MATERIAL COVERED

• Concepts in Halliday, Resnick and Walker, **Chapters 1-15, 19-21**
 ▪ There will be 6 questions on the exam
 ▪ The approximate breakdown of the questions will be:
 – Half covering Chapters 1-12 (midterms 1 & 2)
 – Half covering Chapters 13-15 & 19-21 (after midterm 2)

• Questions will be based on material covered in:
 ▪ Lectures
 ▪ Problems in the Homework
 ▪ Sections of the Text not touched on in Lectures or Homework will not be included in the exam.

• Question Format:
 ▪ Questions will be very similar to the homework problems and to those on the midterms

WHAT TO BRING

• The exam will be closed book, but

• You will be allowed to use one 8½ x 11 note sheet
 ▪ You may use both sides of the note sheet
 ▪ The notes must be in your handwriting – No photocopies
 ▪ You may include anything you want on the note sheet
 (formulas, example problems, graphs, inspirational poetry…)
 ▪ You will be asked to had in your note sheet with your exam, so **put your name on it**
 – The note sheet will not be graded, but
 – Failure to hand in your note sheet will cost you points

• Remember to bring a **calculator**

• I will provide all necessary:
 ▪ constants
 ▪ unit conversions
 ▪ moments of inertia
GENERAL ADVICE

• Studying for the Exam
 ▪ Do all the homework problems and understand the solutions.
 ▪ Review your lecture notes.
 ▪ Have a look at the “Questions” at the end of each chapter. If you find that you have problems with groups of them you should concentrate on understanding those areas.

• Exam-Taking Strategies
 ▪ Before beginning the exam read over all the problems.
 ▪ Before doing a problem read it carefully so you don’t miss anything.
 ▪ Start with the easiest problem.
 ▪ If you get stuck – don’t waste time. Go on to another problem.
 ▪ Write legibly. If the grader can’t read your solution he/she can’t grade it.
 ▪ Show your work. No work = no partial credit.
 ▪ Draw detailed pictures - this can indicate to the grader that you understand the concept of the problem even if you don’t do the math correctly.
 ▪ Solve problems algebraically before plugging in numbers.
 ▪ Check your answers for correct units and reasonable values.
 ▪ Don’t worry if you can’t do everything. Grading will be on a curve.

• Time Budgeting
 ▪ Do not allow yourself to miss out on points by wasting all your time on a few problems.
 ▪ Make a time budget at the beginning of the exam and stick carefully to it!
 ▪ For a 3 hour exam with 6 questions a sample budget could be:
 – 10 min Read over all problems and decide the order to do them.
 – 25 min Spend this amount of time on each problem.
 When a problem's time is up, stop, and go to the next one.
 – 20 min Check over your work and revisit any parts you couldn't do.

• Partial Credit. How to make sure you get it.
 ▪ Show your work. You will not get credit if you simply write down the correct answer.
 ▪ Draw a diagram of the problem with forces and a coordinate system.
 – A well drawn diagram will be worth points.
 – No diagram will make it difficult for the grader to give partial credit.
 ▪ Show clearly the steps you have taken in attempting to solve the problem.
 – If the grader can’t follow your reasoning you won’t get much credit.
 ▪ Include units in your answers.
 – Points will be taken off for answers without units.
 ▪ Use appropriate significant digits
 – Points will be taken off for answers that have many (3-4) more significant digits than the information given.
Key Concepts

UNITS
• Always include units in answers!
• Know common units
 ▪ N = kg m/s^2, etc.
• Be able to convert back and forth between different units

VECTORS
• Drawing Coordinate Systems
• Difference between Vectors and Scalars
 ▪ Vector = magnitude and direction (at least two numbers)
 ▪ Scalar = number with sign
• Vector Representation
 ▪ Cartesian: \(\mathbf{v} = v_x \mathbf{i} + v_y \mathbf{j} + v_z \mathbf{k} \)
 – Unit vectors
 ▪ Polar: \(\mathbf{v} = \text{magnitude}(v) \text{ and angle}(\theta) \)
 ▪ Calculating components of vectors along coordinate axes
• Adding and Subtracting Vectors
• Multiplying Vectors
 ▪ Dot Product: \(\mathbf{c} = \mathbf{a} \cdot \mathbf{b} = ab \cos \theta \)
 ▪ Cross Product: \(\mathbf{c} = \mathbf{a} \times \mathbf{b} \)
 – \(c = ab \sin \theta \)
 – Direction of \(\mathbf{c} \) from Right-Hand-Rule

MOTION
• Definitions of:
 ▪ Position and Displacement
 – \(\mathbf{r}(t) \) and \(\Delta \mathbf{r} \)
 ▪ Velocity and Speed
 – \(\mathbf{v} = \Delta \mathbf{r} / \Delta t \)
 \(\mathbf{v} = d\mathbf{r}/dt \)
 ▪ Acceleration
 – \(\mathbf{a} = \Delta \mathbf{v} / \Delta t \)
 \(\mathbf{a} = dv/dt \)
• Differences between average and instantaneous acceleration and speed
• \(a = 0 \Rightarrow v = \text{constant} \)
• Relative Motion
 ▪ Understand concept of Frames of Reference
 – Difference between Inertial and Non-inertial Frame
 ▪ Transformations of position / velocity / acceleration between inertial frames
 – \(\mathbf{x}_{o1} = \mathbf{x}_{o2} + \mathbf{x}_{21} \)
 – \(\mathbf{v}_{o1} = \mathbf{v}_{o2} + \mathbf{v}_{21} \)
 – \(\mathbf{a}_{o1} = \mathbf{a}_{o2} \) for object \(o \) in reference frames 1 and 2
MOTION WITH CONSTANT ACCELERATION

- Equations of Motion in 1D and 2D and how to use them
 - See Table 2-1 in the Text
 - Understand how to break 2D equations of motion up into components
 - Velocity Direction = Tangent to y vs. x curve
- Keep Track of Signs \((x, v, a)\) when writing equations
- Acceleration of gravity near earth
- Projectile Motion
 - Independence of \(x\) and \(y\) components
 - Range (and when to use it)

FORCE

- Newton’s Laws
 - 1st Law: No Force means No Acceleration
 - \(F=0 \Rightarrow a=0 \Rightarrow v=\text{constant}\)
 - 2nd Law: Total Force Acting on Body proportional to Acceleration of Body
 - \(\sum F = ma\) This is a vector equation
 - 3rd Law: Action = Reaction
 - \(F_{12} = -F_{21}\)
 - The force body 1 exerts on body 2 is equal and opposite to the force body 2 exerts on body 1
- Mass
 - Difference between mass and weight
- Free-Body Diagrams
 - Always draw these – they are crucial!
 - Draw one for each object in the problem.
 - Make sure you keep straight which forces are acting on which bodies!
 - When must you include a Force
 - Gravity (at the CM)
 - Points of Contact between objects
 - Choose useful coordinate systems
 - one axis along direction of motion or acceleration
- Forces to Understand
 - Weight \(W = mg\)
 - Normal Force Perpendicular to Surface
 - Friction
 - Static
 - \(F_f^{max} = \mu_s \ N\)
 - Direction: opposite to applied force
 - Remember that at point static friction breaks down:
 - \(F_f = F_f^{max}\) and \(a = 0\)
 - Kinetic
 - \(F_f = \mu_k \ N\)
 - Direction: along surface of contact, opposite to motion
- Drag Force
 - Know general form
- Tension
 - Understand direction of tension pulling on objects
- Uniform Circular Motion
 - Definition = motion in a circle with constant speed
 - Relationship between period, speed and radius
 > \[T = \frac{2\pi r}{v} \]
 - Force required for object to stay in uniform circular motion
 > \[F_{\text{cent}} = ma_{\text{cent}} \text{ – pointing towards center of circle} \]
 > \[a_{\text{cent}} = \frac{v^2}{r} \]
 > Keep in mind that a real force must be provided by something like gravity, tension, etc. if an object is to move in a circle
- Standard Force Problems to Understand
 - Blocks and Inclined Planes
 - Cords and Pulleys
 - Objects with friction
 - static: on the verge of motion
 - kinetic
 - Objects moving in circles and what causes it
 - Static situations – No motion
- Strategy for solving force problems
 1) Draw a sketch of the problem – include important forces
 2) Decide what object(s) you want to consider
 3) Draw a free body diagram(s) for each object
 - include all forces acting on the object
 - forget about the forces the object exerts on other things
 4) Choose a coordinate system and draw it on your free-body diagram(s)
 5) Write down the force equations in the x- and y-directions
 - don’t think too much here – just break the forces into components and write down the equations
 - try to be as general as possible
 - don’t make assumptions about accelerations or relationships between forces
 6) Try to find all the relationships that you can between accelerations and forces
 7) Solve the simultaneous equations

WORK & ENERGY (non-rotational)
- Work
 - \[W = \int F \cdot ds \] General Definition
 - \[W = F \cdot d \] Constant Force, Linear Displacement
 - \(W \) is independent of path (depends only on endpoints of integral) for conservative forces
 - Be able to calculate for simple situations (no complicated integration)
- Kinetic Energy
- \(K = \frac{1}{2} mv^2 \)

- **Potential Energy**
 - \(\Delta U = - \int F \cdot ds = -W(i\to f) \) P.E. Difference between two points
 - Only sensible to define P.E. for conservative forces
 - Integral is path independent
 - Concept of Reference Point \(\Rightarrow \) Allows to Define \(U(r) \)
 - Always make clear what your reference point is!
 - Be able to calculate for simple situations (no complicated integration)

- **Total Mechanical Energy**
 - \(E = K + U \)
 - \(E \) is constant for conservative forces (conservation of energy)

- **Power**
 - \(\langle P \rangle = W / t \)
 - \(P_{\text{inst}} = dW/dt = dE/dt = F \cdot v \)

- **Conservative Forces**
 - Which forces are conservative
 - Gravity
 - Spring Force
 - And which aren’t
 - Friction

- **Conservation of Energy**
 - \(K_1 + U_1 = K_2 + U_2 \) Mechanical Energy Cons. for Isolated Systems
 - \(\Delta K = -\Delta U \) Alternate formulation
 - Applicable when all forces are conservative
 - No friction or other energy dissipation
 - Understand what is meant by a system
 - Isolated = no external forces
 - Remember to define a reference point for the P.E.

- **Dissipation of Energy**
 - Define clearly what is the “System” and what is “External”
 - what belongs to each category will depend on the problem
 - \(W_{\text{ext}} = \Delta E_{\text{tot syst}} = \Delta K + \Delta U + \Delta E_{\text{int}} \)
 - Don’t worry too much about the details of \(\Delta E_{\text{int}} \)
 - how it is distributed among the objects in a system
 - Do understand its source
 - for example, energy dissipated by friction causes increase in \(E_{\text{int}} \)
 - Be able to calculate \(\Delta E_{\text{int}} \) for simple cases involving friction

- **Specific Applications to Understand**
 - Be thoroughly comfortable with using energy conservation in problems involving combinations of these.
 - Be careful of signs
 - Use your physical intuition to tell you what they should be for work and potential energy
 - Work - Kinetic Energy Theorem
This is most often useful in situations where an object starts and ends at rest
> $\Delta K = 0 \Rightarrow W_{\text{tot}} = 0$

Gravity
- $F = mg$
- $\Delta U = mg \Delta y$
- Make sure you understand conservation of energy applied to falling bodies or bodies sliding down ramps.

Springs
- Concept of relaxed position
- $F = -k\Delta x$
- $\Delta U = \frac{1}{2} k\Delta x^2$
- Be able to calculate things like:
 > position of turning points
 > speed as a function of Δx

Pendulums
- Calculate speed, height of swing, etc.
- Relationship between speed and tension in cord

Friction
- Calculate Energy loss due to presence of friction for simple situations

MOMENTUM & CENTER-OF-MASS

- Calculate position of center of mass for simple systems
 - $r_{\text{CM}} = \sum m_i r_i / M_{\text{tot}}$
 - $r_{\text{CM}} = \int r \, dm / M_{\text{tot}}$ (no complicated integrals)
 - Understand how to use symmetry to simplify the calculations

- Motion of the CM
 - $\Sigma F_{\text{ext}} = M_{\text{tot}} a_{\text{CM}}$
 - Pay special attention to the case when $\Sigma F_{\text{ext}} = 0$
 - Calculate motions of parts of the system based on knowledge of CM
 - Remember to always clearly define your system
 - Understand problems involving positions of objects in a system as they change locations

- Momentum
 - $p = mv$ particle
 - $\Sigma F = dp/dt$
 - $p_{\text{CM}} = M_{\text{tot}} v_{\text{CM}}$ system
 - $\Sigma F_{\text{ext}} = dP_{\text{CM}}/dt$
 - Conservation of Momentum
 - $\Sigma F = 0 \Rightarrow p = \text{constant} \Rightarrow p_i = p_f$
 - Calculate motion of components of system under momentum conservation
 - Be careful of Relative Motion
 > e.g. people walking on boats with speeds given with respect to the boat
 > Gallilean Transforms: $v_{\text{ao}} = v_{\text{ab}} + v_{\text{bo}}$

- Collisions
- Impulse
 > \(\Delta p = \int F \, dt = \langle F \rangle \Delta t \)
- Series of Collisions
 > calculate average force
- Elastic Collisions:
 > \(P_i = P_f \) \quad \text{Momentum Conserved}
 > \(K_i = K_f \) \quad \text{Kinetic Energy Conserved}
- Inelastic Collisions:
 > \(P_i = P_f \) \quad \text{Only Momentum Conserved}
- Totally Inelastic Collisions:
 > Objects stick together after collision
- Be able to set up momentum and K.E. conservation equations for collisions in 1D and 2D
 > Algebra will be kept to a Minimum
- Understand motion of CM for collisions (remains unchanged)

ROTATIONAL MOTION

- See Table below for important formulas
- Definitions of Angular: Displacement, Velocity, Acceleration
- Understand relationships between rotational and translational quantities
 - radial and tangential components of motion
 - calculate angular velocity from period of rotation
 > \(\omega = \frac{2\pi}{T} \)
 > Remember that if an object is travelling in a circle some force must be acting on it
 - pointing toward the center of circle
 - magnitude of force = \(\frac{mv^2}{r} \)
- Be comfortable with Angular Equations of Motion (kinematics) for constant angular acceleration
- Rotational Inertia
 - \(I = \sum m_i r_i^2 = \int r^2 \, dm \)
 - Be able to calculate for simple objects or collections of objects
 - No complicated calculations
 - remember: \(I \) is an additive quantity (like mass)
 - Understand the Parallel Axis Theorem
- Torque:
 - \(\tau = r \times F \)
 - be able to calculate its magnitude and direction from force and displacement vector
- Newton’s 2nd Law (Angular Form): \(\Sigma \tau = I\alpha \)
 - Use this to solve rotational dynamics problems
 - Important problems to understand
 - Weights and Massive Pulleys
 - Cords winding or unwinding on of Spools
• Work & Energy
 - Be able to solve energy conservation problems involving linear and rotational motion
• Rolling without slipping
 - $v_{CM} = \omega r$
 - $K = \frac{1}{2} m v_{CM}^2 + \frac{1}{2} I_{CM} \omega_{CM}^2$
 - Use energy conservation to calculate motion of bodies rolling down inclines
 - understand problems for bodies with several parts (like bicycles)
• Angular Momentum
 - Calculate from:
 - $L = \mathbf{r} \times \mathbf{p}$
 - $L = I \omega$
 - $\sum \tau = dL/dt$
 - Conservation of Angular Momentum of a System
 - $\sum \tau_{ext} = 0 \Rightarrow L_{syst} = \text{constant} \Rightarrow L_i = L_f$
 - Solve problems for motion of components of a system
 > Change in L of one component
 > Change in I

STATIC EQUILIBRIUM
• This is just a special case of Force and Torque problems where all objects are stationary.
• Understand how to write down force and torque equations for all components (x,y,z)
 - $\sum \mathbf{F}_{ext} = 0$ acting through the CM
 - $\sum \tau_{ext} = 0$ acting about a point that you choose cleverly
 - Choose origin for torque calculations such that some of the torques are zero

GRAVITATION
• Gravitational Force
 - $\mathbf{F} = -G \frac{m_1 m_2}{r^2} \hat{r}$ \hspace{1cm} $(G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2)$
 - Superposition (calculating the total force on a body)
 - $\mathbf{F}_i = \sum \mathbf{F}_{1i}$ \hspace{0.5cm} discrete bodies
 - $\mathbf{F} = \int \mathbf{dF}$ \hspace{0.5cm} continuous body
 - Remember: these are vector sums
 - Relationship between G and g (acceleration due to gravity) near surface of a planet
 - $g = GM/r^2$
• Gravitational Potential
 - $U = -G \frac{m_1 m_2}{r}$
 - Reference point: $U = 0$ at $r = \infty$
 - Potential energy of a system of bodies
• Gravitation of Spherical Shells
 ▪ Know behavior of Force and Potential
 – inside and outside of shell
 – as a function of position inside uniform spherical body
• Conservation of Energy in Gravitational systems
 ▪ Escape Velocity
• Kepler’s Laws
 ▪ 1) Law of Orbits: The orbit of each planet is an ellipse with the sun at one focus
 ▪ 2) Law of Areas: The speed of a planet in its orbit varies in such a manner that the
 radius vector joining the planet with the sun sweeps over equal areas in equal times.
 ▪ 3) Law of Periods: For planets $(\text{Period})^2 \propto (\text{semi-major axis})^3$
 ▪ Know the basic consequences of these for planetary motion

FLUIDS
• Density $\rho = M/V$
• Pressure $P = F/A$
 ▪ Know that 1atm = 1.01×10^5 Pa
• Definition of a Fluid (understand consequences):
 ▪ Cannot sustain a transverse force (only normal forces)
 – \rightarrow takes shape of container
 – \rightarrow Pressure acts normal to the surface of the fluid/container
 ▪ Gas: compressible
 ▪ Liquid: basically incompressible
• Pascal’s Principle
 ▪ pressure transmitted undiminished to all portion of fluid and walls of container
 ▪ understand what this means for forces applied to any point in the fluid
 – the Hydraulic Lever
• Fluid Statics
 ▪ Pressure vs depth:
 – $P_1 = P_2 + \rho g(y_1 - y_2)$ two arbitrary depths
 – $P = P_0 + \rho gh$ difference between surface and depth h
 – understand signs
 ▪ Buoyancy / Archimedes’ Principle
 – $F_b = \text{weight of fluid displaced by object}$
 – be able to solve force equations using buoyant force
• Fluid Dynamics
 ▪ Understand difference between laminar and turbulent flows
 – calculations will all be for laminar
 ▪ Flow rate:
 – $R = A_1 v_1 = A_2 v_2$ conservation of mass
 ▪ Bernoulli’s Equation:
 – $P_1 + \frac{1}{2} \rho v_1^2 + \rho g y_1 = P_2 + \frac{1}{2} \rho v_2^2 + \rho g y_2$ conservation of energy
 > be careful with signs
• Be able to apply flow rate and Bernoulli’s equation to get information about flow of liquids

THERMODYNAMICS

• Counting in Thermodynamics
 ▪ Avogadro’s Number: \(N_A = 6.02 \times 10^{23} \)
 ▪ 1 mole (mol) = \(N_A \) objects

• 0th Law of Thermodynamics: Temperature Definition
 ▪ If 2 bodies are in thermal equilibrium with a third then they are in thermal equilibrium with each other
 – not much that you can say about this – but I include it for completeness
 ▪ Know how to convert between temperature scales (especially Celsius and Kelvin)
 ▪ Only Kelvin can be used for equations involving absolute temperatures
 ▪ Kelvin or Celsius can be used for equations involving temperature changes

• Thermal Expansion
 ▪ Linear Expansion: \(\Delta L = L \alpha \Delta T \)
 ▪ Volume Expansion: \(\Delta V = V \beta \Delta T \)
 – \(\beta = 3\alpha \)

• Heat
 ▪ Definition: Heat = Energy transferred due to a temperature difference between two systems
 ▪ Signs
 – Object Absorbs Heat \(\rightarrow Q>0 \)
 – Object Gives Up Heat \(\rightarrow Q<0 \)
 ▪ Heat Capacity
 – \(Q = C (T_f - T_i) = C \Delta T \)
 ▪ Specific Heat = Heat capacity / mass
 – \(Q = mC_m (T_f - T_i) \)
 ▪ Molar Specific Heat
 – \(Q = nC_m (T_f - T_i) \)
 ▪ Heats of Transformation
 – Phase Change \(\Rightarrow \) Heat absorbed (given off) by object but no temp. change
 > Solid\(\Rightarrow \)Liquid & Liquid\(\Rightarrow \)Gas: Heat Absorbed
 > Gas\(\Rightarrow \)Liquid & Liquid\(\Rightarrow \)Solid: Heat Emitted
 – \(Q = Lm \)
 ▪ Be able to calculate multi-step phase changes and heating for two systems coming to thermal equilibrium

• Heat Transfer
 – 1) Conduction:
 > \(\frac{Q}{t} = kA (T_H - T_C) / L \)
 > Apply this to simple situations
 – 2) Convection
 – 3) Radiation
 – Know what Convection and Radiation are, but no explicit calculations
• Work in Thermodynamic Systems
 ▪ \[W = \int P \, dV \]
• 1st Law of Thermodynamics: Energy Conservation / Definition of Heat
 ▪ \[\Delta E_{\text{int}} = Q - W \]
 ▪ This is the starting point for most thermodynamics calculations
 – in general think of this first when doing a problem
• P–V Diagrams
 ▪ Draw thermodynamic processes on them
 ▪ Calculate Work geometrically
 ▪ Use them to show graphically thermodynamic processes
• State Variables / Equations of State
 ▪ Changes in state variables do not depend on path
 ▪ Some State Variables: \(P, V, T, m, E_{\text{int}}, S \) path independent
 ▪ Not State Variables: \(W, Q \) path dependent
 ▪ Understand the consequences of something being a state variable or not
• Thermodynamic Processes
 ▪ Isometric (constant volume)
 ▪ Isothermal (constant temperature)
 ▪ Isobaric (constant pressure)
 ▪ Adiabatic (no heat)
 ▪ Free Expansion
 ▪ Cyclical (begins and ends at same thermodynamic point)
 ▪ For each of these processes you should know (see table below):
 – what is constant
 – general relationships between \(\Delta E_{\text{int}}, Q, W, S \)
 – Be able to draw them approximately on a P-V diagram
 > (except for Free Expansion)
• Ideal Gases
 ▪ Definition:
 – 1) molecules are point masses
 – 2) no interactions between molecules except for elastic collisions
 – \(\Rightarrow E_{\text{int}} = K_{\text{int}} \) (no potential energy)
 ▪ Equation of State: \(PV = nRT \)
 – This is another crucial formula with applications in most problems
 ▪ Know expressions for \(\Delta E_{\text{int}}, Q, W, S \) for ideal gas for all of thermodynamic processes above (see table)
 ▪ Know constant quantities for various processes (see table)
 – Adiabatic
 – Free Expansion
• Kinetic Theory of Ideal Gases
 ▪ Know definition of RMS: \(a_{\text{rms}} = (\langle a^2 \rangle)^{1/2} \)
 ▪ \(P = nMAV_{\text{rms}}^2 / 3V \)
 ▪ \(v_{\text{rms}} = (3RT/MA)^{1/2} \)
 ▪ \(\langle K \rangle / \text{molecule} = \frac{1}{2} kT \) for each degree of freedom
 – \(k = R / N_A \)
- Understand what is meant by “degree of freedom”
- Monatomic Gas \rightarrow 3 Translation
- Diatomic Gas \rightarrow 3 Translation + 2 Rotation (+vibrational at high T)
- Polyatomic Gas \rightarrow 3 Translation + 3 Rotation (+vibrational at high T)

- Internal Energy of Ideal Gas depends only on temperature:
 - $E_{\text{int}} = \frac{3}{2} nRT$ (monatomic ideal gas)
 - $\Delta E_{\text{int}} = nC_V \Delta T$ (always true)
 > this is useful in many calculations

- Molar Specific Heats of Ideal Gases
 - $C_p = C_V + R$ (generally true for any ideal gas)
 - $C_V = \frac{3}{2} R$ (monatomic ideal gas)
 - $C_V = \frac{5}{2} R$ (diatomic ideal gas)

- Solving Ideal Gas Problems
 - The three most generally applicable are formulas are:
 - 1) $PV = nRT$
 - 2) $\Delta E_{\text{int}} = Q - W$ (1st Law)
 - 3) $\Delta E_{\text{int}} = nC_V \Delta T$
 - The solution to most Ideal Gas problems will involve at least one of these three

- Entropy
 - Reversible Processes
 - 1) No Dissipative Effects
 - 2) Quasi-Static: always in thermodynamic equilibrium
 > variables can be defined
 - Irreversible Processes
 - 1) or 2) do not hold
 - Entropy Defined
 - $\Delta S = \int dQ/T$ for quasi-static process
 - Entropy is a State Variable
 - Calculate Entropy Change for simple processes
 - Understand Entropy Change for an Ideal Gas
 - $\Delta S = nR \ln(V_f/V_i) + nC_V \ln(T_f/T_i)$

- 2nd Law of Thermodynamics:
 - For an Isolated System:
 - $\Delta S = 0$ reversible process
 - $\Delta S > 0$ irreversible process
 - For a non-Isolated System
 - $\Delta S = \int dQ/T$
 - Be able to say whether a process is possible based on entropy change

- Entropy for Irreversible Processes
 - Calculate ΔS for irreversible processes in a closed system by connecting initial and final states by reversible processes
 - be able to do this for very simple systems:
 > for example, 2 objects, initially at different temperatures coming to thermal equilibrium
• **Heat Engines / Refrigerators**
 - Understand how to draw the engine’s cycle on a P–V diagram
 - Understand why it’s impossible to convert heat only into work
 - Understand necessary conditions for an ideal engine
 - **Efficiency of Heat Engine:**
 \[\varepsilon = \frac{|W|}{|Q_H|} = 1 - \frac{Q_C}{Q_H} \]
 (Carnot Engine)
 - **Coeff of Performance of Refrig:**
 \[K = \frac{Q_C}{W} = \frac{Q_C}{(Q_H - Q_C)} \]
 (Carnot Refrigerator)
 - Be able to calculate \(\Delta E_{int}, W, Q, \Delta S \) for all steps in heat engine/refrig cycle

• **Statistical Mechanics**
 - Section 21-7 will **not** be included in the exam

TRANSLATIONS AND ROTATIONS

<table>
<thead>
<tr>
<th>Translation</th>
<th>Rotation</th>
<th>Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinematics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mathbf{r})</td>
<td>(\theta)</td>
<td>(s = r\theta)</td>
</tr>
<tr>
<td>(\mathbf{v} = \frac{d\mathbf{r}}{dt})</td>
<td>(\omega = \frac{d\theta}{dt})</td>
<td>(v_r = \omega r)</td>
</tr>
<tr>
<td>(\mathbf{a} = \frac{d\mathbf{v}}{dt})</td>
<td>(\alpha = \frac{d\omega}{dt})</td>
<td>(a_r = \alpha r)</td>
</tr>
<tr>
<td>(\mathbf{r}(t) = \mathbf{r}_o + \mathbf{v}_o t + \frac{1}{2}a t^2)</td>
<td>(\theta(t) = \theta_o + \omega_o t + \frac{1}{2}\alpha t^2)</td>
<td></td>
</tr>
<tr>
<td>(\mathbf{v} = \mathbf{v}_o + \mathbf{a} t)</td>
<td>(\omega = \omega_o + \alpha t)</td>
<td></td>
</tr>
<tr>
<td>(v^2 = v_o^2 + 2a x)</td>
<td>(\omega^2 = \omega_o^2 + 2\alpha \theta)</td>
<td></td>
</tr>
<tr>
<td>Mass & Inertia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(m)</td>
<td>(I)</td>
<td>(I = \sum r_i^2 m_i = \int r^2 , dm)</td>
</tr>
<tr>
<td>Force & Torque</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mathbf{F} = m \mathbf{a} = \frac{d\mathbf{p}}{dt})</td>
<td>(\tau = I\alpha); (\tau = \frac{d\mathbf{L}}{dt})</td>
<td>(\tau = \mathbf{r} \times \mathbf{F})</td>
</tr>
<tr>
<td>Momentum & Angular Momentum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mathbf{p} = m \mathbf{v})</td>
<td>(\mathbf{L} = I_\omega)</td>
<td>(\mathbf{L} = \mathbf{r} \times \mathbf{p})</td>
</tr>
<tr>
<td>(\mathbf{F}_{ext} = 0 \Rightarrow \mathbf{p} = \text{const})</td>
<td>(\tau_{ext} = 0 \Rightarrow \mathbf{L} = \text{const})</td>
<td></td>
</tr>
<tr>
<td>Work & Kinetic Energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(W = \int \mathbf{F} \cdot d\mathbf{s})</td>
<td>(W = \int \tau , d\theta)</td>
<td></td>
</tr>
<tr>
<td>(K = \frac{1}{2}mv^2)</td>
<td>(K = \frac{1}{2}I_\omega^2)</td>
<td>(W = \Delta K)</td>
</tr>
<tr>
<td>(K_{\text{rolling}} = \frac{1}{2}mv_{cm}^2 + \frac{1}{2}I_{cm} \omega^2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P = \mathbf{F} \cdot \mathbf{v})</td>
<td>(P = \tau \omega)</td>
<td></td>
</tr>
</tbody>
</table>
Thermodynamic Processes (Ideal Gases)

<table>
<thead>
<tr>
<th>Process</th>
<th>Def.</th>
<th>General (revers for S)</th>
<th>Ideal Gas</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td>$\Delta E_{\text{int}} = Q - W$</td>
<td>$\Delta E_{\text{int}} = nC_v\Delta T$</td>
<td>Heat a gas in a closed, rigid container</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\Delta S = \int \frac{dQ}{T}$</td>
<td>$PV = nRT$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\Delta S = nR\ln(V_f/V_i)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$+ nC_v\ln(T_f/T_i)$</td>
<td></td>
</tr>
<tr>
<td>Isometric</td>
<td>$\Delta V = 0$</td>
<td>$\Delta E_{\text{int}} = Q; W = 0$</td>
<td>$\Delta E_{\text{int}} = Q$</td>
<td>Heat air in limp paper bag ➔ bag blows up</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$W = 0$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\Delta S = nC_v\ln(T_f/T_i)$</td>
<td></td>
</tr>
<tr>
<td>Isobaric</td>
<td>$\Delta P = 0$</td>
<td>$W = P \Delta V$</td>
<td>$Q = nC_p\Delta T$</td>
<td>Need Equilibrium System in contact w/ Thermal Reservoir:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$W = P \Delta V$</td>
<td>- slowly pulling on a piston (syringe)</td>
</tr>
<tr>
<td>Isothermal</td>
<td>$\Delta T = 0$</td>
<td>$\Delta E_{\text{int}} = 0; Q = W$</td>
<td>$W = Q = nRT \ln(V_f/V_i)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\Delta S = nR\ln(V_f/V_i)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\Delta S = Q/T$</td>
<td></td>
</tr>
<tr>
<td>Adiabatic</td>
<td>$Q = 0$</td>
<td>$\Delta E_{\text{int}} = - W$</td>
<td>$PV^\gamma = \text{const}$</td>
<td>Fast Expansion/Compression:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\Delta S = 0$</td>
<td>$TV^{\gamma-1} = \text{const}$</td>
<td>- Sound Waves</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Well Isolated Systems:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Ice Water in a Thermos</td>
</tr>
<tr>
<td>Free Expansion</td>
<td>$Q = 0$</td>
<td>$\Delta E_{\text{int}} = 0$</td>
<td>$Q = nRT\ln(V_f/V_i)$</td>
<td>Air rushing into an evacuated chamber</td>
</tr>
<tr>
<td></td>
<td>$W = 0$</td>
<td></td>
<td>$\Delta S = nR\ln(V_f/V_i)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\Delta T = 0$</td>
<td></td>
<td>$PV = \text{const}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$T = \text{const}$</td>
<td></td>
</tr>
<tr>
<td>Cyclical</td>
<td>$\Delta E_{\text{int}} = 0$</td>
<td>$Q = W$</td>
<td>$\Delta S = 0$</td>
<td>Heat Engines & Refrigerators</td>
</tr>
</tbody>
</table>