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C H A P T E R 1 Introduction

In This Chapter
We introduce the RTXC/ss component of the RTXC RTOS and 
describe the contents of this book.

The RTXC Kernel ..................................................................................2

RTXC Kernel Features .......................................................................... 3

RTXC/ss Features.................................................................................4

How to Use This Book ......................................................................... 5
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The RTXC Kernel
The RTXC Kernel is the heart of the RTXC RTOS, a multitasking real-
time operating system (RTOS) for the development of embedded 
applications. It comes in two variants, the RTXC DSP Kernel with 
support for using digital signal processors (DSP), and the RTXC 
Quadros Kernel for non-DSP processors.

The RTXC Kernel provides a software framework for real-world, real-
time systems, consisting of two major components, RTXC/ss and 
RTXC/ms, each of which can schedule the use of the CPU according 
to the demands of the application. The RTXC/ss component features 
a single stack model with a low-latency thread scheduler and a small 
footprint, making it ideally suited for applications requiring high 
frequency interrupt processing, such as in digital signal processing. 
The RTXC/ms component provides a multiple independent stack 
model for a fully pre-emptive multitasking scheduler with a rich set 
of kernel services well suited to deterministic, hard real-time system 
requirements.

The RTXC Kernel is highly scalable in that the user may select the 
basic framework of either the RTXC/ss component or the RTXC/ms 
component alone, or both components combined. It is further 
scalable by the selection of various properties within each kernel 
object class and the services that operate on those classes. The RTXC 
RTOS includes a configuration utility program, RTXCgen, to assist 
the user in configuring the kernel with the set of resources and 
features most suitable to the needs of the application.

The RTXC RTOS permits the user to develop applications using 
assembly language, C, or C++. Each distribution of the RTXC RTOS 
is ported to a specific processor and bound to the application source 
language, making access to kernel services convenient for the 
developer. The RTXC Kernel has an implementation history dating 
from 1978, and thus provides a sound foundation for development 
of software over a broad range of real-time applications.

The RTXC Kernel consists of a library of functions that provide a rule-
based architecture for the design and implementation of embedded 
real-time systems. A set of object classes and the kernel services that 
operate on them are the embodiment of the architecture of the RTXC 
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Kernel. Users gain access to the RTOS by calling various kernel 
services through a comprehensive application program interface 
(API) to achieve desired system behavior. This API library uses 
kernel service names that help make the product easy to learn and 
easy to use. The programmer can spend less time dealing with 
system matters and more time on developing the application.

The RTXC Kernel software should be used as any other software 
library. You do not need to know how the RTXC Kernel operates 
internally. Rather, you need to know only which RTXC Kernel service 
to use to achieve a desired result. Thus, the RTXC Kernel becomes 
much like a large-scale integrated circuit hardware component.

Users of the RTXC RTOS have access to this book and the other 
volumes of the RTXC Library to learn more about the product and to 
resolve technical issues.

RTXC Kernel Features
The RTXC Kernel features support real-time, multitasking 
applications using either RTXC/ss or RTXC/ms, or a combination of 
RTXC/ss and RTXC/ms. General features of the RTXC Kernel 
include:

Three levels of code and data scalability for optimized 
configurations:

Class

Class Properties

Kernel Services

Standard programmer interface in C language on all processors
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RTXC/ss Features
The RTXC/ss component supports the following features:

Multi-thread processing with selectable scheduling methods:

Preemptive between Levels

Priority within the same Level

Round robin

Static kernel objects:

Levels and Threads

Pipes

Event Sources, Counters, and Alarms

Exceptions

Multiple thread priority levels

Fixed thread priorities within a level

No context saved or restored for threads operating at same level

Pre-emptive scheduling of threads between levels

Single stack for all operations

Low latency for fast processes

Small RAM and ROM usage
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How to Use This Book

Note:  The RTXC Kernel User’s Guide, Volume 1 contains 
information needed by users of both the Single Stack and 
the Dual Mode configurations of the RTXC Kernel. If you 
purchase the Single Stack configuration of the RTXC Kernel, 
you receive only Volume 1 of this book, and you can ignore 
references in this text to the RTXC/ms Kernel component.

If you purchase the Dual Mode configuration, you receive 
both Volume 1 and Volume 2.

The RTXC Kernel User’s Guide, Volume 1 assumes the reader has 
fundamental knowledge about multitasking real-time kernels and 
expands on that knowledge by explaining the inputs and outputs of 
the RTXC Kernel as a software component of an embedded 
application. This book focuses on RTXC/ss, the Single Stack 
component of the RTXC Kernel, and includes the following chapters 
and appendixes:

Chapter 1, “Introduction,” describes the contents of the volume.

Chapter 2, “Levels and Threads—Meeting Functional 
Requirements,” discusses how the RTXC/ss component of the RTXC 
Kernel uses levels and threads to meet the functional requirements 
of the application.

Chapter 3, “Exceptions—Claiming Interrupt Vectors,” discusses 
how the RTXC/ss component of the RTXC Kernel uses exceptions to 
prepare for servicing interrupts.

Chapter 4, “Pipes—Buffered Data Movement,” discusses how the 
RTXC/ss component of the RTXC Kernel uses pipes to move data 
between threads.

Chapter 5, “Event Sources, Counters, and Alarms—Keeping Track of 
Events,” discusses how the RTXC/ss component of the RTXC Kernel 
uses event sources, counters, and alarms to manage time- and tick-
based operations of the application.
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C H A P T E R 2 Levels and Threads–Meeting 

Functional Requirements

In This Chapter
We discuss how the RTXC/ss component uses levels and threads to 
meet the functional requirements of the application. We present 
level and thread concepts, organizations, and properties. Then we 
expand on the policies and present methods of thread scheduling. 
Finally, we present a functional overview of the thread management 
capabilities of the RTXC/ss component.

Introducing Levels................................................................................9
Level Definition..............................................................................9
Level Organization....................................................................... 10
Ready Table .................................................................................. 10
Level Properties ............................................................................11
Level Attributes .............................................................................11
Number of Static Threads ............................................................11
Number of Dynamic Threads.......................................................11
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Thread Definition..........................................................................13
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Introducing Levels
Levels are a special class within the design of the RTXC/ss 
component. Levels have properties but no associated kernel services 
other than for initialization of the class properties. The purpose of 
the Levels class is to organize the operation of its child class, 
Threads. The architecture of RTXC/ss component is based on a 
design philosophy that uses a single stack, permitting a low latency 
code execution model based on threads. Threads are more 
completely defined later in this chapter.

Levels represent the priorities at which threads execute. An 
application based on the RTXC/ss component can employ one or 
more levels at which to execute threads. Execution of threads is based 
upon a scheduling policy using the priority of each level. Threads 
associated with levels that have a high priority execute before threads 
at lower priority levels. Within a level, all threads operate at a fixed 
priority and cannot preempt one another. However, a thread 
operating at one level can preempt another thread operating at a 
lower priority level.

The following rule applies:

Rule: In a system using the RTXC/ss component, there must be 
at least one level.

Level Definition

During system generation for a system configuration using the 
RTXC/ss component, you may define from one to 16 total levels.

A level handle must be within the range of the total number of levels 
defined for the application. Where a reference to a level is applicable, 
you may refer to it by its handle, which is a LEVEL type datum. There 
are two rules applicable to level definition:

Rule: All levels must be statically defined.

Rule: The RTXC Kernel does not support dynamic levels.
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Level Organization

A level consists of two main parts: its data structure, called a Level 
Control Block (LCB), and a set of pointers to its associated threads. 
The level’s handle is the LCB’s index in the LCB array. The RTXC/ss 
Scheduler uses the information in the LCB to control the execution 
of threads associated with that level. The key element in the LCB is 
the Ready Table.

Ready Table

The Ready Table is a single datum that contains one bit for each 
thread associated with the level. A thread becomes ready to receive 
control of the CPU when application code, an interrupt handling 
routine, another thread, or a task, if the RTXC/ms component is 
present, schedules its execution. In scheduling the thread, the kernel 
sets a bit in the Ready Table corresponding to the thread. A thread’s 
bit being set does not necessarily mean that the thread immediately 
gains control of the CPU. Other conditions must also be present, as 
explained later in this chapter.

Each bit in the Ready Table has an order number that associates it 
with a particular thread. The order numbers begin at 1, starting from 
the most significant bit, as illustrated in Figure 2-1, and represent 
the priorities of the associated threads. Thus, a thread’s execution 
priority consists of two parts: its level and its order number.

Figure 2-1. Ready Table Layout 

The actual size of the datum used for the Ready Table is a function 
of the processor. Depending on the target processor, it size could be 
8, 16, 24, or 32 bits.

MSB LSB

Priority

Highest Lowest

Order
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Level Properties

Level objects have several properties, all of which you define during 
the system configuration process using RTXCgen. Once set, there are 
no kernel services available in the RTXC/ss component to modify 
these properties under program control. The RTXC Kernel defines a 
LEVELPROP properties structure for use during the initialization 
process. The members of the structure represent the properties and 
have the organization shown in Example 2-1.

Example 2-1. Level Properties Structure 

typedef struct
{
   KATTR attributes;     /* attributes */
   KCOUNT n_static;      /* number of static threads */
   KCOUNT n_dynamic;     /* number of dynamic threads */
} LEVELPROP;

Level Attributes

A level has a single value for the attributes property denoting the 
method by which the RTXC/ss Scheduler grants control of the CPU 
to threads whose corresponding bits in the Ready Table are set to 1. 
The value denotes either Priority or Round_Robin scheduling. The 
default value is Priority scheduling.

Number of Static Threads

The n_static property specifies the number of statically defined 
threads the user has defined for the priority level. The RTXCgen 
program automatically determines the value of n_static. An 
application using only the RTXC/ss component can employ only 
static threads.

Number of Dynamic Threads

The n_dynamic property, which specifies the number of dynamic 
threads, applies only if the application configuration includes the 
RTXC/ss and RTXC/ms components. Dynamic threads are not 
available for use in a system having only the RTXC/ss component. 
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Only Zone 3 operations using RTXC/ms component services can 
create and destroy dynamic threads.

Level Priority

During the system configuration process using RTXCgen, the user 
defines each level in the application and implicitly defines the level’s 
priority. Unlike all other RTXC Kernel classes where the object’s 
handle implies no priority, the handle of a level does. The level’s 
handle represents its index in the array of LCBs and the index, a 
level’s position in the hierarchy of levels, defines its priority with 
respect to thread execution. Levels share the same inverse priority 
model as Zones: thread and task priorities decrease as the numerical 
value of the priority increases. Therefore, the first level has the 
highest priority, the second level has the next lower priority, and so 
on.

Note:  The handle of a level is equal to its priority. The 
handle of a level is equivalent to its index in the array of 
LCBs. For example, if three levels exist, their indexes, and 
therefore their priorities, are 1, 2, and 3, respectively. The 
level with index 1 has the highest priority. Index 2 is the next 
highest priority, and so on.

Introducing Threads
In a real-time embedded system, the system designer decomposes 
the application’s functional requirements into a suite of functional 
entities. In applications based on the RTXC/ss component, these 
entities are called threads, a code design and execution technique that 
features minimum RAM requirements and minimum system 
overhead. The RTXC/ss component provides a simple model for 
executing threads, which are workhorse program elements. The 
nature of each thread is, of course, application-dependent, and is left 
to the imagination of the system designer. Threads implement the 
design policies concerning management of the application 
processes and solving the application’s functional requirements.
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References to the RTXC Kernel in this chapter mean any 
configuration of the RTXC Kernel that contains the RTXC/ss 
component.

Thread Definition 

Each thread is specific to a given level. During system generation, 
you may define, for each specified level, the threads that execute at 
the priority represented by that level. You may define only static 
threads, the number of which must be less than or equal to the size 
(in bits) of the Ready Table.

Because the size of the Ready Table governs the maximum number 
of threads at a given level, RTXCgen associates each thread with a bit 
in the Ready Table for its level. Therefore, the assignment of bits 
refers to the thread’s order, as depicted in Figure 2-1 on page 10, 
proceeding from the MSB to the LSB of the Ready Table.

A thread handle must be within the range of the total number of 
threads defined for all levels in the application. The application 
program code refers to a thread by its handle, which is a THREAD type 
datum. A thread handle of zero (0) is legal in a kernel service for the 
Thread object class and is a shorthand definition for the Current 
Thread, which is the thread currently in control of the CPU.

Thread Organization 

In the RTXC Kernel, a thread consists of two parts: its program code 
and a data structure called a Thread Control Block (ThCB). Each 
thread requires a ThCB, and it is the ThCB’s index in the ThCB array 
that constitutes the thread’s handle. The RTXC/ss Scheduler controls 
the execution of the thread code by managing the data in the ThCB.

The RTXC Kernel treats the code for a thread like a function. 
Consequently, threads should be written as a function called by the 
RTXC/ss Scheduler and returning to it as well. One difference 
between a RTXC thread and a RTXC task is that the task never returns 
to its caller.

There is one code model for RTXC threads as shown in Example 2-2 
on page 14. It receives two possible arguments in the calling 
sequence: its argument and a pointer to its environment arguments. 
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These arguments and the conditions for their use are more fully 
explained later in this chapter.

After gaining control of the CPU, the thread performs its required 
operations and when finished, returns to the RTXC/ss Scheduler.

Example 2-2. Thread Code Model 

void threadname (thread argument, environment argument pointer)
{
   ... Data declarations
   ... Thread initialization

   ... Thread operations

   return;
}

Thread States 

The RTXC Kernel maintains a state for each thread in an application. 
A thread is always in one of the following states:

During startup, the kernel initializes all threads to the Not Ready 
state and also receives the definition of each static thread. Later, at 
the request of an interrupt handling routine, another thread, or a 
task (if the RTXC/ms component is present), the kernel schedules a 
thread’s execution using the XX_ScheduleThread or 
XX_ScheduleThreadArg kernel services. At that point, the 
requested thread’s state becomes Ready. In the Ready state, there are 
no impediments to the thread’s execution, other than gaining control 
of the CPU.

When a thread gains control of the CPU, the RTXC/ss Scheduler 
changes the thread’s state to Running. When the thread returns 

Ready The thread is available for execution as evidenced by its 
order bit in the appropriate level’s Ready Table being set to 
1.

Not Ready The thread is not scheduled and is not capable of receiving 
CPU control.

Running The thread has CPU control.
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control of the CPU to the RTXC/ss Scheduler, the thread’s state 
becomes Not Ready unless it has been rescheduled by an interrupt 
handling routine or a thread executing at a higher priority level.

Readying Threads for Execution

The key to running threads in the RTXC/ss component is the set of 
Ready Tables for all defined levels. Together they assume the 
characteristics of a two-dimensional array where the rows represent 
levels (priority) and the columns are bits (order) representing the 
threads assigned to each level. Figure 2-2 depicts such an array using 
four levels. Level 1 is the highest priority level.

Figure 2-2. Ready Table Array for Four Levels 

The Ready Tables, taken as an array, compose an instantaneous, 
ordered representation of threads that are ready to get control of the 
CPU. Threads become Ready at varying rates and move into the 
Ready Tables as they become scheduled. Consequently, the Ready 
Tables constantly change as the RTXC/ss Scheduler gives CPU 
control to Ready threads while threads at higher priority levels or 
exception handling routines schedule more threads. The rules 
regarding levels are:

Rule: The highest priority level that has a thread in a ready state 
becomes the Current Level.

Rule: The scheduling policy of the level determines which thread 
receives control of the CPU at the Current Level.

MSB LSB

Priority

Highest Lowest

Order

L1

L3

L2

L4
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The RTXC/ss Scheduler must determine which ready thread is the 
next one to receive control of the CPU. To do so, it must first 
determine the highest priority level that has threads in a Ready state. 
When it determines the level, it selects the thread to run next in 
accordance with the scheduling policy of the level. For information 
about thread scheduling policies, see “Thread Scheduling Protocols” 
on page 21. After selecting the appropriate thread, the RTXC/ss 
Scheduler changes the thread’s state to Running and gives it control 
of the CPU. The rules for thread execution are:

Rule: The Current Thread is the thread in control of the CPU.

Rule: The Current Thread must run to completion.

Rule: The Current Thread cannot suspend its execution and 
return to the point of suspension.

Rule: The Current Thread must execute using the common stack.

Rule: The Current Thread has no context on entry.

Rule: The Current Thread leaves no context upon exit.

Rule: Threads at a lower priority level will not run until all threads 
at higher priority levels are in a Not Ready state.

Thread Properties 

Each thread in an application serves a defined purpose represented 
by the thread’s code and properties. The Thread object class has a set 
of properties and individual threads have properties. Together, those 
properties define the information the RTXC Kernel needs to manage 
threads.

Through RTXCgen, the developer defines thread properties for static 
threads. The caller, another thread or a task, can define a thread’s 
properties through the XX_DefThreadProp service, where XX_ is 
either TS_ (Zone 2) or KS_ (Zone 3). The kernel service passes the 
values of the thread’s properties in a THREADPROP structure to define 
the thread. When a thread retrieves information about its own or 
another thread’s properties, the XX_GetThreadProp service 
returns the information in a THREADPROP structure. Example 2-3 on 
page 17 shows the organization of the THREADPROP structure.
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Note:  The XX_ in the service name indicates that the 
service has variants for use in more than one operating 
zone. Depending on the service, XX_ may stand for two or 
more of the following actual prefixes: IS_ (Zone 1), TS_ 
(Zone 2), or KS_ (Zone 3).

Example 2-3. Thread Properties Structure

typedef struct
{
   KATTR attributes            /* thread attributes /*
   TLEVEL level                /* thread base level */
   TORDER order                /* thread order (priority) */
   void (*threadentry)(void *, void *);  /* entry point */
} THREADPROP;

The following rule about thread properties applies:

Rule: The definition of a thread’s properties may only occur when 
the thread’s state is Not_Ready.

Violating the preceding rule may produce unpredictable results. It is 
permissible, however, for a thread to read its own properties or 
modify existing properties through the use of RTXC Kernel services.

attributes Contains attributes of the thread.

level The level at which the thread runs, that is to say, its 
priority level. The level of a thread as defined in the 
THREADPROP structure is also called its base level.

order Corresponds to the bit number in the level’s Ready 
Table. If the scheduling policy of the level is Priority, 
the order element of THREADPROP also represents the 
thread’s priority with respect to other threads at the 
same level. If the level’s scheduling policy is 
Round_Robin, there is no priority implied by the value 
of the order element.

threadentry A pointer to the thread’s entry point. The address can be 
anywhere in the User Code Space.
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Optional Properties

The RTXC Kernel supports optional properties for the Thread object 
class. Using the system configuration utility, RTXCgen, the user 
selects the set of optional Thread class properties that suits the needs 
of the application. Selection of these properties controls how the 
RTXC Kernel configures the Thread Control Block and the code that 
supports the options. When selected, they permit the developer to 
make use of the thread properties through the use of specific kernel 
services.

The optional Thread class properties are:

Thread Arguments

Environment Arguments

Thread Gates

To change the way the RTXC Kernel treats threads with respect to 
these optional properties, the user must use RTXCgen to change the 
optional property selection state and then recompile the RTXC code.

Thread Arguments

The Thread Arguments property controls the first argument in a 
thread’s calling sequence. The thread’s argument can be a scalar or a 
pointer as determined by the user. If the optional Thread Arguments 
property is enabled through RTXCgen, calls to either the 
XX_DefThreadArg or XX_ScheduleThreadArg kernel 
services control the value of a thread’s argument. If the Thread 
Arguments property is disabled, the RTXC/ss Scheduler always 
treats the first calling parameter to every thread as a NULL pointer 
((void *)0).

If the optional Thread Arguments property is enabled, the RTXC/ss 
Scheduler passes the thread’s argument (or a pointer to the thread’s 
argument) as it was defined by the last use of the 
XX_DefThreadArg or XX_ScheduleThreadArg kernel service 
for that thread. Until a code entity invokes either of these services, 
the RTXC Kernel maintains that thread’s argument as a NULL 
pointer.
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Example 2-4 shows how a thread receives its thread argument as a 
pointer to a structure. The example uses data from the structure as 
input into a procedure. In this example, the thread does not use 
environment arguments and the calling parameter is ignored.

Example 2-4. Using Thread Arguments 

#define SELF (THREAD)0 

struct muxdata
   {
      int *dataset;   /* pointer to dataset */
      int setsize;    /* amount of data in dataset */
   };

void threadname (struct muxdata *args, (void *)0)
{
... Data declarations

   ... Thread operations
   /* pass pointer to dataset and dataset size to number */
   /* crunching function */

   crunchnumbers (args->dataset, args->setsize); 

   return;
}

Environment Arguments

In RTXCgen, the optional Thread class Environment Arguments 
property controls the ability of threads to use environment 
arguments. If the user enables the property through RTXCgen, the 
RTXC/ss Scheduler passes the existing value of the thread’s 
environment arguments pointer to the thread whenever the thread 
gains control of the CPU.

The pointer to the thread’s environment arguments is the second 
parameter in the calling sequence to a thread. The default value of 
the pointer in the thread’s ThCB is a NULL pointer ((void *)0) and 
the RTXC Kernel maintains it as such until it is otherwise defined by 
a call to the XX_DefThreadEnvArg kernel service.

Environment arguments exist to permit multiple threads to share a 
common body of code or as a place for a thread to keep intermediate 
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results between execution cycles. When threads share a common 
code body, it is necessary to distinguish one from another. Each 
thread using the common code can specify and make use of a 
separate structure that contains information the thread needs to 
define its runtime environment.

An environment arguments structure can also be of value to the 
thread that does not share code. Quite often, the thread may need to 
know the value of some variable created or modified during a 
previous cycle of the thread, the value of a state variable, or the port 
identity for some input or output operation. The RTXC Kernel 
imposes no restriction on the form or content of the environment 
arguments. The RTXC Kernel only uses pointers to the structure; 
therefore, only the defining thread and the using thread know its 
organization. The following rule applies:

Rule: The environment argument structure for a thread can be 
located anywhere in the User RAM space.

The RTXC Kernel provides the XX_DefThreadEnvArg service, 
where XX_ is the zonal prefix TS_ or KS_, to define the address of the 
structure to the object thread. The XX_GetThreadEnvArg service, 
where XX_ is the zonal prefix TS_ or KS_, returns the address of the 
structure.

Example 2-5 on page 21 shows how to access members of an 
environment arguments structure. The example uses the port and 
channel numbers in the thread’s environment argument structure to 
acquire the channel status. While the channel status is not IDLE, the 
thread does some operations and then terminates when the channel 
status becomes IDLE.

Thread Gates

The RTXC Kernel allows the definition of an optional set of values 
collectively called the thread gate. When enabled by the inclusion of 
this scalable property during system configuration using RTXCgen, 
the ThCB is extended to contain two additional variables: the Thread 
Gate and the Thread Gate Preset.
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Example 2-5. Accessing Thread Environment Arguments Structure

struct myargs
   {
      int port;       /* port number */
      int chnl;       / channel number */
   };

void threadname ((void *)0, struct myargs *args)
{
... Data declarations

   int chnl_stat;             /* channel status /

   ... Thread operations
   /* pointer to environment arguments structure passed in as call */
   /* parameter to the thread. Second call parameter is NULL. */

   while ((chnl_stat = getchnlstat (args->port, args->chnl))
          != IDLE)
   {
      ...do something 
   }

   return;
}

The purpose of a thread gate is to establish conditions for scheduling 
a thread. When used, the thread gate must assume a particular value 
before the RTXC/ss Scheduler can make the thread ready. The thread 
gate preset serves as a value to use in atomically resetting the value 
of the thread gate as a result of certain operations on the thread gate. 
Kernel services exist that perform operations on the thread gate and 
thread gate preset values for program entities in Zones 1, 2 and 3.

For more information about using thread gates, see “Using Thread 
Gates” on page 28.

Thread Scheduling Protocols 

The RTXC/ss component accomplishes the policy of multitasking by 
the method it uses to schedule threads for operation. As previously 
stated, the RTXC basic rules do not enforce any specific thread 
scheduling protocol. They only state general rules regarding 
preemption, CPU control, and Current Thread definition.
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The thread scheduling methods used by the RTXC/ss Scheduler are 
specific to the level at which a thread runs. During system 
configuration, you specify a scheduling policy for each level. The 
RTXC Kernel supports the following methods (or protocols) for 
scheduling threads within an overall multitasking policy:

Round robin

Priority

Some general rules apply to thread scheduling regardless of the 
scheduling policy in use at the Current Level.

Rule: A new thread cannot be granted control of the CPU while 
another thread at the same level is running.

Rule: Once in control of the CPU, the Current Thread must run to 
completion

Rule: A thread that becomes ready at a level with higher priority 
than that of the Current Level preempts the Current Thread and 
gains control of the CPU, becoming the new Current Thread.

Rule: A preempted thread eventually becomes the Current Thread 
again and resumes operation at the point where it was 
preempted.

Round Robin Scheduling 

Round robin scheduling is probably the oldest and simplest of the 
multitasking methods. Threads receive control of the CPU from the 
RTXC/ss Scheduler beginning at the order number of the Current 
Thread and going to the order number of the next ready thread in the 
same Ready Table. To illustrate, consider Figure 2-3 on page 23 in 
which threads A, B, D and G have descending order values and are 
associated with the bits of the Ready Table pointed to by the blocks 
containing their names.
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Figure 2-3. Thread Order for Scheduling Examples

In the first round robin example, all four threads are ready. The 
RTXC/ss Scheduler gives control of the CPU to Thread A, then B, 
then D and finally, thread G, assuming no other thread was 
scheduled in the interim. Figure 2-4 demonstrates this time 
sequence of events.

Figure 2-4. Round Robin Time Sequence for First Example

But consider a second example where only threads B and G are ready. 
The RTXC/ss Scheduler first gives control to thread B. While thread 
B is running, an interrupt handling routine schedules thread A, 
making it ready. Even though thread A has a higher order number, 
the next thread to get CPU control will be thread G because it is the 
next ready thread whose order number is lower than the Current 
Thread, B. Figure 2-5 on page 24 shows the time sequence for the 
events.
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Figure 2-5. Round Robin Time Sequence for Second Example

Figure 2-5 also demonstrates what happens when there are no more 
Ready threads in the Ready Table whose order number follows that 
of the Current Thread. In the example, no Ready thread follows 
thread G. However, thread A is Ready; so the RTXC/ss Scheduler 
restarts the round robin at the MSB of the Ready Table, the order 
number corresponding to thread A.

Priority Scheduling 

For a level using the priority scheduling policy, the RTXC/ss 
Scheduler grants control of the CPU to threads within the level 
according to their order number. The main rule of priority 
scheduling applies:

Rule: Higher order numbered threads run before those of lower 
order number within the same level.

Figure 2-6 on page 25 depicts the priority scheduled time sequence 
of thread executions of the four threads from the second example. 
Threads A, B, D and G, are being scheduled by interrupt handling 
routines. The time sequence begins with thread B as the Current 
Thread.
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Thread G

Ready
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Time

Not-Ready
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Figure 2-6. Priority Time Sequence for Second Example 

From the time sequence, it is easy to see the application of the 
general rules of thread scheduling at work. Thread B begins the 
sequence. Thread A becomes ready shortly after while B is still 
running. Notice there is no preemption. Also note that immediately 
after B terminates, thread A becomes Current Thread even though 
thread G was ready before thread A. Thread A is selected instead of 
thread G because thread A has a higher order number (priority) than 
thread G (see Figure 2-3 on page 23) within the priority level. Thread 
G eventually gets CPU control after A completes. While G is 
running, thread A and D are scheduled and become ready. Neither 
thread A nor D can get control of the CPU yet. When thread G 
completes, thread A runs again. During the execution of thread A, 
thread B becomes ready. When A completes, thread B runs followed 
by thread D, even though D has been waiting in a ready state since 
thread G last executed. And so on.

Thread Contexts

A thread has no context such as that for a task. Because of the nature 
of the RTXC/ss component’s single stack design, a thread cannot 
block or wait for some other process to cause it to continue. 
Consequently, a thread receives control of the CPU at its entry point 
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Ready

Running

Time

Not-Ready
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but without any defined processor context. It is the responsibility of 
the thread to establish on the system stack any local variables it needs 
during its execution cycle. Any information needed from one cycle 
to the next is best maintained either globally or in a structure defined 
as the thread’s environment arguments.

On completion of its execution cycle, the thread must clean up any 
local variables it put on the system stack before it returns to the 
RTXC/ss Scheduler. There is no processor context relative to the 
thread that is saved upon completion of the thread’s execution cycle.

Using Threads

The RTXC Kernel provides a large complement of services for use in 
managing threads. Some of them have been mentioned in previous 
paragraphs in this chapter. This manual does not try to explain all of 
them because most of them have functionality that is self-evident. 
However, the following topics deserve special mention.

Thread Definition 

Before a thread can execute, the application must define it to the 
system along with all of its properties. Use the 
XX_DefThreadProp service to define a thread’s properties before 
using it. The RTXC Kernel supports static threads and manages them 
through a Thread Control Block (ThCB). RTXC Kernel services 
reference a thread by its handle, which is a THREAD type datum. 

Thread execution must follow this rule:

Rule: A thread can only begin execution at its entry address.

Thread Scheduling 

When a process schedules a thread, the thread only has its state 
changed to Ready by virtue of its order bit set in the Ready Table of 
its assigned level. The thread does not necessarily begin its execution 
cycle at that moment. Figure 2-6 on page 25 depicts the difference 
between a thread being scheduled (its Ready state), and when it 
receives control of the CPU (its Running state). The thread does not 
receive control of the CPU until the RTXC/ss Scheduler determines 
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that it has met all conditions necessary to make it the Current Thread 
according to the scheduling policy for its assigned level.

Using the Thread Argument 

After the definition of the thread’s properties, an interrupt handling 
routine, another thread, or a task may use it in a kernel service. The 
XX_ScheduleThread or XX_ScheduleThreadArg services 
make the thread ready to run by setting the bit corresponding to the 
thread’s order number in the Ready Table of its assigned level. The 
XX_ prefix for those services represents the zonal prefixes IS_ (Zone 
1), TS_ (Zone 2), or KS_ (Zone 3). The difference between the two 
services is the use of the thread’s optional Argument property. That 
property is defined as a void * so that it can be a scalar datum or a 
pointer. The Argument property allows the scheduling program to 
pass data easily to the thread.

The value passed by the XX_ScheduleThreadArg service is 
maintained in the thread’s ThCB until such time as the thread 
becomes the Current Thread. At that time, the RTXC/ss Scheduler 
passes the value to the thread as the first of two arguments in 
accordance with the prototype for a thread. 

Warning:  If another XX_ScheduleThreadArg service 
executes before the thread receives CPU control as the result 
of a previous XX_ScheduleThreadArg request, the value 
of the first argument is overwritten. This condition may lead 
to unpredictable results.

In some applications, it is not necessary to schedule a thread with an 
argument each time the thread needs to execute. If so, the designer 
has two choices. One is to use no argument at all. The second is to 
define the argument one time using the XX_DefThreadArg 
kernel service. That service causes the defined argument to be 
maintained in the thread’s ThCB. From there, the RTXC/ss 
Scheduler uses the argument repeatedly when making the thread 
the Current Thread, until the argument needs to be redefined. In 
both cases where the argument is not defined at the time of 
scheduling, the designer uses the XX_ScheduleThread kernel 
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service to make the thread ready. The RTXC/ss Scheduler passes the 
thread the argument as previously defined, or a NULL pointer as the 
case may be, when the thread receives control of the CPU.

Using Thread Environment Arguments 

When the RTXC/ss Scheduler passes control to a thread, the second 
parameter in the calling sequence is a pointer to the thread’s 
environment arguments or a NULL pointer. The thread’s 
environment arguments is a structure containing information that 
this invocation of the thread needs to use as it executes. Typically, use 
of environment structures accompanies the use of shared code 
entities, with the values of the various elements providing the 
information about the specific environment of the thread. 
Example 2-5 on page 21 shows an example of how to use 
environment arguments for a thread.

Using Thread Gates 

Thread gates permit the designer to achieve very sophisticated 
control over the scheduling of a thread. The thread gate is simply a 
numeric, unsigned value that the thread, as well as other processes, 
can operate on to achieve a desired behavior of the thread. There are 
four ways in which to operate on a thread gate:

1. If the value of the thread gate is initially zero, the 
XX_ORThreadGateBits service logically ORs one or more 
bits into the thread gate, making the value greater than zero and 
simultaneously causing the thread state to become Ready. The 
value of the thread gate retains the result of the operation, 
allowing the thread code to read it and interpret the meaning 
assigned to the bits that were set.

2. If the value of the thread gate is initially zero, the 
XX_IncrThreadGate kernel service increments the thread 
gate, making the value greater than zero and simultaneously 
causing the thread state to become Ready. The value of the thread 
gate retains the result of the operation, allowing the thread code 
to read it and use it as a counter of the number of times the 
thread was scheduled.



Chapter 2:  Levels and Threads—Meeting Functional Requirements 29

Introducing Threads

June 21, 2002   

3. If the value of the thread gate is initially non-zero, the 
XX_DecrThreadGate kernel service decrements the thread 
gate by one. If the resulting value of the thread gate is zero, the 
thread’s state immediately becomes Ready and the value of the 
thread gate is simultaneously changed to the value of the thread 
gate preset. Use of this method allows a thread to be scheduled 
only when a certain number of events has occurred.

4. If the value of the thread gate is initially non-zero, the 
XX_ClearThreadGateBits kernel changes the value by 
clearing one or more bits in it, reducing the value according to 
the value of the bits being cleared. If the resulting value of the 
thread gate is zero, the thread’s state immediately becomes 
Ready and the value of the thread gate is simultaneously changed 
to the value of the thread gate preset. Use of this method allows 
a thread to be scheduled only when a set of specific events has 
occurred.

Methods 1 and 2, in which the thread gate value changes from zero 
to non-zero, schedule the associated thread with the new thread gate 
value. When the thread executes, it can read the thread gate value to 
determine the circumstances that caused the execution cycle. Two 
kernel services read the thread gate value.

The XX_GetThreadGate kernel service reads the thread gate 
value without modifying it. This service is an information retrieval 
tool only and can be called by any thread, including the Current 
Thread, as well as by tasks from Zone 3.

The second kernel service, TS_GetThreadGateLoadPreset, is 
available only to the Current Thread. This service returns the current 
value of the thread gate and also resets the thread gate value to the 
value of the thread gate preset property. Thus, if other processes 
perform additional thread gate operations on the thread between the 
time it is scheduled and the time it reads the thread gate value, it can 
detect those operations and take appropriate action.
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Null Thread

The Null Thread is a special process in the RTXC/ss component. It is 
not an actual thread associated with a level because it only runs when 
all threads on all levels are in a Not_Ready state. It operates logically 
in Zone 3 and must use the system stack for any local variables. In a 
system using only the RTXC/ss component, the Null Thread is user-
defined. It may be a simple spin loop or it can perform more complex 
operations particular to the application.

When it begins running, the Null Thread stays in control of the CPU 
until it or an interrupt handling routine schedules a thread. Because 
any such thread will, by definition, be of higher priority than the Null 
Thread, the RTXC/ss Scheduler preempts the Null Thread and gives 
control of the CPU to the higher priority thread. When the RTXC/ss 
Scheduler once again grants CPU control to the Null Thread, it 
continues from the point of its preemption.

If the system includes both the RTXC/ss and RTXC/ms components, 
the Null Thread functions are assumed by the RTXC/ms component, 
providing a very powerful tool to perform Zone 3 operations.
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C H A P T E R 3 Exceptions–Claiming Interrupt 

Vectors

In This Chapter
We discuss how the RTXC Kernel handles interrupts through the 
Exception object class. We first present the basic principles, rules, 
and organization of Exceptions and how the kernel uses them to 
prepare for servicing interrupts. Then we present some general 
usage concepts and more detailed information on Exceptions and 
interrupt servicing.
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Introducing Exceptions 
An embedded system usually has a relationship with an external 
process that it may be monitoring or controlling. The external 
process commonly requires servicing, sometimes at varying rates or 
periods. Devices connected to or associated with the process can 
make demands upon the system to take some action with respect to 
the process. These demands take the form of exceptions to the 
normal flow of processing. For each such exception or interrupt 
source, there may be a dedicated portion of code called an interrupt 
service routine (ISR) required to handle the demand.

The RTXC Kernel provides a generalized interrupt service scheme 
using the Exception object class. An exception object specifies the 
connection between an interrupt source and the application code 
that services it. When an interrupt or exception occurs, the RTXC 
Kernel uses that connection to transfer control from the interrupted 
process to the interrupt servicing procedure specific to the particular 
device causing the interrupt.

This chapter deals only with how to use the RTXC Kernel to claim 
interrupt vectors to establish the relationship between the exception 
source and the code that processes the exception request.

The exception object associated with each interrupt contains 
properties that direct the transfer of CPU control to the associated 
interrupt service routine. The exception properties do not dictate the 
technique of servicing the associated interrupt or whether the 
interrupt is even known to or processed by the RTXC Kernel. The 
user must make that specification by the nature of the interrupt 
service code. The following rule applies to all interrupts falling under 
control of the RTXC Kernel:

Rule: Every interrupt service routine defined or controlled to any 
degree by the Kernel must have an associated exception kernel 
object.

An exception kernel object contains only data that represents the 
defined properties of the exception. The main purpose for the 
Exception as a class is that it promotes the possibility of having 
device drivers that are loadable at runtime by permitting the 
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interrupt vectors associated with the devices to be claimed while the 
system is in operation. There are few RTXC Kernel services 
associated with the Exception class. Except for services for specifying 
the properties of an exception, the services in this class are primarily 
associated with the use of dynamic exceptions.

As with all RTXC objects, exception kernel objects must reside in 
RAM.

Exception Definition 
The kernel refers to exceptions by their handle, which is an EXCPTN 
type value. An exception handle must be within the range of the total 
number of exceptions defined for the application. During system 
generation, RTXCgen supports any combination of static and 
dynamic exceptions up to a total dependent on the size of a datum of 
the EXCPTN type.

There is no difference between the handle of a static exception and a 
dynamic exception. An exception handle of zero (0) is illegal if used 
in a kernel service for the exception object class.

Exception Properties 
The Exception has several properties that determine the path of 
interrupt processing. The RTXC Kernel defines an EXCPTNPROP 
structure for use in claiming a vector for the application. The 
members of the EXCPTNPROP property structure represent the 
properties to which the developer has direct access. The 
EXCPTNPROP structure is organized as shown in Example 3-1.

Example 3-1. Exception Properties Structure

typedef struct
{
   KATTR attributes;      /* reserved for system use */
   unsigned char level;   /* interrupt level */
   unsigned char vector;  /* vector # */
   void (*handler)(void); /* address of interrupt service prologue */ 
} EXCPTNPROP;
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The XX_DefExceptionProp service defines the properties of an 
exception using the values for the elements in the EXCPTNPROP 
structure. The XX_GetExceptionProp service, available only in 
Zone 2 and 3, reads the properties of a given exception and puts the 
property values into an EXCPTNPROP structure.

Exception Attributes 

The attributes property of the exception object is reserved for internal 
system use.

Priority Level 

The value of the exception level property represents the hardware 
interrupt priority level (IPL) at which the processor recognizes the 
interrupt request and begins interrupt processing. This property 
may not apply to all processors using the RTXC Kernel. Consult the 
target processor’s reference manual.

Interrupt Vector

The kernel associates each exception with an interrupt vector 
location in memory. The vector property contains the vector number, 
which is an index into the processor’s vector table. Depending on the 
processor, the vector may contain the address of the prologue of the 
interrupt servicing code or a branch or jump to the prologue. The 
RTXC Kernel permits all interrupt vectors to be resident in either 
RAM or ROM. The user makes the choice of interrupt vector 
memory type during system configuration. That choice determines 
how the RTXC Kernel claims interrupt vectors.

The use of RAM or ROM vectors has implications that are dependent 
on the processor. Consult the Binding Manual for the target 
processor for specific information on vector setup. One rule applies 
to vector claiming due to the way different processors treat interrupt 
vectors:

Rule: If a user writes a routine to claim an interrupt vector, it must 
match the method the Kernel uses.
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ISR Prologue Address

The handler property specifies the beginning memory address of the 
prologue segment of the interrupt service routine.

The prologue begins an ISR by saving the interrupted context of the 
processor to the extent the ISR requires.

Exception Vectors
The principal use of the Exception class is to provide a way of 
associating an interrupt vector with code that performs the interrupt 
servicing. A secondary use is to allow a designer to employ dynamic 
exceptions that associate a device with an interrupt vector at runtime, 
making it possible to have device drivers that the system can load 
dynamically. 

There are no design or specific use methods for the RTXC Exception 
class because the exception object is merely an associative object. 
The details about the code in interrupt servicing routines is fully 
covered in the RTXC Kernel I/O and Device Driver Development Guide.

However, the user should understand the handling of vectors so as 
to define an exception properly.

The RTXC Kernel allows the placement of interrupt vectors in either 
RAM or ROM. The developer makes the decision where to place 
them during system generation as a configuration choice. The 
XX_DefExceptionProp service not only associates the exception 
with a particular vector but also sets up a pointer to the exception’s 
interrupt servicing routine.

When using RAM vectors, all vectors are in an unknown state with 
undefined content at the time of system reset. At some time, the 
application code uses XX_DefExceptionProp to make the 
necessary exception property definitions. The exception definition 
procedure includes establishing a direct reference to the beginning 
of the exception’s interrupt processing code, usually considered as 
the beginning of the prologue. RAM vectors are generally the most 
efficient in that the processor usually does not execute any extra 
instructions to get to the prologue. Some processors, however, do not 
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treat the vector content as an address of the prologue but rather as a 
jump, or other branch control instruction, to the prologue. To 
determine which method is appropriate, you should refer to your 
processor’s reference manual. Refer to the Binding Manual for 
specific information about RAM vectors for the target processor.

The RTXC Kernel also supports the use of ROM-based interrupt 
vectors. ROM vectors require the user to set the content of interrupt 
vectors to be a direct or indirect reference to the interrupt service 
prologue in the manner described for the particular processor. With 
the vector in ROM, the XX_DefExceptionProp service cannot 
change the contents of the vector. ROM vectors do not cause any 
increase in interrupt latency compared to RAM vectors.
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C H A P T E R 4 Pipes–Buffered Data Movement

In This Chapter
We discuss the use of pipes as one of three data movement methods 
supported by the RTXC Kernel. We first present the basic principles, 
rules and organization of pipes. Then, to help you understand how 
to use this object class, we present some general usage concepts 
supported by extensive examples.
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Introducing Pipes
The RTXC Kernel provides a method of moving data between 
program entities executing in different zones. The Pipe object class 
allows a zone 1 interrupt handler to pipe data to a thread or task, 
running at zones 2 and 3, respectively. A thread in zone 2 can pipe 
data to another thread, a task, or an interrupt handler. A zone 3 task 
can pipe data to another task, a thread or an interrupt handler. 
Therefore, pipes serve as a medium of data transfer that can operate 
in both the RTXC/ss and RTXC/ms components.

A pipe is an intervening object providing a standard interface 
between a producer and a consumer. Conceptually, a pipe is a pair of 
circular lists, one that holds empty buffers and one that contains full 
buffers. The producer and consumer may each be an interrupt 
handler, a thread, or a task. The producer puts data into the pipe 
using a buffer and the consumer gets it from the pipe as a buffer. 
Pipes are useful for handling such operations as stream input/
output or other type of operations where data buffering is useful.

In an application, a pipe is generally employed with a single 
producer and a single consumer. However, the RTXC pipe model 
allows more than one task to insert data into a pipe (multiple 
producers) and more than one task to remove data from a pipe 
(multiple consumers). This capability leads to the following rule:

Rule: Any thread or task may put data into or get data from any 
pipe.

By definition, all pipes use a buffer allocation model where the pipe 
content represents the chronological order of buffer entry into and 
extraction from the pipe. However, there are RTXC Kernel services 
that permit last-in-first-out entries and extractions when necessary. 
Like queues, there is no priority to the entries into a pipe.

Figure 4-1 on page 39 shows the four basic services the RTXC Kernel 
provides to circulate empty and full buffers through the pipe. No 
kernel services exist for the purpose of moving data into or out of a 
buffer. Copying of data into an allocated buffer as well as accessing 
data in a full buffer is the responsibility of the producer and 
consumer application programs, respectively. Additional RTXC 
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Kernel services provide combinational variants of the basic four pipe 
operations.

Figure 4-1. Basic Pipe Operations

Pipe Definition 
Pipe handles are PIPE type numerical values. You can define, during 
system generation, any combination of static and dynamic pipes up 
to a total number dependent on the capacity of a datum of the PIPE 
type. You also define the sizes of each static pipe at that time.

A pipe handle must be within the range of the total number of pipes 
defined for the application. There is no difference between the 
handle of a static pipe and the handle of a dynamic pipe. A pipe 
handle of zero (0) is illegal if used in a kernel service for the Pipe 
object class.

Pipe Organization 
A pipe has two parts: the Pipe Control Block (PiCB) and the set of 
data buffers it controls, both of which must reside in RAM. The PiCB 
must reside in System RAM. It contains information the RTXC 
Kernel services use to move buffers into and out of the pipe correctly. 
The set of pipe buffers must be located in User RAM.

Producer

Pipe

Consumer

Put Full

Get Full Put Empty

Get Empty



40 RTXC Kernel User’s Guide, Volume 1

Pipe Properties

June 21, 2002   

Pipe Properties 
RTXC pipes have several properties that can be defined and accessed 
by the developer. The RTXC Kernel defines a PIPEPROP properties 
structure for use in operations involving pipe properties. The 
members of the pipe property structure represent the properties to 
which the developer has direct access. The PIPEPROP structure has 
the organization shown in Example 4-1.

Example 4-1. Pipe Properties Structure

typedef struct
{
   KATTR attributes; 
   KCOUNT numbufs;       /* number of buffers managed by pipe */
   ksize_t bufsize;      /* max useful size of buffer */
   void * base;
   void ** fullbase;     /* pointer to address of full buffer list */
   void ** freebase;     /* pointer to address of free buffer list */
   int * sizebase;       /* pointer to list of full buffer sizes; *
} PIPEPROP;

The XX_DefPipeProp service defines the properties of a pipe 
using values for the elements in the PIPEPROP structure. The 
XX_GetPipeProp service returns a pointer to the PIPEPROP 
structure of a given pipe.

The following rules apply to pipe properties:

Rule: A pipe must be defined with a maximum buffer size property 
(bufsize) that is greater than zero.

Rule: A pipe must be defined with a number of buffers property 
(numbuf) that is greater than zero.

Rule: A pipe must be defined with non-NULL pointers for the 
fullbase, freebase, and sizebase list pointers. 

Pipe Attributes 

Use of the pipe attribute property is currently restricted to and 
reserved for internal use by the RTXC Kernel. Future extensions to 
the RTXC Kernel will make use of this property and will be user-
accessible. 
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Number of Buffers 

The numbuf property defines the number of buffers the pipe is to 
manage. 

Maximum Buffer Size 

The bufsize property defines the maximum useful size of a buffer in 
the pipe. The user should ensure that all buffers managed by the 
pipe have a size greater than or equal to the value of bufsize. Proper 
specification of this property allows the use of buffers of unequal size 
so long as each meets or exceeds this specification.

Address of Pipe

Each pipe requires a pointer, base, to the User RAM area used as the 
body of the pipe. During system generation, the user can specify 
whether the kernel is to create the defined number of buffers or if the 
application code is to do so. For static pipes defined as being 
automatically created, the linker assigns the area for the pipe body 
and makes the value of base non-zero. The product of numbuf times 
bufsize defines the amount of User RAM necessary to hold the 
buffers for the pipe. If the user wishes to define the buffers at 
runtime, the RTXCgen program defines base as a NULL pointer. For 
dynamic pipes, the application determines and defines the pipe body 
area and its address during system operation.

Pointer to Full Buffer List 

Each pipe requires a pointer, fullbase, to the User RAM area used as 
the list of pointers to the full buffers of the pipe. The producer puts 
full buffers into the pipe after having filled them with data. The full 
buffer list contains a set of numbuf entries, each of which points to a 
full buffer in the pipe.

Pointer to Free Buffer List 

Each pipe requires a pointer, freebase, to the User RAM area used as 
the list of pointers to the free (empty) buffers of the pipe. The 
producer gets empty buffers from the pipe before filling them with 
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data. The free buffer list contains a set of numbuf entries, each of 
which points to an empty buffer in the pipe.

When the initialization process initializes static pipes using the 
XX_DefPipeProp kernel service, it uses the value of base to 
determine how to complete the definition. If base is a non-zero 
pointer, the kernel service divides up the allocated buffer area into 
numbuf blocks, each being bufsize long. As each buffer’s address is 
determined, the kernel service also puts the pointer to the buffer into 
the free buffer list.

Note:  Because the number of buffers is user-determined, 
the XX_DefPipeProp service is non-deterministic when 
used to allocate buffers and create the free buffer list 
contents automatically. 

If the user’s choice is to have the application code assign the free 
buffers to the free buffer list, as indicated by base being a NULL 
pointer, the XX_DefPipeProp service only defines the pipe’s 
properties. It is the responsibility of the user to allocate and assign 
buffers to the free buffer list using the XX_PutEmptyPipeBuf 
service. It is the further responsibility of the application code to 
ensure that numbuf buffers are allocated, each of which has a size of 
at least bufsize.

Note:  Because the buffers are not allocated when the 
XX_DefPipeProp service is used when base is a NULL 
pointer, the operation of the kernel service is deterministic. 
Each call to the XX_PutEmptyPipeBuf service to define a 
free buffer is also deterministic. This method may require 
more code than the automatic assignment method but each 
kernel service is deterministic. However, the overall 
execution time of this method may actually require more 
time than the automatic allocation method previously 
described.
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Pointer to Buffer Size List 

Each pipe requires a pointer, sizebase, to the User RAM area used as 
the list of sizes of full buffers in the pipe. The RTXC pipe model 
allows the user to fill a buffer with less than bufsize entries of data. 
Thus, when the producer puts full buffers into the pipe, it is 
necessary to define the amount of the buffer actually containing data 
so that the consumer knows how much data to process. The full 
buffer size list contains numbuf entries.

The RTXC Kernel permits a task to read the properties structure of a 
pipe at any time using the XX_GetPipeProp service.

Pipe States 
The RTXC Kernel maintains a record of the available free and full 
buffers in the pipe at all times. The pipe does not have a single state 
but rather one defined by the condition of the free and full buffer 
lists. Therefore, the RTXC Kernel automatically maintains the pipe’s 
state. There are no user-accessible pipe states.

Optional Properties
The RTXC Kernel supports no optional properties for the Pipe object 
class. 

Using Pipes
Pipes provide an easy method of moving buffered data from one 
point to another in an RTXC Kernel-based application. Generally, 
processing of the buffered data takes place in chronological order but 
there are circumstances that require LIFO order. The use of pipes in 
an application involves the use of two code entities, a producer and a 
consumer. It is the job of the producer to allocate an empty buffer, fill 
it with data, and then put the full buffer and its size specification into 
the pipe. The consumer has to get a full buffer and its size 
specification from the pipe, process the data therein, and then put 
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the now-empty buffer back into the pipe. Thus the flow of buffers is 
circular from the producer to the consumer and back.

Pipe operations fall into two basic categories: managing empty 
buffers and managing full buffers. For each type of buffer there are 
two basic operations: getting buffers from pipes and putting buffers 
into pipes. The RTXC Kernel provides one basic kernel service for 
each basic pipe operation, plus some variants of each.

Note:  This section uses the terms free buffers and empty 
buffers interchangeably. Both terms mean a buffer that no 
longer contains information that either the producer or the 
consumer needs.

Producer Operations

The basic pipe operations of a producer are to get an empty buffer, 
fill it with data, and put the full buffer into the pipe. Before a 
producer can put data into a buffer, it must first acquire an empty 
buffer. To do so, the producer uses the XX_GetEmptyPipeBuf 
service, which returns a pointer to the next available free buffer in 
the pipe’s free buffer list. If a free buffer is not available, the kernel 
service returns a NULL pointer and the producer must deal with the 
failure of the request.

When the producer has the pointer to the free buffer, it is free to 
write data into the buffer in whatever manner is appropriate to the 
application. Having filled the buffer with data, the producer then 
puts the buffer into the pipe using the XX_PutFullPipeBuf 
kernel service, along with a specification about how much data it 
wrote into the buffer. The full buffer and its size specification then 
become part of the full buffer list of the pipe.

After putting the full buffer into the pipe, the producer may acquire 
a new empty buffer or it may defer that operation until its next 
execution cycle. The XX_PutFullGetEmptyPipeBuf service 
allows the producer to combine the operations of putting the full 
buffer into the pipe and getting a new empty buffer. The combined 
operations are intended to reduce the amount of overhead required 
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in making two separate kernel service requests. However, the 
following rules apply to using a combined operation service:

Rule: When using a combined operation service for pipes, both 
operations must be successful for the service to complete 
successfully.

Rule: When using a combined operation service for pipes, both 
operations apply to the same pipe.

For example, the XX_PutFullGetEmptyPipeBuf kernel service 
requires there to be a place in the pipe’s full buffer list and an empty 
buffer available in the pipe’s free buffer list at the time the 
application code places the request. If either condition is not true, 
the service fails and the producer has to take appropriate action. A 
failure is likely to be the result of improper specification of the 
number of buffers needed in the pipe.

Example 4-2 on page 46 shows a code fragment of an interrupt 
handling routine as a producer putting data into the PIPEXYZ pipe 
and then scheduling a consumer, the THREADXYZ thread, when the 
buffer is full. Note that the example relies on an external 
initialization of the four global variables: bufptr, bufbase, 
bufcount, and maxbufsize.
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Example 4-2. Producer Putting Data into Pipe 

#include "rtxcapi.h"
#include "kproject.h" 
#include "kpipe.h"   /* defines PIPEXYZ */
#include "kthread.h" /* defines THREADXYZ */

/*   Global Variables for Use by Producer */
 void * bufptr;         /* working pointer to current buffer */
 void * bufbase;        /* base pointer to current buffer */
 int bufcount;          /* working counter */
 int maxbufsize;        /* max value for counter */
 
/***************************************************************/
/*         Interrupt Handler for Device XYZ                    */
/***************************************************************/
void deviceXYZhandler ()
{
   ...service the device and get the data

   if (bufbase == (void *)0)
   {
      if ((bufbase = IS_GetEmptyPipeBuf (PIPEXYZ)) == (void *)0)
      {
         ...no buffers available, no place to store data
         return;  /* data missed because consumer is too slow */
      }
      bufptr = bufbase; /* set up working pointer to buffer */
   }
   /* a buffer is available */
   ...store data in buffer using bufptr
   bufcount++;

   if (bufcount == maxbufsize)       /* test for end of buffer */
   {
      /* buffer is full. Send it to pipe and setup next buffer */
      IS_PutFullPipeBuf (PIPEXYZ, bufbase, bufcount);
      bufbase = IS_GetEmptyPipeBuf (PIPEXYZ);/* get empty buffer */
      bufptr = bufbase;       /* setup working pointers and counts */
      bufcount = 0;
      IS_ScheduleThread (THREADXYZ);/* schedule thread to process data 
*/
   }
   return;   /* end of interrupt handler */
}
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Example 4-3 on page 48 is also a producer. Again, an external code 
entity has initialized the working variables in the same manner as 
the previous example. It is permissible to have bufbase initialized 
to a NULL pointer as the producer determines if it is necessary to 
acquire an empty buffer from the pipe. The code that verifies the 
existence of a valid buffer pointer protects the producer from the 
situation where the XX_PutEmptyGetFullPipeBuf kernel 
service fills the full buffer list and has no empty buffer available to 
allocate for the next empty buffer. That situation is an indication that 
the producer is outrunning the consumer. You may choose to omit 
this extra code if it is certain that the consumer can keep up with the 
producer. However, even if that is the case, it may be safer to use it 
just to avoid the possibility of the producer not having a buffer in 
which to store data.
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Example 4-3. Producer Putting Data into Pipe Using Combined Operations 

#include "rtxcapi.h"
#include "kproject.h" 
#include "kpipe.h"   /* defines PIPEXYZ */
#include "kthread.h" /* defines THREADXYZ */

/*   Global Variables for Use by Producer */
 void * bufptr;         /* working pointer to current buffer */
 void * bufbase;           /* base pointer to current buffer */
 int bufcount;                            /* working counter */
 int maxbufsize;                    /* max value for counter */

/***************************************************************/
/*         Interrupt Handler for Device XYZ                    */
/***************************************************************/
void deviceXYZhandler ()
{
   ...service the device and get the data

   if (bufbase == (void *)0)
   {
      if ((bufbase = IS_GetEmptyPipeBuf (PIPEXYZ)) == (void *)0)
      {
         ...no buffers available, no place to store data
         return;
      }
      bufptr = bufbase; /* set up working pointer to buffer */
   }
   /* a buffer is available */
   ...store data in buffer using bufptr
   bufcount++;

   if (bufcount == maxbufsize)       /* test for end of buffer */
   {
      /* buffer is full. Send it to pipe and setup next buffer */
      bufbase = IS_PutFullGetEmptyPipeBuf (PIPEXYZ, bufbase, 
bufcount);
      bufptr = bufbase;   /* setup working pointers and counts */
      bufcount = 0;
      IS_ScheduleThread (THREADXYZ);/* schedule thread to process data 
*/
   }
   return;   /* end of interrupt handler */
}
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Consumer Operations

The basic pipe operations of a consumer are to get a full buffer, 
process the data in it, and return the empty buffer to the pipe. Before 
a producer can process data in a buffer, it must first acquire a full 
buffer. To do so, the producer uses the XX_GetFullPipeBuf 
kernel service, which returns a pointer to the next available full 
buffer in the pipe’s full buffer list along with its size specification. If 
a full buffer is not available, the kernel service returns a NULL 
pointer and the producer must deal with the failure of the request.

When the producer has the pointer to the full buffer, it can process 
the data in the buffer in whatever manner is appropriate to the 
application. It is not uncommon for the consumer on one pipe to be 
the producer of another pipe. This situation often arises when the 
consumer processes data from a pipe by reducing it and sending it 
to another pipe. 

Having acquired the full buffer and processed its data, the consumer 
then frees the buffer to the pipe’s free buffer list using the 
XX_PutEmptyPipeBuf service. The empty buffer then becomes 
part of the free buffer list of the pipe.

After putting the free buffer into the pipe, the consumer may acquire 
a new full buffer or it may defer that operation until its next 
execution cycle. The XX_PutEmptyGetFullPipeBuf service 
allows the consumer to combine the operations of putting the empty 
buffer into the pipe and getting a new full buffer. The combined 
operations reduce the amount of overhead required compared to 
making two separate kernel service requests. The same rules about 
combined operations, as previously stated, apply to consumer 
operations as well.

Example 4-4 on page 50 shows a code fragment of a thread, 
THREADXYZ, acting as a pipe consumer. It contains two parts, an 
initialization function with an entry at threadxyz, and a processing 
function whose entry is XYZentryA. The purpose of the 
initialization function is to initialize the producer, which is the 
interrupt service routine in either Example 4-2 or Example 4-3. In 
this example, the initialization function gets an empty buffer from 
the PIPEXYZ pipe and initializes with its address. According to the 
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design in Example 4-2 and Example 4-3, the producer would work 
equally well if the initialization function of THREADXYZ set the global 
variable bufbase to a NULL pointer ((void *)0).

Example 4-4. Consumer Getting Data from Pipe 

#include "rtxcapi.h"
#include "kproject.h" 
#include "kpipe.h"   /* defines PIPEXYZ */
#include "kthread.h" /* defines THREADXYZ */

/*   Global Variables for Use by Producer */
extern void * bufptr;      /* working pointer to current buffer */
extern void * bufbase;     /* base pointer to current buffer */
extern int bufcount;       /* working counter */
extern int maxbufsize;     /* max value for counter */

/*   Environment Arguments for THREADXYZ  */
struct
{
   int state;
   int value;
}myenvargs;

void XYZentryA (void *, void *); /* function for processing */
                                 /* buffers                 */

/****************************************************************/
/*             ThreadXYZ initialization function                */
/****************************************************************/
void threadxyz ((void *)0, (void *)0) /* no arguments passed */
{
struct myenvargs * myargs;
PIPEPROP xyzprops;

   TS_DefThreadEnvArg (SELFTHREAD, myargs);
   myargs->state = 0;   /* initialize the state of the thread */

   TS_GetPipeProp (PIPEXYZ, &xyzprops); /* get pipe properties */
   maxbufsize = xyzprops.bufsize;  /* set up maximum buffer size */
   bufbase = TS_GetEmptyPipeBuf (PIPEXYZ); /* get empty buffer */
                                          /* pointer */

   bufptr = bufbase;  /* initialize working pointers for use by  */
                      /*   by exception handler */

   /* at end of initialization, setup new entry point for thread */
   TS_DefThreadEntry (SELFTHREAD, XYZentryA);
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   ...then enable device XYZ 

   /* after the following return, further processing in this */
   /* thread commences at entry point XYZentryA */

   return;
}

/****************************************************************/
/*                 ThreadXYZ processing function.               */
/*     Processes data in PIPEXYZ according to thread's state    */
/****************************************************************/
void XYZentryA ((void *)0, (struct myenvargs *)myargs)
{
int actualsize;   /* actual size of full buffer */
char * newbuf;    /* pointer to full buffer */

   switch (myargs->state)
   {
      case 0
         newbuf = TS_GetFullPipeBuf (PIPEXYZ, &actualsize);

         ...process the data in the buffer

         TS_PutEmptyPipeBuf (PIPEXYZ, newbuf);
         break;
      case ???   /* other cases for other states if needed */
   }   /* end of switch statement
   return;
}

Jamming Data into a Pipe 

For the producer, the normal mode of putting a full buffer into a pipe 
is to append it to the tail of the full buffer list, preserving the 
chronological nature of the data. Under some conditions, the 
producer may need to put a buffer into the pipe that is not in 
chronological order. The RTXC pipe model supports the 
XX_JamFullPipeBuf services to jam the buffer into the pipe, not 
at the tail, but at the head of the pipe. When the producer jams a 
buffer into a pipe, that buffer becomes the new head of the pipe’s full 
buffer list. As such, the consumer retrieves that buffer because the 
consumer’s request for a full buffer always is filled from the head of 
the pipe.
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There is also the XX_JamFullGetEmptyPipeBuf service that 
combines jamming operations with getting an empty buffer. Except 
that the buffer is put at the head of the full buffer list, the service 
works in the same manner and carries the same restrictions as the 
XX_PutFullGetEmptyPipeBuf kernel service. 

Pipe Actions and Conditions 

The RTXC Kernel provides ways for pipes to act on threads as a result 
of putting a full or empty buffer into a pipe. Putting an empty buffer 
into a pipe makes it available to a producer. Conversely, putting a full 
buffer into a pipe makes it available for a consumer. A thread, unlike 
a task, cannot wait for something to occur. If the producer is a thread, 
it cannot wait for an empty buffer to become available. When it runs, 
the empty buffer must be available or the producer may fail to pass 
on critical data. The RTXC Kernel supports actions that can occur as 
a result of freeing an empty buffer or putting a full one into a pipe. 
These actions permit threads to use pipes effectively even though a 
thread cannot wait for a buffer in the pipe to become available. The 
XX_DefPipeAction service exists for this purpose. It allows a task 
or thread to set up one of two basic actions to take when a application 
program puts either an empty or a full buffer into a given pipe. Once 
defined, the definition remains in place until it is changed by 
another call to XX_DefPipeAction to change the action or to 
specify no action.

The specified action takes place only when the program uses a kernel 
service to put a buffer into a pipe. The action does not occur when 
the application gets a buffer from the pipe. Putting a buffer into a 
pipe means use of any of the kernel services that put empty and full 
buffers into a pipe. The kernel service may put the buffer in normally 
or jam it in. The put operation may be a combination operation that 
also gets a buffer from the same pipe.

If an interrupt handler calls the kernel service that puts the buffer 
into the pipe, then the resulting action must be performed from that 
same zone. The situation is identical when a thread calls a buffer put 
kernel service. Because there are two zones from which the two basic 
actions can take place, the user must specify the zone in which the 
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action is to occur. Hence, the kernel services have to allow for four 
actual action definitions.

The two basic actions are:

The XX_DefPipeAction kernel service requires the specification 
of when the action is to occur. The two possible conditions are:

When the action is properly defined, a kernel service that puts a 
buffer into the specified pipe according to the given condition will 
execute the internal functions to perform one of these two basic 
services. The internal functions are dependent on the zone of the 
caller to the kernel service that performs the buffer putting 
operation.

One action, scheduling a thread, has direct effect. The specified 
thread is scheduled and has only to wait until the RTXC/ss Scheduler 
gives it control of the CPU. If the specified action is to decrement the 
thread’s thread gate, the thread may or may not become ready, 
depending on the value of the thread gate.

Example 4-5 on page 54 shows how a producer and a consumer can 
use pipe actions to create an effective synchronization of their 
operations. In the example, the producer is an interrupt handler and 
the consumer is a thread, THREADXYZ.

SCHEDULETHREAD Schedule a thread

DECRTHREADGATE Decrement a thread’s thread gate

PUTEMPTY When putting an empty buffer into the pipe.

PUTFULL When putting a full buffer into the pipe.
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Example 4-5. Pipe Action when Putting Full Buffers into Pipe

#include "rtxcapi.h"
#include "kproject.h" 
#include "kpipe.h"   /* defines PIPEXYZ */
#include "kthread.h" /* defines THREADXYZ */

/*   Global Variables for Use by Producer */
 void * bufptr;         /* working pointer to current buffer */
 void * bufbase;           /* base pointer to current buffer */
 int bufcount;                            /* working counter */
 int maxbufsize;                    /* max value for counter */
 
/*   Environment Arguments for THREADXYZ  */
struct
{
   int state;
   int value;
}myenvargs;

void XYZentryA (void *, void *);   /* function for processing buffers 
*/

/***************************************************************/
/*         Interrupt Handler for Device XYZ                    */
/***************************************************************/
void deviceXYZhandler ()
{
   ...service the device and get the data

   if (bufbase == (void *)0)
   {
      if ((bufbase = IS_GetEmptyPipeBuf (PIPEXYZ)) == (void *)0)
      {
         ...no buffers available, no place to store data
         return;  /* data missed because consumer is too slow */
      }
      bufptr = bufbase; /* set up working pointer to buffer */
   }
   /* a buffer is available */
   ...store data in buffer using bufptr
   bufcount++;

   if (bufcount == maxbufsize)        /* test for full of buffer */
   {
      /* buffer is full. */
      /* Send it to pipe, schedule THREADXYZ, and get new buffer */
      bufbase = IS_PutFullGetEmptyPipeBuf (PIPEXYZ, bufbase,
                bufcount);
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      bufptr = bufbase;     /* setup working pointers and counts */
      bufcount = 0;
   }
   return;   /* end of interrupt handler */
}

/****************************************************************/
/*             ThreadXYZ initialization function                */
/****************************************************************/
void threadxyz ((void *)0, (void *)0) /* no arguments passed */
{
struct myenvargs * myargs;
PIPEPROP xyzprops;

   /* define action producer takes when putting full buffer */
   TS_DefPipeAction (PIPEXYZ, SCHEDULETHREAD, THREADXYZ, PUTFULL);

   TS_DefThreadEnvArg (SELFTHREAD, myargs);
   myargs->state = 0;   /* initialize the state of the thread */

   TS_GetPipeProp (PIPEXYZ, &xyzprops); /* get pipe properties */
   maxbufsize = xyzprops.bufsize;  /* set up maximum buffer size */
   bufbase = TS_GetEmptyPipeBuf (PIPEXYZ); /* get empty buffer */
                                           /* pointer */
   bufptr = bufbase;  /* initialize working pointers for use by */
                      /*  exception handler */

   /* at end of initialization, setup new entry point for thread */
   TS_DefThreadEntry (SELFTHREAD, XYZentryA);

   ...then enable device XYZ 

   /* after the following return, further processing in this */
   /* thread commence at entry point XYZentryA */

   return;
}

/****************************************************************/
/*                 ThreadXYZ processing function.               */
/*     Processes data in PIPEXYZ according to thread's state    */
/****************************************************************/
void XYZentryA ((void *)0, (struct myenvargs *)myargs)
{
   int actualsize;   /* actual size of full buffer */
   char * newbuf;    /* pointer to full buffer /

   switch (myargs->state)
   {
      case 0
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         newbuf = TS_GetFullPipeBuf (PIPEXYZ, &actualsize);

         ...process the data in the buffer

         TS_PutEmptyPipeBuf (PIPEXYZ, newbuf); /* no pipe action */
                                              /* here */
         break;

      case ???   /* other cases for other states if needed */

   }   /* end of switch statement
   return;
}

Now consider a situation where two producers feed data into two 
pipes with a single consumer getting data from both pipes, operating 
on it, and then putting the combined data into a third pipe. For 
simplicity, the example assumes the consumer (threadxyz) of the 
two pipes can keep up with the two producers. The consumer cannot 
be scheduled until it has a full buffer in Pipe 1 and Pipe 2 plus an 
empty buffer from Pipe 3 for which it is also the producer. Figure 4-2 
shows the organization of the example.

Figure 4-2. Multiple Pipe, Single Consumer Organization 
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The key to making this example work efficiently is the pipe action to 
decrement a thread gate. Both producers do that whenever they put 
a full buffer into their respective pipes. Similarly, the consumer of 
Pipe 3 (not shown) causes a decrement of the thread gate for the 
multiple pipe consumer (shown) whenever it puts an empty buffer 
into Pipe 3. By that sequence of pipe actions, the process stays 
synchronized and efficient. Example 4-6 shows the code fragments 
for this organization.

Example 4-6. Pipe Actions with Multiple Producers and Single Consumer

#include "rtxcapi.h"
#include "kproject.h" 
#include "kpipe.h"   /* defines PIPE1 and PIPE2 and PIPE3*/
#include "kthread.h" /* defines THREADXYZ */

/*   Global Variables for Use by Producer 1 */
 void * buf1ptr;         /* working pointer to current buffer */
 void * buf1base;           /* base pointer to current buffer */
 int buf1count;                            /* working counter */
 int maxbufsize1;                    /* max value for counter */
 
/*   Global Variables for Use by Producer 2 */
 void * buf2ptr;         /* working pointer to current buffer */
 void * buf2base;           /* base pointer to current buffer */
 int buf2count;                            /* working counter */
 int maxbufsize2;                    /* max value for counter */
 
/*   Environment Arguments for Consumer (THREADXYZ)  */
struct
{
   int state;
   int maxbufsize3;
}myenvargs;

void XYZentryA (void *, void *);   /* function for processing buffers 
*/

/***************************************************************/
/*         Interrupt Handler Producer for PIPE1                */
/***************************************************************/
void deviceXYZhandler ()
{
   ...service the device and get the data
   ...store data in buffer using buf1ptr
   buf1count++;
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   if (buf1count == maxbufsize1)     /* test for full of buffer */
   {
      /* buffer is full. */
      /* Send it to pipe, decr THREADXYZ thread gate, */
      /*   get new buffer */
      buf1base = IS_PutFullGetEmptyPipeBuf (PIPE1, buf1base, 
buf1count);
      buf1ptr = buf1base;  /* setup working pointers and counts */
      buf1count = 0;
   }
   return;   /* end of interrupt handler */
}

/***************************************************************/
/*         Exception Handler Producer for PIPE2                */
/***************************************************************/
void deviceQRSexception ()
{
   ...service the device and get the data
   ...store data in buffer using buf2ptr
   buf2count++;

   if (buf2count == maxbufsize2)     /* test for full of buffer */
   {
      /* buffer is full. */
      /* Send it to pipe, decr THREADXYZ thread gate, */
      /*   get new buffer */
      buf2base = IS_PutFullGetEmptyPipeBuf (PIPE2, buf2base,
                                           buf2count);
      buf2ptr = buf2base;  /* setup working pointers and counts */
      buf2count = 0;
   }
   return;   /* end of exception handler */
}

/****************************************************************/
/*             ThreadXYZ initialization function                */
/****************************************************************/
void threadxyz ((void *)0, (void *)0) /* no arguments passed */
{
struct myenvargs * myargs;
PIPEPROP xyzprops;

   /* define action producers take when putting full buffer */
   TS_DefPipeAction (PIPE1, DECRTHREADGATE, THREADXYZ, PUTFULL);
   TS_DefPipeAction (PIPE2, DECRTHREADGATE, THREADXYZ, PUTFULL);
   TS_DefPipeAction (PIPE3, DECRTHREADGATE, THREADXYZ, PUTEMPTY);

   TS_DefThreadEnvArg (SELFTHREAD, myargs);
   myargs->state = 0;   /* initialize the state of the thread */
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   TS_GetPipeProp (PIPE1, &xyzprops); /* get properties of pipe 1*/
   maxbufsize1 = xyzprops.bufsize; /* set up maximum buffer size */
   buf1base = TS_GetEmptyPipeBuf (PIPE1); /* get empty buffer */
                                          /*   pointer */
   buf1ptr = buf1base;  /* initialize working pointers for use */
                        /*   by exception handler */

   TS_GetPipeProp (PIPE2, &xyzprops); /* get properties of pipe 2*/
   maxbufsize2 = xyzprops.bufsize; /* set up maximum buffer size */
   buf2base = TS_GetEmptyPipeBuf (PIPE2); /* get empty buffer */
                                          /*   pointer */
   buf2ptr = buf2base;  /* initialize working pointers for use */
                        /*   by exception handler */

   TS_GetPipeProp (PIPE3, &xyzprops); /* get properties of pipe 3*/
   myargs->maxbufsize3 = xyzprops.bufsize;/* maximum buffer size */

   /* at end of initialization, setup new entry point for thread */
   TS_DefThreadEntry (SELFTHREAD, XYZentryA);

   /* set thread gate and thread gate preset to 3 */
   TS_SetThreadGate (SELFTHREAD, (GATEKEY)3);

   ...then enable interrupts on devices XYZ and QRS 

   /* after the following return, further processing in this */
   /*   thread commences at entry point XYZentryA */

   return;
}

/****************************************************************/
/*                 ThreadXYZ processing function.               */
/*     Processes data in PIPEXYZ according to thread's state    */
/****************************************************************/
void XYZentryA ((void *)0, (struct myenvargs *)myargs)
{
int truesize1;     /* actual size of full buffer */
char * newbuf1;    /* pointer to full buffer /

int truesize2;     /* actual size of full buffer */
char * newbuf2;    /* pointer to full buffer /

char * buf3base;
int buf3count;

   switch (myargs->state)
   {
      case 0
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         /* get the two full buffers from Pipes 1 and 2 */
         newbuf1 = TS_GetFullPipeBuf (PIPE1, &truesize1);
         newbuf2 = TS_GetFullPipeBuf (PIPE2, &truesize2);

         /* get the empty buffer from Pipe 3 */
         buf3base = TS_GetEmptyPipeBuf (PIPE3);

         for (...loop conditions)
         {
            ...now process the data in the full buffers and put 
               results into the buffer from Pipe 3
            buf3count++; /* increment results buffer size */
            ...continue this processing loop until done
         }

         /* done, release now empty buffers back to Pipes 1 & 2 */
         TS_PutEmptyPipeBuf (PIPE1, newbuf1); /* no pipe action */
         TS_PutEmptyPipeBuf (PIPE2, newbuf2); /* no pipe action */

         /* then put results buffer into Pipe 3 */
         TS_PutFullPipeBuf (PIPE3, buf3base, buf3count); 
              /* no pipe action */

         break;   /* then quit and wait until next cycle */

      case ???   /* other cases for other states if needed */

   }   /* end of switch statement
   return;
}
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C H A P T E R 5 Event Sources, Counters, and 

Alarms–Keeping Track of Events

In This Chapter
We first discuss the basic principles of event management hierarchy 
in the RTXC Kernel. Next, we present the guidelines for each of the 
classes in the hierarchy, Event Sources, Counters, and Alarms. Then 
we present some related concepts and basic rules of event counting 
within the RTXC Kernel. Last, we discuss the usage of all three 
classes and present some examples.
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The Event Management Hierarchy 
Events occur in a real-time system in various ways; some are periodic 
while others are not. Some events are points of synchronization and 
others need only to be counted. Synchronization events are generally 
associated with RTXC Semaphores. Counted events must be 
counted, but they can be used to initiate actions when the 
accumulated count reaches a predefined value. To track events that 
need to be counted, the RTXC Kernel incorporates the event 
management hierarchy using three object classes: Event Sources, 
Counters, and Alarms. An example of a type of event source is an 
interrupt that occurs periodically from a system clock, sometimes 
called a time base. Figure 5-1 shows the event management 
hierarchy and the relationships between the three classes

Figure 5-1. Event Management Hierarchy 

From Figure 5-1, Event Sources are the parent object of Counters, 
which are in turn the parent of Alarms. An application using an 
RTXC Kernel configuration that includes the Event Source class may 
use one or more Event Source objects. Each Event Source object may 
have one or more associated Counter objects. Finally, each of those 
Counter objects may have one or more associated Alarm objects. 
Figure 5-2 on page 63 depicts a more realistic event management 
and counting hierarchy.
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Figure 5-2. Event Management Hierarchy, Realistic Example 
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precedence in the hierarchy. Because event sources, counters and 
alarms are accessible to tasks, threads and, sometimes, interrupt 
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where XX_ represents the zonal prefixes IS_ (Zone 1), TS_ (Zone 2), 
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Consequently, the actual source of an event is immaterial. The event 
may originate externally and present itself to the system as an 
interrupt, or it may be an internal event generated by the application 
software. In either case, there is no distinction between such events 
as they relate to the event counting and alarm model.

Event Counting 

In the RTXC Kernel, event sources and semaphores both have the 
ability to count events. However, semaphores count events only 
when there is no task waiting for the event. Therefore, the 
semaphore’s counter serves as a record of how many occurrences of 
the event the kernel has detected since the last time a task 
synchronized with the event. If there is an accumulation of event 
occurrences, the synchronization process reduces the value of the 
semaphore’s count each time the task attempts to wait on the event. 
As a result, the semaphore’s count is eventually reduced to zero, an 
indication that all occurrences have been accounted for.

Event sources accumulate a count of event occurrences (event ticks) 
in a free-running manner. That is to say, the count increases with 
each event occurrence and rolls over to zero when it reaches a 
maximum value. However, the primary purpose of an event source 
is to establish the set of counter objects associated with the event 
source.

It is permissible to treat any type of event as an event source for the 
purposes of counting. A typical type of event used for counting is one 
that represents the system time base. Such an event is normally a 
periodic interrupt. Other types of events can represent the rotation 
of a number of degrees on a shaft or axle, the number of switch 
closures or openings, and so on.

Event Source Definition 

The kernel refers to an event source by its handle, which is an 
EVNTSRC type value. You can define, during system generation, any 
combination of static and dynamic event sources up to a total 
dependent on the size of a data word of the EVNTSRC type.
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An event source handle must be within the range of the total number 
of event sources defined for the application. There is no difference 
between the handle of a static or a dynamic event source.

An event source handle of zero (0) has special meaning. It defines 
the event source for the application’s time base. 

Event Source Properties 

Event sources have two properties that are available to the developer. 
Each event source object has an accumulator property that collects 
the number of event ticks. There is also an attributes property that 
specifies whether accumulation of event ticks is enabled or disabled, 
and if the event source is associated with the system time base 
periodic event tick.

A task or thread can access the definable alarm properties through 
an EVNTSRCPROP structure, which is organized as shown in 
Example 5-1.

Example 5-1. Event Source Properties Structure

typedef struct
{
   KATTR attributes;   /* Enable/Disabled, Use for System Time Base */
   TICKS accumulator;  /* initial time count */
} EVNTSRCPROP;

Event Source Attribute 

The event source Counting_State attribute defines whether or not the 
event source can accumulate counts of event ticks. By definition, the 
kernel sets this attribute to ATTR_EVENT_COUNTING_ENABLED. To 
disable event tick accumulation temporarily or permanently, a task 
or thread sets the attribute to ATTR_EVENT_COUNTING_DISABLED.

Event Count Accumulator 

The event tick accumulator contains the number of event ticks 
counted while the Counting_State attribute is set to 
ATTR_EVENT_COUNTING_ENABLED. The event tick accumulator is a 
free-running accumulator. The initialization code defines the initial 
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value of the accumulator to be zero for all static event sources 
objects. A task establishing a dynamic event source, or a task that 
needs to redefine the accumulator property for an existing event 
source, may set the initial value of accumulator to any legal value of 
the TICKS type using the XX_SetEventSourceAcc kernel 
service.

Using Event Sources

Event Sources are the basis for establishing a system by which tasks 
and threads activate in response to expiration of alarms. Event 
Sources may be static or dynamic and are globally accessible to tasks 
and threads. RTXC Kernel services exist to define, enable or disable, 
update, read, set accumulators for, and perform all the updating of 
accumulators for event sources as well as processing the event for all 
child counter objects and their alarms.

The key to the entire event management hierarchy is the 
XX_ProcessEventSourceTick service. That kernel service 
takes care of all of the processing required to update the entire event 
management hierarchy for a given event source.

Introducing Counters 
Counters accumulate counter ticks in a free-running manner. That 
is to say, the counts increase with each counter tick and roll over to 
zero when they reach a maximum value for the accumulator data 
type. Each counter tick represents a user-defined ratio of the number 
of event ticks the counter’s parent event source receives. For 
example, if the ratio is 100 event ticks per counter tick on a given 
counter, the counter gets one tick added to it for each 100 event ticks.

Besides accumulating counter ticks, a counter can also be the parent 
of a set of alarm objects. The RTXC Kernel manages alarms for tasks 
and threads in relation to counter tick accumulations. Only when a 
counter tick occurs for a given counter does the 
XX_ProcessEventSourceTick service test for expiry on the 
alarms associated with that counter.
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Counter Definition 

The kernel refers to a counter by its handle, which is a COUNTER type 
value. You can define, during system generation, any combination of 
static and dynamic counters up to a total dependent on the size of a 
data word of the COUNTER type.

An counter handle must be within the range of the total number of 
counters defined for the application. There is no difference between 
the handles of static or dynamic counters.

Counter Properties 

Counters have three properties that are available to the developer. 
Each counter object has an accumulator property that collects the 
number of counter ticks. There is also an attributes property that 
specifies whether accumulation of counter ticks is enabled or 
disabled, and if the counter is the system time base.

A task or thread can access the definable counter properties through 
a COUNTERPROP structure, which is organized as shown in 
Example 5-2.

Example 5-2. Counter Properties Structure

typedef struct
{
   KATTR attributes;   /* Enable/Disabled, Use for System Time Base */
   EVNTSRC evntsrc;    /* Event Source associated with this counter /
   KMODULUS modulus;   /* modulus (ratio) for dividing event ticks */
} COUNTERPROP;

Counter Attribute 

The counter Enable/Disable attribute defines whether or not the 
counter can accumulate counter ticks. By definition, the kernel sets 
this attribute to a default value of ATTR_COUNTER_ENABLED 
(specifically, ~(ATTR_COUNTER_DISABLED)). A task or thread may 
disable counter tick accumulation temporarily or permanently by 
setting the attribute to ATTR_COUNTER_DISABLED. Besides using 
the XX_DefCounterProp kernel services to define all the 
properties, including the attributes, of a counter, the 
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XX_SetCounterAttr service allows a task or a thread to set the 
counter’s attributes directly. The XX_ClearCounterAttr service 
allows a task or thread to clear specific attribute settings directly.

Event Source 

The evntsrc property defines the counter’s parent event source. The 
counter receives event ticks from the defined parent event source 
and reduces those event ticks to get counter ticks.

Event Tick Modulus 

The modulus property contains the number of event ticks to count for 
each counter tick. The counter’s modulus is essentially a divider to 
be applied to the stream of event ticks from the parent event source. 
If the modulus has a value of 10, the counter must receive 10 event 
ticks before it counts one counter tick.

Tick Count Accumulator 

There is an implicit property of every counter, the counter tick 
accumulator, which contains the number of counter ticks counted 
while the attribute is set to ATTR_COUNTER_ENABLED. The counter 
tick accumulator is free-running and rolls over to zero when it 
reaches the maximum value for it’s defined data type plus one. The 
XX_DefCounterProp service defines the initial value of the 
accumulator to be zero. A task can define the counter’s accumulator 
property to begin counting from a specified base value by setting the 
initial value of accumulator to any legal value of the TICKS type using 
the XX_SetCounterAcc service.

Tick Conversion

When using counters and alarms, it is quite common to encounter 
the need to convert a value in engineering units into a number of 
ticks or vice versa. The methods to do both conversions are quite 
simple as each tick represents a fixed number of engineering units.

Consider the conversion of real time to RTXC counter ticks of the 
application time base. Take the real-time value, expressed in some 
convenient units such as seconds, milliseconds, or microseconds, 
and simply divide it by the real-time duration of a single clock tick on 
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the counter defined as the application time base. For example, if the 
application time base operates at 200 Hz, each tick of that counter 
represents an interval of 5 milliseconds. Thus, a real time period of 
500 milliseconds is equivalent to 100 ticks of the application time 
base counter (500 msec divided by 5 msec per tick).

To calculate the value of a number of counter ticks in engineering 
units, reverse the previous process. Multiply the number of counter 
ticks by the value of each counter tick in engineering units. To 
illustrate, consider a gas meter that has accumulated 1200 ticks. If 
each tick represents 1.5 cubic feet of gas, then the conversion 
becomes 1200 ticks multiplied by 1.5 cubic feet/tick, yielding a 
volume of metered gas of 1,800 cubic feet.

These methods, while correct, can lead to problems should a change 
occur to the specification of the counter tick frequency of the time 
base counter. It is better to associate a symbol with the value of the 
number of engineering units per tick such that it can be used in the 
application code without regard to the actual value. It is the 
responsibility of the user to make the definition of such a conversion 
symbol. However, a single exception exists. For the application time 
base counter, RTXCgen defines a standard symbol, CLKTICK.

RTXCgen calculates CLKTICK, the value of a tick in the application 
time base counter, and puts it in the kproject.h header file. The 
previous example of converting time to ticks on the application time 
base counter serves as a good illustration. In that example, RTXCgen 
defines CLKTICK to have a value of 5, representing 5 msec/tick. The 
following expression converts a 500 msec period to counter ticks on 
the application time base counter:

500/CLKTICK

This method of reduction makes application code more robust. First 
of all, the conversion occurs at compile time and does not require 
any runtime cycles. Second, if the specification of the number of 
engineering units per tick changes, it is necessary only to recompile 
the application code to adjust any real-world values.
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Application Time 

Using RTXCgen, the user can specify one counter in the system to be 
the application time base whose parent event source should be a 
periodic event. Other than that specification, the counter is a normal 
RTXC counter in all respects. The counter’s accumulator is a value 
representing the current application time.

Because the RTXC Kernel makes no stipulation about which counter 
the user can specify for the application time base, a special construct 
allows the user to develop program code independently of the 
counter definition. The special construct is a counter handle of zero 
(0), which instructs an RTXC Kernel service to use the user-defined 
counter handle for the operation. RTXCgen defines a macro for this 
special construct in the rtxcapi.h file as follows:

#define TIMEBASE (COUNTER)0;

If you build library routines that use current time but do not know 
the actual definition of the application time base counter, you should 
include rtxcapi.h in your code modules. Then refer to the 
counter for current time as TIMBASE.

System Time 

Some applications require certain time management at a resolution 
much lower than one tick of the application time base counter. Quite 
often, it is desirable to measure alarm periods in seconds, or minutes 
or even hours or days. Time of this magnitude is usually called 
system time or real time, or even clock time. The difference between 
application time and system time is simply the granularity of the tick 
for each type.

There is no specific provision in the RTXC Kernel for maintaining 
system time. However, creating a counter to serve that purpose is 
quite easy. Simply define another counter using the same periodic 
event source parent as used for the application time base counter. Set 
the modulus property of the second counter to a value that ratios the 
event ticks to give a counter tick at the desired frequency. When a real 
time period is needed for a time period calculation, simply make 
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reference to the second counter, using one of the conversion 
methods already described.

For example, if the application requires a system time counter that 
has a resolution of 1 Hz, and the event source provides event ticks at 
a frequency of 10,000 Hz, the modulus of the system time counter 
needs to be 10,000 to deliver one counter tick per second, or every 
10,000 event ticks. Such a counter serves as an effective and accurate 
calendar.

Functions exist in most C libraries that can convert a calendar date 
and time-of-day into a value equivalent to the number of seconds 
since a base date, usually Base Universal Time, which begins 
January 1, 1970. Using such a routine to calculate that time 
difference as a number of seconds provides a very deterministic 
method of maintaining a calendar with one-second accuracy. To seed 
the system time counter with such a value, make the necessary 
conversion and pass it to the system time counter using the 
XX_SetCounterAcc service.

Converting Calendar Date To System Time 

ANSI C specifies the mktime library function for converting a 
struct_tm type value to a time_t type value using a base date of 
January 1, 1970. Any valid date on or after January 1, 1970 and before 
March 2038 yields a correct value in 32-bits.

Note:  The RTXC Kernel does not require the calendar to be 
defined with a date and time to operate properly.

Converting System Time To Calendar Date

ANSI C also defines the gmtime and localtime library functions 
and other functions for converting time_t type values to 
struct_tm type values. These functions convert the system time 
date to a structure containing the calendar date and time-of-day.
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Using Counters

Counters are the second element in the event management 
hierarchy establishing a system by which tasks and threads activate 
in response to expiration of alarms. Each counter has a parent event 
source and several counters may share the same parent. Counters 
may be static or dynamic. RTXC Kernel services exist to define, 
enable or disable, read or set the accumulator for, perform all the 
updating of the accumulator for, and process the associated alarms. 
Counters are globally accessible to tasks and threads.

Reading Counter Ticks 

The RTXC Kernel allows the user to gain access to a counter’s 
accumulator through the XX_GetCounterAcc service. The 
XX_GetCounterAcc kernel service returns a TICKS type value 
representing the current value of the counter’s tick accumulator. The 
service does not change the content of the counter’s accumulator.

Elapsed Ticks 

There are many applications that need to know the number of 
counter ticks that occur between two events. The RTXC Kernel can 
easily provide that information. The operation requires two kernel 
service calls. At the first event, the first kernel call sets up a variable 
that contains the value of the specified counter’s tick accumulator at 
that instant. At the second event, a second kernel service subtracts 
the counter ticks at the first event from the current value of the 
counter’s tick accumulator. The XX_GetElapsedCounterTicks 
service returns the difference to the calling task and also updates the 
variable to the current value of the counter’s tick accumulator to 
prepare for the next event. The computed tick difference is accurate 
to less than one tick’s equivalent of the real interval. Example 5-3 on 
page 73 shows a code model for using the system time base counter, 
TIMEBASE, to measure elapsed time between successive occurrences 
of an event associated with the XEVENT semaphore.
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Example 5-3. Computing Elapsed Time between Two Events 

#include "rtxcapi.h"    /* defines TIMEBASE */
#include "kproject.h"   /* defines CLKTICK */
#include "ksema.h"      /* defines XEVENT  */

TICKS cticks, diff;
int elapsed_time;

...initialize the task

 do something

/* then wait for first event */
KS_TestSemaW (XEVENT);     /* use XEVENT sema */

/* got first event, now initialize tick counter */
KS_GetElapsedCounterTicks (TIMEBASE, &cticks); /* ignore return value 
*/

for (;;)  /* loop for 2nd & successive events */
{
   /* wait for next event */
   KS_TestSemaW (XEVENT);

   /* got next event, now compute tick difference /
   diff = KS_GetElapsedCounterTicks (TIMEBASE, &cticks);

   elapsed_time = diff * CLKTICK;   /* calculate elapsed time */
   do something with the elapsed time
}

Note:  For the second and subsequent events in 
Example 5-3, each call to 
XX_GetElapsedCounterTicks returns the elapsed 
time between the current and previous events.

Introducing Alarms 
RTXC alarms are the lowest level of the event counting hierarchy and 
also the closest of the three classes to threads and tasks. Counters 
accumulate counter ticks and alarms represent the points at which 
certain values of accumulated counter ticks cause some thread or 
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task action to happen. If a counter accumulates ticks from a periodic 
source, the counter can represent time and associated alarms are 
time-based. Other counters perhaps accumulate a count of irregular 
events and the units of the counter, and of the associated alarms, are 
more process specific.

Application code uses RTXC Kernel services that operate directly on 
the alarms to establish points of action with respect to the counter 
accumulator. These are called general alarms. Other kernel services 
make use of the counters to set up internal alarms for use as a 
limitation component of their function. These alarms are referred to 
as internal alarms, also called tickout alarms. When the parent 
counter counts time, internal alarms are called time-outs. However, 
other types of counts can be used with equal ease for the same 
purpose if the counter is not time-based.

The RTXC Kernel employs a generalized scheme using one-shot and 
cyclic alarms. The kernel can manage multiple alarms 
simultaneously and one or more alarm points can occur at the same 
counter accumulation value. Kernel services for scheduling and 
canceling alarms are an integral part of the kernel service library. 
Regardless of their number, the time to service an active alarm is 
fixed and, therefore, deterministic.

Alarm Management 

The sources of events that eventually become counter ticks on the 
various counters are particular to the implementation of the target 
system. They may be external, such as an interrupt from the system 
time event source, or an internal event within the application code.

The RTXC Kernel manages all alarm operations in units of ticks. If 
the alarm’s parent counter ticks occur at a regular frequency, they 
represent a passage of time. The user defines the value in 
engineering units of one tick.

The basic rule of alarm management in the RTXC Kernel is as 
follows:

Rule: All RTXC alarms are measured in counter ticks with respect 
to their parent counter.
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Counter ticks serve three purposes in conjunction with RTXC Kernel-
based alarms:

It should be noted when using one-shot, general purpose, or internal 
alarms, especially those used with synchronous counters, that there 
is a possible error that can result. The problem occurs because the 
alarm is practically never activated at the moment its parent counter 
receives a tick. Instead, activation normally occurs at some 
indeterminate point between the last tick received and the next 
counter tick, resulting in an actual duration of the one-shot alarm 
period that is less than expected. An alarm period of one tick readily 
illustrates this problem.

Figure 5-3 shows the relationship, using time, between the point in 
time that a one-tick alarm goes active (that is, the alarm is armed) 
and the occurrence of the next tick of the counter.

Figure 5-3. Possible Duration of a 1-Tick Alarm Period, Case A 

Figure 5-4 on page 76 depicts the same one-tick alarm count but for 
a different arming point between the two ticks.

General 
purpose 
alarming

Synchronizes a task or schedules a thread with an event 
that occurs after a certain amount of ticks occur on a 
particular counter.

Internal 
alarming

Permits certain kernel services to limit blockage of the 
calling task for a specific number of counter ticks.

Elapsed tick 
counting

Permits the RTXC Kernel to compute the number of 
ticks that occur between two events.

Time

Alarm Activated

Tick Tick
Actual Alarm Duration
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Figure 5-4. Possible Duration of a 1-Tick Alarm Period, Case B

In both figures, the desired (or expected) alarm duration is one tick 
but the actual alarm duration is less than that. In Figure 5-3, the 
duration is almost one full tick but not quite. In Figure 5-4, the actual 
duration of the alarm is very much less than one tick. This is an end-
point consideration of which the user should be aware when 
defining a one-shot alarm period, whatever the duration. If the 
specified duration of the alarm is greater than one tick, the possible 
error only occurs at the first tick. Subsequent ticks are not in error. 
Therefore, the following rule applies:

Rule: A one-shot alarm period is not necessarily synchronous with 
the parent counter and may result in an error or undesirable 
results.

Alarm Definition 

The kernel refers to an alarm by its handle, which is an ALARM type 
value. You can define, during system generation, any combination of 
static and dynamic alarms up to a total number allowed by a datum 
of the ALARM type.

An alarm handle must be within the range of the total number of 
alarms defined for the application. There is no difference between 
the handle of a static alarm and a dynamic alarm.

Internal alarms have no identity with respect to the application and 
no kernel services exist with which to manipulate or directly access 
internal alarms. The RTXC Kernel automatically manages the 
creation and destruction of internal alarms.

Time

Alarm Activated

Tick TickActual Alarm Duration



Chapter 5:  Event Sources, Counters, and Alarms—Keeping Track of Events 77

Introducing Alarms

June 21, 2002   

One main rule applies to defining alarms:

Rule: Internal alarms are not declared during the system 
generation procedure.

Alarm Properties 

Alarms have four properties that are available to the developer. In 
addition to a property specifying its parent counter, each alarm object 
contains two tick values: one to define the expiry point of the first 
alarm after the alarm becomes active (the initial alarm), and another 
to define the next alarm point increment if it is a cyclic alarm. There 
is also an attributes property that the kernel uses for special modes of 
operation.

While not directly available to the developer, an alarm has three more 
important properties: its state, the active alarm expiry point, and the 
list of tasks waiting for the alarm’s expiration. The Alarm object class 
properties permit the inclusion of up to two optional semaphores. 
One allows a semaphore association with the alarm expiration. The 
second associates a semaphore with an alarm abort operation.

A task or thread can access the definable counter properties through 
an ALARMPROP structure, shown in Example 5-4.

Example 5-4. Alarm Properties Structure

typedef struct
{
   KATTR attributes;   /* reserved for future use */
   COUNTER counter;    /* Handle of alarm's parent counter */
   TICKS initial;      /* initial expiry point of alarm */
   TICKS recycle;      /* recycle count if cyclic alarm */
} ALARMPROP;

When defining an alarm with the XX_DefAlarmProp, the kernel 
maintains the value of initial to compute the alarm’s initial point of 
expiry whenever it becomes an active alarm.

The XX_GetAlarmProp kernel service reads the current 
developer-accessible properties of the given alarm and puts them in 
an ALARMPROP structure.
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An alarm having no cyclic tick counts (recycle = 0), is a one-shot 
alarm. An alarm having a non-zero value for recycle is a cyclic alarm. 
In a cyclic alarm, the value of initial may or may not be equal to the 
number of ticks in recycle. The first cycle of the alarm after it is armed 
uses the initial value unless it is zero (0), then subsequent alarm 
cycles use the recycle value. The following rule applies to alarms:

Rule: Defining an alarm’s properties establishes the relationship 
of the alarm with a parent counter.

Rule: Defining the properties of a alarm object does not start the 
alarm.

Figure 5-5 and Figure 5-6 show the relationship of initial and recycle 
properties to alarm expiry points, Ci, for typical values of initial and 
recycle. Figure 5-5 shows a one-shot alarm starting at the counter 
accumulator value of C0 with a non-zero value of initial and a recycle 
value of 0. The point of expiry of the alarm is C1.

Figure 5-5. One-Shot Alarm

Figure 5-6 on page 79 shows a cyclic alarm starting at the counter 
accumulator value of C0 with non-zero values for both initial and 
recycle. The point of expiry of the first alarm is C1 followed 
successively by alarms at C2, C3, C4, and so on.

Ticks

initial

Alarm Armed

C0 C1
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Figure 5-6. Cyclic Alarm

Alarm Attributes 

The alarm Waiter_Mode attribute defines how the RTXC Kernel 
manages tasks waiting on an alarm’s expiration. By definition, the 
kernel sets this attribute to ATTR_FIFO_ORDER and adds tasks in 
chronological order to the list of tasks waiting for the expiration of 
the alarm. This setting offers the most efficient for processing 
because all waiting tasks receive notice upon expiration of the alarm.

The alarm Waiter_Mode attribute has no effect on RTXC threads.

Counter 

The counter property defines the handle of the alarm’s parent 
counter. The kernel calculates all points of expiry for the given alarm 
using the counter ticks from the parent counter’s accumulator and 
either the initial or recycle property.

Initial Tick Count 

If the value of initial is non-zero, it represents the increment of ticks 
to add to the value of the parent counter’s accumulator to establish 
the point of expiry of the first alarm after the alarm becomes armed 
(active). If the value of initial is zero, the kernel does not use it but 
uses the value of recycle instead.

Recycle Tick Count 

For one-shot alarms, the value of the recycle property should be zero. 
If the alarm is cyclic, this property contains a non-zero value that the 
kernel uses to determine the next point of expiry. When the current 
alarm expires, the kernel uses the value of recycle and the parent 

Ticks

initial

Alarm Armed

C0 C1

recycle recycle recycle

C4C3C2
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counter’s accumulator to compute the point of expiry of the next 
alarm. 

Alarm State 

A alarm must exist in one of two states, Alarm_Active or 
Alarm_Inactive. All alarms initialize as being Alarm_Inactive. When 
application code arms an alarm, the alarm’s state becomes 
Alarm_Active and remains so until it expires or a task or thread stops 
or aborts it with a call to the XX_AbortAlarm or 
XX_CancelAlarm kernel services. The state of a one-shot alarm 
becomes Alarm_Inactive when it expires. After XX_AbortAlarm or 
XX_CancelAlarm stops an active cyclic alarm, the alarm’s state 
becomes Alarm_Inactive. The following rule applies to alarms:

Rule: Application code (thread or task) must not manipulate any 
properties of an active alarm.

Optional Properties

Each general purpose alarm inherits the optional Semaphores 
property of the Alarm object class as defined by the user during the 
system generation procedure. If the class allows it, an alarm object 
supports up to two semaphores: one associated with the 
Alarm_Expiration (AE) event and the other related to the Alarm_Abort 
(AA) event. The KS_DefAlarmSema kernel service associates these 
semaphores with the alarm. A task may define an alarm semaphore 
without regard to the state of the alarm.

Alarm_Expiration Semaphore 

The Alarm_Expiration (AE) semaphore, if defined, receives a signal 
when the alarm expires, in support of the following rule:

Rule: Expiration of a general purpose alarm is an event.

In typical operation, it is not necessary to associate a semaphore with 
an alarm expiration to synchronize one or more tasks with the alarm. 
The RTXC Kernel handles synchronization of alarm expiration with 
tasks waiting on the event without requiring a semaphore. The AE 
semaphore is typically used in conjunction with a task waiting on 
multiple semaphores associated with various events.
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The AE semaphore also finds utility as an easy means of setting up a 
software watchdog to rearm a one-shot alarm to prevent its 
expiration. Tasks in the application use the XX_RearmAlarm kernel 
service to give the watchdog alarm a new point of expiration tick 
count before the alarm has a chance to expire. Should the watchdog 
alarm expire, the signal to the AE semaphore indicates there may be 
something amiss in the system. The task detecting the AE event 
must deal with any special recovery or system restart operations. 
One rule applies:

Rule: Only a task can receive notification that an alarm expiration 
(AE) event has occurred.

Alarm_Abort Semaphore

The Alarm_Abort (AA) semaphore, if defined, receives a signal if the 
alarm is prematurely stopped by a call to the XX_AbortAlarm 
kernel service. A task can use the KS_TestSemaW kernel service as 
part of a simple synchronization with the AA event. A task may also 
include the AA semaphore in a group of semaphores on which the 
task uses the KS_TestSemaMW kernel service to wait for any event 
in the group to occur. One rule applies:

Rule: Only a task can receive notification that an alarm abort (AA) 
event has occurred.

Using Alarms

General purpose alarms are useful for managing events with respect 
to the number of ticks accumulated on the alarm’s parent counter. 
Alarms may be static or dynamic and one-shot or cyclic. RTXC Kernel 
services exist to start them, restart them, and stop them. The RTXC 
Kernel supports the ability of both tasks and threads to use alarms. 
Tasks can use alarms for task activation using either one-shot or 
cyclic alarms. The kernel permits a task or thread to use more than 
one timer at the same time. Threads can only activate alarms. Unlike 
a task, threads cannot wait for an alarm because a thread is not 
allowed to wait. However, through the use of thread gates, you can 
schedule threads as a result of alarm expiration.
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Alarm Creation 

The RTXC Kernel requires that an alarm exist before application code 
can use it. Specifying a static alarm and defining its properties with 
RTXCgen during system initialization creates the static alarm.

On the other hand, a task must specifically create a dynamic alarm 
before using it. If the Dynamics attribute is enabled for the Alarm 
class, a task creates a dynamic alarm by opening it and then defining 
its properties. When opening a dynamic alarm, the task may or may 
not assign a name to the alarm. Assigning a name is sensible when 
the name can be used by other tasks. However, if the alarm is to be 
used solely within the scope of the requesting task, assigning a name 
has little consequence other than to require memory space.

Because a task can create and use more than one alarm concurrently, 
it is good practice to have the task open all of the dynamic alarms it 
needs before starting the main body of the task. The task may use the 
alarm handle in subsequent alarm management kernel services. 
Any task using alarms should maintain the handle of each dynamic 
alarm until such time as the alarm is closed by the 
KS_CloseAlarm kernel service.

Allocating and defining dynamic alarms early typically ensures they 
will be available when their first use occurs. However, even in a 
design where dynamic alarms are created early, a condition may 
arise where no dynamic alarm is available when a task attempts to 
open one. Should this occur, the task must handle the situation and 
take corrective action. An unsuccessful alarm opening may indicate 
the presence of a problem elsewhere in the system. However, the 
absence of available dynamic alarms usually results from improper 
configuration.

Example 5-5 on page 83 shows a code fragment in which a task 
opens and defines a dynamic one-shot alarm without a name. The 
alarm’s parent counter is the application time base, TIMEBASE, and 
the initial period is 500 msec.

For static alarms, the process is much simpler. The user defines the 
properties of the alarm using RTXCgen. During system startup, the 
initialization procedure defines the properties of all static alarms 
through repetitive calls to the XX_DefAlarmProp kernel service. 
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Subsequently, all that is required to use a static alarm is to arm it at 
the appropriate point in the application code.

Example 5-5. Creating a Dynamic Alarm 

#include "rtxcapi.h"    /* defines TIMEBASE */
#include "kproject.h"   /* defines CLKTICK */

ALARM dynalarm;    /* gets handle of dynamic alarm */
static ALARMPROP aprop;

...task operations

/* open new dynamic alarm and verify it exists */
if ((KS_OpenAlarm ((char *)0, &dynalarm)) != RC_GOOD)
{
   ...failure to open alarm. deal with it
}
else   /* alarm opened successfully. */
{
   /* now define its properties */
   aprop.attributes = 0;
   aprop.counter = TIMEBASE;
   aprop.initial = (TICKS)500/CLKTICK; 
   aprop.recycle = (TICKS)0;
   KS_DefAlarmProp (dynalarm, &tprop);

   /* alarm okay to use now */
}

Arming an Alarm 

After the application code defines an alarm’s properties, it may use 
the alarm by calling the XX_ArmAlarm kernel service. Arming an 
alarm changes its state to Alarm_Active and sets up the alarm’s initial 
expiry point using the value of the initial property as previously 
described. The alarm remains in the active state until the initial 
alarm expires, if it is a one-shot alarm, or, if it is a cyclic alarm, until 
application code cancels or aborts the alarm. The following rule 
applies to arming an alarm:

Rule: Application code may not arm an active alarm.
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To extend Example 5-5 to include the task starting the dynamic 
periodic alarm, or to activate a static alarm, simply add the following 
statement at the appropriate point in the task’s code:

KS_ArmAlarm (dynalarm);

If a thread is activating the alarm, use the XX_ArmAlarm Zone 2 
kernel service.

Rearming an Alarm 

The XX_RearmAlarm kernel service redefines the values of the 
initial and recycle properties of a given alarm and establishes a new 
point of expiry of the alarm based on the redefined value of initial. 
Rearming an alarm is possible without regard to the alarm’s state 
and has no effect on the alarm’s AE or AA semaphores, if defined.

Consider that the dynamic one-shot alarm created in Example 5-5 on 
page 83 is actually a watchdog alarm (WDT). Assuming another task 
knows the alarm’s handle, it can reset the WDT by a single RTXC 
Kernel service. Example 5-6 shows the code model for rearming the 
WDT.

Example 5-6. Rearming a Software Watchdog Alarm 

#include "rtxcapi.h"
#include "kproject.h"    /* defines CLKTICK */

ALARM dynalarm;
ALARMPROP aprop;

/* alarm has already been created and armed */

if (KS_RearmAlarm (dynalarm,(TICKS)500/CLKTICK,(TICKS)0) == (TICKS)0)
{
   ...alarm had already expired. do something
}
else
   ...WDT restarted. Continue

Alarm Expiration 

Alarm expiration is an event on which one or more tasks may 
synchronize. The RTXC Kernel supports a design that allows 



Chapter 5:  Event Sources, Counters, and Alarms—Keeping Track of Events 85

Introducing Alarms

June 21, 2002   

multiple tasks to wait for the same alarm to expire using the 
KS_TestAlarmW kernel service. However, unlike some other 
object classes, the following rule applies:

Rule: The kernel unblocks all tasks waiting on a alarm’s expiration 
whenever expiration occurs.

In Example 5-7, a task arms the TIMERX static cyclic alarm and uses 
its expiration to synchronize the task’s normal operation. The 
possibility exists that other tasks can cancel or abort the alarm.

Example 5-7. Waiting for Alarm Expiration with Possibility of Alarm Cancel or Abort 

#include "rtxcapi.h"
#include "kalarms.h"

...task operations

KS_ArmAlarm (TIMERX);     /* arm cyclic alarm */

/* do the following forever */
for (;;)
{
   /* wait for alarm to expire */
   if (KS_TestAlarmW (TIMERX, (TICKS *)0) != RC_GOOD)
   {
      ...alarm was inactive or was aborted. Treat it specially
   }
   else
      /* alarm expired. do task operations */
}

In Example 5-7, a task arms the TIMERX static cyclic alarm and uses 
its expiration to synchronize the task’s normal operation. In 
Example 5-8 on page 86, there is no other task that can cancel or 
abort the alarm.
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Example 5-8. Waiting for Alarm Expiration without Possibility of Alarm Cancel or Abort 

#include "rtxcapi.h"
#include "kalarms.h"

...task operations

KS_ArmAlarm (TIMERX);     /* arm cyclic alarm */

/* do the following forever */
for (;;)
{
   /* wait for alarm to expire */
   KS_TestAlarmW (TIMERX, (TICKS *)0);

   /* alarm expired. do task operations */
}

Aborting an Alarm

Sometimes a task needs to stop an active alarm prematurely. The 
XX_AbortAlarm kernel service cancels the specified alarm and 
signals the alarm’s AA semaphore, if defined. This function, if 
successful, makes the alarm inactive and returns the number of ticks 
remaining until the alarm would have reached its point of expiration. 
If the task attempts to stop an inactive alarm with 
XX_AbortAlarm, the kernel service returns a value of zero (0) to 
indicate the alarm’s state.

Freeing Alarms

A task may determine that it no longer needs a dynamic alarm. The 
KS_CloseAlarm kernel service releases the handle of the alarm 
and frees the RAM used by the alarm object. The following rule 
applies:

Rule: A task can free only dynamic alarms.

Reading Ticks Remaining on a Alarm 

The RTXC Kernel provides two ways of determining the number of 
ticks remaining on the current alarm. One such service is 
XX_GetAlarmTicks and the other is KS_TestAlarm. Both kernel 
services read the number of counter ticks remaining on the active 
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alarm and return the number to the caller. The second service 
however, also determines the state of the alarm and returns a 
corresponding indication. If the KS_TestAlarm service returns an 
indicator that the alarm is inactive and the remaining time is non-
zero, the alarm was stopped previously by a call to the 
XX_AbortAlarm or XX_CancelAlarm kernel service.

Actions Taken at Alarm Expiry 

The RTXC Kernel provides ways for alarms to act on threads as a 
result of alarm expiry. These actions permit threads to use alarms 
effectively even though a thread cannot wait, as a task can, for the 
alarm to expire. Two kernel services exist for this purpose. The first, 
XX_DefAlarmAction allows a task or thread to set up one of two 
basic actions to take when the alarm expires. Once defined, the 
definition remains in place until it is changed by another call to 
XX_DefAlarmAction or until the alarm becomes inactive.

Detection of alarm expiry occurs in the zone that calls 
XX_ProcessEventSourceTick. If an exception handler calls 
the kernel service, then the resulting action must be called from that 
same zone. The situation is identical when a thread calls the 
XX_ProcessEventSourceTick kernel service. Because there 
are two zones from which the two basic expiry actions can take place, 
the kernel services have to allow for four actual action definitions.

The two basic actions are:

Schedule a thread.

Decrement a thread’s thread gate.

When the action is defined, the XX_ProcessEventSourceTick 
kernel service executes the internal functions to perform one of 
these two basic services upon determining the alarm has expired. 
The internal functions are dependent on the zone of the caller to the 
XX_ProcessEventSourceTick kernel service.

One action, scheduling a thread, has direct effect. The specified 
thread is scheduled and has only to wait until the RTXC/ss Scheduler 
gives it control of the CPU. If the specified action is to decrement the 
thread’s thread gate, the thread may or may not become ready, 
depending on the value of the thread gate.
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