 2
scheduler, thread 13, 16

scheduling
priority 24
round robin 22
threads 26

scheduling protocols 21
semaphore

alarm abort 81
alarm expiration 80
defining for alarm 80

Semaphore services
KS_TestSemaMW 81
KS_TestSemaW 81

sizebase pointer 43
state

Alarm_Active 80
Alarm_Inactive 80
thread Not_Ready 14
thread Ready 14
thread Running 14

states
alarm 80
pipe 43
thread 14

static thread, defining 16
static threads, number of 11
structure

alarm properties 77
counter properties 67
even source properties 65
exception properties 33
level properties 11
pipe properties 40
thread properties 17

system time 70

T
ThCB. See Thread Control Block

Index 97

June 21, 2002

thread
attributes 17
code examples

Accessing Thread Environment
Arguments Structure 21

Thread Code Model 14
Using Thread Arguments 19

compared to task 13
control block 13
Current Level rules 15
Current Thread rules 16, 22
defining 13, 26
defining static 16
definition of 12
entry point 17
environment arguments 19
environment arguments rule 20
handle 13
illustrations

Priority Time Sequence for Second
Example 25

Ready Table array 15
Round Robin Time Sequence for First

Example 23, 24
Thread Order for Scheduling

Examples 23
level 17
no context 25
optional class properties 18
order 17
organization 13
properties 16
properties rules 17
properties structure 16, 17
readying for execution 15
rules 15, 16, 17, 20, 22, 24, 26
scheduler 13, 16
scheduling 26

scheduling protocols 21
scheduling rules 22, 24
starting address rule 26
states 14
thread gate 20, 28
treated as function 13
using environment arguments 28
using thread argument 27

thread argument 27
Thread Arguments property 18
Thread Control Block (ThCB) 13
thread gate

definition of 20
using 28

Thread services
XX_ClearThreadGateBits 29
XX_DecrThreadGate 29
XX_DefThreadArg 18, 27
XX_DefThreadEnvArg 19, 20
XX_DefThreadProp 16, 26
XX_GetThreadEnvArg 20
XX_GetThreadGate 29
TS_GetThreadGateLoadPreset 29
XX_GetThreadProp 16
XX_IncrThreadGate 28
XX_ORThreadGateBits 28
XX_ScheduleThread 14, 27
XX_ScheduleThreadArg 14, 18, 27

threads
number of dynamic 11
number of static 11
scheduling 16

tick
conversion 68
counting 74
definition of 64

tick count accumulator 68

98 RTXC Kernel User’s Guide, Volume 1

June 21, 2002

time
application 70
converting to and from system 71
current 70
system 70

TS_ArmAlarm 84
TS_GetThreadGateLoadPreset 29

U
User RAM, location of pipe buffers 39

V
vector 35

W
Waiter_Mode attribute 79

X
XX_AbortAlarm 80, 81, 86, 87
XX_ArmAlarm 83
XX_CancelAlarm 80, 87
XX_ClearCounterAttr 68
XX_ClearThreadGateBits 29
XX_DecrThreadGate 29
XX_DefAlarmAction 87
XX_DefAlarmProp 77
XX_DefCounterProp 67, 68
XX_DefExceptionProp 34, 35
XX_DefPipeAction 52, 53
XX_DefPipeProp 40, 42

XX_DefThreadArg 18, 27
XX_DefThreadEnvArg 19, 20
XX_DefThreadProp 16, 26
XX_GetAlarmProp 77
XX_GetAlarmTicks 86
XX_GetCounterAcc 72
XX_GetElapsedCounterTicks 72, 73
XX_GetEmptyPipeBuf 44
XX_GetExceptionProp 34
XX_GetFullPipeBuf 49
XX_GetPipeProp 40, 43
XX_GetThreadEnvArg 20
XX_GetThreadGate 29
XX_GetThreadProp 16
XX_IncrThreadGate 28
XX_JamFullGetEmptyPipeBuf 52
XX_JamFullPipeBuf 51
XX_ORThreadGateBits 28
XX_ProcessEventSourceTick 66, 87
XX_PutEmptyGetFullPipeBuf 47, 49
XX_PutEmptyPipeBuf 42, 49
XX_PutFullGetEmptyPipeBuf 44, 45,

52
XX_PutFullPipeBuf 44
XX_RearmAlarm 81, 84
XX_ScheduleThread 14, 27
XX_ScheduleThreadArg 14, 18, 27
XX_SetCounterAcc 68, 71
XX_SetCounterAttr 68
XX_SetEventSourceAcc 66
XX_TestAlarmW 85

	Contents
	List of Examples
	List of Figures
	Introduction
	The RTXC Kernel
	RTXC Kernel Features
	RTXC/ss Features
	How to Use This Book

	Levels and Threads—Meeting Functional Requirements
	Introducing Levels
	Level Definition
	Level Organization
	Ready Table
	Figure�2�1. Ready Table Layout

	Level Properties
	Example�2�1. Level Properties Structure

	Level Attributes
	Number of Static Threads
	Number of Dynamic Threads
	Level Priority

	Introducing Threads
	Thread Definition
	Thread Organization
	Example�2�2. Thread Code Model

	Thread States
	Readying Threads for Execution
	Figure�2�2. Ready Table Array for Four Levels

	Thread Properties
	Example�2�3. Thread Properties Structure

	Optional Properties
	Thread Arguments
	Example�2�4. Using Thread Arguments

	Environment Arguments
	Thread Gates
	Example�2�5. Accessing Thread Environment Arguments Structure

	Thread Scheduling Protocols
	Round Robin Scheduling
	Figure�2�3. Thread Order for Scheduling Examples
	Figure�2�4. Round Robin Time Sequence for First Example
	Figure�2�5. Round Robin Time Sequence for Second Example

	Priority Scheduling
	Figure�2�6. Priority Time Sequence for Second Example

	Thread Contexts
	Using Threads
	Thread Definition
	Thread Scheduling
	Using the Thread Argument
	Using Thread Environment Arguments
	Using Thread Gates

	Null Thread

	Exceptions—Claiming Interrupt Vectors
	Introducing Exceptions
	Exception Definition
	Exception Properties
	Example�3�1. Exception Properties Structure
	Exception Attributes
	Priority Level
	Interrupt Vector
	ISR Prologue Address

	Exception Vectors

	Pipes—Buffered Data Movement
	Introducing Pipes
	Figure�4�1. Basic Pipe Operations

	Pipe Definition
	Pipe Organization
	Pipe Properties
	Example�4�1. Pipe Properties Structure
	Pipe Attributes
	Number of Buffers
	Maximum Buffer Size
	Address of Pipe
	Pointer to Full Buffer List
	Pointer to Free Buffer List
	Pointer to Buffer Size List

	Pipe States
	Optional Properties
	Using Pipes
	Producer Operations
	Example�4�2. Producer Putting Data into Pipe
	Example�4�3. Producer Putting Data into Pipe Using Combined Operations

	Consumer Operations
	Example�4�4. Consumer Getting Data from Pipe

	Jamming Data into a Pipe
	Pipe Actions and Conditions
	Example�4�5. Pipe Action when Putting Full Buffers into Pipe
	Figure�4�2. Multiple Pipe, Single Consumer Organization
	Example�4�6. Pipe Actions with Multiple Producers and Single Consumer

	Event Sources, Counters, and Alarms—Keeping Track of Events
	The Event Management Hierarchy
	Figure�5�1. Event Management Hierarchy
	Figure�5�2. Event Management Hierarchy, Realistic Example

	Introducing Event Sources
	Event Counting
	Event Source Definition
	Event Source Properties
	Example�5�1. Event Source Properties Structure
	Event Source Attribute
	Event Count Accumulator

	Using Event Sources

	Introducing Counters
	Counter Definition
	Counter Properties
	Example�5�2. Counter Properties Structure
	Counter Attribute
	Event Source
	Event Tick Modulus
	Tick Count Accumulator

	Tick Conversion
	Application Time
	System Time
	Converting Calendar Date To System Time
	Converting System Time To Calendar Date

	Using Counters
	Reading Counter Ticks
	Elapsed Ticks
	Example�5�3. Computing Elapsed Time between Two Events

	Introducing Alarms
	Alarm Management
	Figure�5�3. Possible Duration of a 1-Tick Alarm Period, Case A
	Figure�5�4. Possible Duration of a 1-Tick Alarm Period, Case B

	Alarm Definition
	Alarm Properties
	Example�5�4. Alarm Properties Structure
	Figure�5�5. One-Shot Alarm
	Figure�5�6. Cyclic Alarm
	Alarm Attributes
	Counter
	Initial Tick Count
	Recycle Tick Count
	Alarm State

	Optional Properties
	Alarm_Expiration Semaphore
	Alarm_Abort Semaphore

	Using Alarms
	Alarm Creation
	Example�5�5. Creating a Dynamic Alarm

	Arming an Alarm
	Rearming an Alarm
	Example�5�6. Rearming a Software Watchdog Alarm

	Alarm Expiration
	Example�5�7. Waiting for Alarm Expiration with Possibility of Alarm Cancel or Abort
	Example�5�8. Waiting for Alarm Expiration without Possibility of Alarm Cancel or Abort

	Aborting an Alarm
	Freeing Alarms
	Reading Ticks Remaining on a Alarm
	Actions Taken at Alarm Expiry

	Index

