Preliminary Studies on Digital Signal Processing of D0 L1 Calorimeter Trigger Pickoff Signals

Denis Calvet
calvet@hep.saclay.cea.fr
CEA Saclay, 91191 Gif-sur-Yvette CEDEX, France

Plan

Introduction
Methodology and Analysis Tools
Signal Samples
Algorithm Evaluation Parameters
Proposed Algorithms
Current Results
Summary and Future Work
INTRODUCTION

CALORIMETER INFORMATION FOR D0 L1 TRIGGER

32 phi x 40 eta Trigger Towers (0.2 x 0.2 segmentation)
Each Trigger Tower: 1 EM channel + 1 HAD channel
2560 channels in total for both EM and HAD

SIGNAL OF EACH TRIGGER TOWER

Differential analog signals delivered by Base Line Subtractor (BLS)
Digital conversion to be done
Estimation of the energy deposited in each tower for each Beam Crossing (132 ns)

NEED OF (DIGITAL) SIGNAL PROCESSING

Pulse duration larger than BC period
Long rising edge -> risk of premature triggering
Electronic noise and pileup noise rejection

METHODOLOGY AND ANALYSIS TOOLS

MEASUREMENTS ON THE DETECTOR

Collect samples of original signal on running experiment (BC = 396 ns)
Understand/quantify signal shape, time jitter, noise, etc...

SIMULATED SIGNAL SAMPLES

Based on pulses measured, generate train of pulses of variable amplitude, shape...
Physics simulation of detector @ F_{BC} = 132 ns -> noise, pileup studies (not done here)
Spice model of the electronic chain (not pursued in this study)

SIGNAL PROCESSING ALGORITHM DEFINITION AND EVALUATION

Define requirements, propose algorithms and criteria to compare them
Evaluate algorithms on simulated samples
Define procedure for parameter calibration and operation monitoring

LATER PHASE: IMPLEMENTATION

Feed hardware with simulated samples and check
Connect to detector in spy mode...
Signal Samples

Scope trace of one EM channel -- red trace: differential signal; purple: BC clock (396 ns)

Signal Samples (con’t)

Scope trace of one HAD channel -- note the shape

All traces and information provided by Dan Edmunds at:
http://www.pa.msu.edu/hep/d0/ftp/l1/cal_trig/pictures/trig_pickoff
TOOLS AND SIMULATION CHAIN

Programs developed
- Pattern generator: patg
- Sampling and Quantization: sampq
- Digital Filtering: filt

Simulation chain

```
Scope trace → filt → patg → filt → sampq → filt → display program
```

- Smooth
- Decimate
- Periodize
- Scale amplitude
- Add noise
- Add delay, jitter
- Simulate pileup

- Anti-aliasing
 - e.g. Butterworth
 - 2nd order cutoff @ 7.57 MHz

- Sample T
- Quantize N

- FIR
- IIR
- Algorithm X
- Floating point
- Fixed precision

All programs standalone; written in standard C; parameter file and command line options

I/O with data files or stdin/stdout (can use UNIX pipes between programs)

Your choice for post-processing and display program: Excel, xvgr, ...

SIGNAL SPECTRUM

- Most of the energy of the signal is in a band between 0 and ~8 MHz
- Some HF noise was picked by the scope in measurements
- A simulated 2nd order Butterworth lowpass filter with cutoff @ 7.57 MHz cleans up the signal

EM trace tek00101.csv -- 4096 point FFT
Algorithm Evaluation Parameters

Algorithm features
- Dependent or not on trigger tower type and/or trigger tower number
- Number of parameters to adjust, individually or not, procedure for parameter calculation
- Algorithm intrinsic latency
- Input sampling frequency and precision
- Baseline correction, behavior under saturation

Algorithm quality
- Precision on amplitude for the BC concerned and residual error on adjacent BCs
- Time/amplitude resolution - separation of adjacent pulses
- Probability on undetected pulse (e.g. small amplitude)
- Probability of pulse assignment to the wrong BC

Sensitivity of the algorithm
- Electronic noise, pileup noise
- Signal phase and jitter compared to sampling clock
- Dependence on signal shape
- Limited precision arithmetic, coefficient truncation, input quantization

Implementation
- Hardware resources
- Operating frequency of each part
- Effective algorithm latency

Proposed Algorithms

Finite Impulse Response Filter (FIR) deconvolution
- Pros: optimal for pileup rejection - linear (detection of small and large pulses in same way)
- Cons: sensitivity to signal shape, phase, jitter,... - per trigger tower parameter set

Peak detector + weighted average around peak
- Pros: less sensitive to signal phase and jitter - few parameters to adjust
- Cons: no pileup rejection - risk of double detection for 2 peaks shaped signals (HAD calo.)

Matched filter + peak detector
- Pros: optimal for white noise rejection
- Cons: not optimal for pileup correction, but coeff can be tuned - per tower parameter set

Simplified correlator + weighted average around peak
- Pros: simple peak localization - little sensitivity to signal shape, phase and jitter
- Cons: no pileup rejection - risk of no detection for small signals

Other ideas?
FIR DECONVOLUTION

Principle

\[
\text{Error} = \begin{bmatrix}
a_4 & a_5 & 0 & 0 & 0 & 0 \\
a_2 & a_3 & a_4 & a_5 & 0 & 0 \\
a_0 & a_1 & a_2 & a_3 & a_4 & a_5 \\
0 & 0 & a_0 & a_1 & a_2 & a_3 \\
0 & 0 & 0 & 0 & a_0 & a_1 \\
\end{bmatrix}
\begin{bmatrix}
E_0 \\
E_1 \\
E_2 \\
E_3 \\
P \\
0
\end{bmatrix}
\]

Sample signal at \(T = \frac{T_{BC}}{N} \)
\(T_{BC} : 132 \text{ ns} \); \(N_{\text{min}} = 2 \) (Shannon's sampling theorem); \(N_{\text{max}} \sim 3-4 \)

Evaluate convolution for \(t = k \cdot T_{BC} \)

Adjust coefficients \(a_i \) so that \(\text{Error} \cdot \text{Error}^T \) is minimum (iterate over input vectors)

Features

- Set of coefficients determined on a per tower basis
- Training vector set can include shape distortion, time jitter, noise...
- If \(N \) even, number of coefficients should also be even
- Coefficients count must be sufficient to keep output at 0 after pulse
- Time position of peak adjustable: low intrinsic latency (can be 0 or even <0)
- Optimum linear solution; separation of adjacent pulses (pileup rejection)
- Signed coefficients and arithmetic

FIR DECONVOLUTION - EXAMPLE

Conditions: input: EM trace tek00101.csv -- signal sampling \(@F_{BC} \times 2 \) -- 8 bit samples
FIR 12 Coefficients -- 32 bit floating point arithmetic -- algorithm intrinsic latency: 0
FIR DECONVOLUTION - IMPLEMENTATION

Multiplier Accumulator

- K coefficients: K word SRAMs (single port or separate I/O) or parallel shift registers
- On some FPGA's: dedicated 18 x 18 bit Multiplier blocks (32 on Xilinx 500K gates Virtex 2)

Distributed Arithmetic

- K shift registers; 2^K word SRAM Look Up Table
- input running at M * sampling rate; SRAM and adder running at M * beam crossing clock

PEAK DETECTOR + AVERAGING

Principle

- Sample signal at T = T_{BC} / N
- T_{BC} = 132 ns; N_{typ} = 2; N_{max} = 3-4

Apply series of conditions to determine presence of peak; e.g.:

peak at (k-1)T IF

1. \[E(kT) < E((k-1)T) \]
2. \[E((k-1)T) >= E((k-2)T) \]
3. \[E((k-2)T) >= E((k-3)T) \]

Assign value to output:

IF (!peak) R(kT)=0; ELSE R(kT) = A \cdot (\text{Sum of M samples around peak})

Features

- Presence of peak found by dE/dt \(\rightarrow\) oversampling degrades performance; sensitive to noise
- No rule to determine optimal set of conditions for peak detection: “try and see”
- Some separation of pulses close in time but no pileup rejection
- Output=0 for BC not concerned - but risk of missing pulses or assignment to wrong BC
- For white noise; signal almost flat around peak: noise reduction by \(\sqrt{M}\)
- Simple hardware; few parameters; low intrinsic latency (1 sampling period in the example)
- Tolerant to pulse time jitter, pulse shape distortion, sampling clock phase
PEAK DETECTOR + AVERAGING (CON’T)

Example

![Graph showing simulated and estimated peaks](image)

- Output = 0 outside BC of interest; errors for small peaks (wrong BC or no detection)

Implementation

Channel #N

-MUX
-Reg
-Cmp
-A>B peak
-Logic
-Sequencer
-Adder
-LUT
-Output #N
-Control bus

Matched Filter + Peak Detector

Principle

- Matched filter: best detection \(E(kT) \) in white noise: filter impulse response \(h(kT) = E(T_0 - kT) \)
- Sample signal at \(T = \frac{T_{BC}}{N} \): \(T_{BC} = 132 \text{ ns}; N_{typ} = 2; N_{max} \approx 3-4 \)
- Use FIR for convolution of input by impulse response
- Output of filter \(! = 0 \) for BCs around that of interest: use peak detector after filter
 - IF \(S(kT) < S((k-1) T) \) AND \(S((k-2) T) < S((k-1) T) \)
 - THEN \(R(kT) = S((k-1) T) \)
 - ELSE \(R(kT) = 0 \)

Features

- Optimum SNR (if white noise)
- Some separation of pulses close in time (depends on signal shape)
- Coefficient tuning for best trade-off between electronic noise and pileup noise rejection
- Output = 0 for BC not concerned - few risks of missing pulses or assignment to wrong BC
- Matching intrinsic latency = \(T_0 - T_{peak} \) i.e. several sampling periods (+1 for peak detection)
- One parameter set per channel
- Tolerance to pulse time jitter, pulse shape distortion (double peak), sampling clock phase
Example

Matched filter + peak detector (con’t)

![Graph showing amplitude vs BC index with simulated and estimated peaks]

Conditions:
- HAD trace tek00401.csv
- Sampling @F_{BC} x 2
- 8 bit samples
- 6 coefficients 6 bit
- Latency: 2 T_{BC}

Implementation

Channel #N

![Diagram of simplified correlator + peak detector]

SIMPLIFIED CORRELATOR + PEAK DETECTOR

Principle

Matched filter on non-linear transformation of signal + peak detector + local averaging

Make non linear transformation of input:
- IF \[E(kT) < E((k-1) T) \] THEN \(C(kT) = -1 \)
- ELSE IF \[E(kT) > E((k-1) T) \] THEN \(C(kT) = +1 \)
- ELSE \(C(kT) = 0 \)

Convolve \(C(kT) \) with \(h(kT) \) — If local maximum found: peak is present

Assign value to output:
- IF \(!\text{peak}\) \(R(kT) = 0 \); ELSE \(R(kT) = A \times (\text{Sum of M samples around peak}) \)

Features

- Improved variant of peak detector + averaging around peak
- Output = 0 for BC not concerned - few risks of missing pulses or assignment to wrong BC
- Intrinsic latency = differentiate + matching + find peak = 1 + (T_0 - T_{peak}) + 1
- Few parameters specific to each channel
- Tolerance to pulse time jitter, pulse shape distortion (double peak), sampling clock phase
SIMPLIFIED CORRELATOR + PEAK DETECTOR (con’t)

Example

<table>
<thead>
<tr>
<th>Amplitude</th>
<th>BC Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>128</td>
</tr>
<tr>
<td>16</td>
<td>256</td>
</tr>
</tbody>
</table>

Errors for small peaks: no detection

Conditions:
- EM trace tek00101.csv
- Sampling @F_{BC} x 2
- 8 bit samples
- Matching: 8 ternary coefficients
- Averaging: 4 samples
- 8 bit arithmetic
- Latency: 3 T_{BC}

Implementation

- Channel #N
-MUX
-Registers
-Comparators
-Shift register
-Matching logic
-Peak detector
-Encoder
-Sequencer
-Adder
-LUT

Output #N
-Control bus

ALGORITHM COMPARATIVE STUDIES

DIGITIZATION

- Sampling at F_{BC} x 2, F_{BC} x 3 or F_{BC} x 4
- Use 8 bit of 8 or 10 bit ADC

PARAMETERS TO BE STUDIED

- Signal peak amplitude over full range
- Signal phase wrt sampling clock over [-1/2 T_{BC}, +1/2 T_{BC}]
- Simulated electronic noise level
- Simulated pileup noise
- Pulses close in time
- Generic set of parameters for all TT in EM or HAD
- Number of samples/coefficients
- Finite precision arithmetic
- Behavior under saturation...
- Study each parameter individually then combined
Sampling Rate

Various rates to consider

ADC conversion rate: \(F_{\text{ADC}} = N \cdot F_{\text{BC}} \quad N \in [1, \sim 7] \)
\(F_{\text{BC}}: 7.57 \text{ MHz} ; 132 \text{ ns period} \)

Digital signal processing: input rate: \(F_{\text{in}} = F_{\text{ADC}} / M \quad M=1 \text{ or } 2, 3 \)
output rate: \(F_{\text{out}} = F_{\text{BC}} \)

Practical limits

- Peak detector or simple correlation + averaging: peak detection runs @ \(F_{\text{in}} \) -- made by conditions on \(\frac{dV}{dt} \): limits \(F_{\text{in}} \leq \sim 3.F_{\text{BC}} \); averaging @ \(F_{\text{out}} \)
- Deconvolution FIR: multiply accumulate @ \(F_{\text{out}} \) but impulse response must cover duration of complete pulse: \(F_{\text{in}} = 2 \cdot F_{\text{BC}} \) to avoid too many coefficients
- Matched filter + peak detector: all logic runs @ \(F_{\text{in}} \): limits number of coefficients/input rate. Typical value with 100 MHz logic: 10 coeff. with \(F_{\text{in}} = F_{\text{BC}} \) or 5 coeff. with \(F_{\text{in}} = 2 \cdot F_{\text{BC}} \)

Analog to digital conversion latency

Pipeline ADCs of interest have a typical latency of 3 sampling clock for 8 bit models and 5 sampling clock for 10 bit models

\(F_{\text{ADC}} = 4 \cdot F_{\text{BC}} \) could be good choice (ADC latency = 99-165 ns) with decimation by 2 before digital signal processing -- selecting which samples to take can be used to make coarse phase adjustment of signal with respect to sampling clock

Amplitude Scaling

Input: series of pulses (EM tek00101.csv) with peak amplitude from 0 to 255

Small estimation errors on BC concerned for all algorithms

Non null estimation on adjacent BCs for deconvolution FIR
BASELINE VARIATION

Input: series of pulses (EM tek00101.csv) Peak=128 -- baseline shifted by -8 to +8 LSB
Linear (~) estimation error for correct BC with all algorithms but FIR which is better
On adjacent BCs matching algorithms output 0; errors with deconvolution FIR

SIGNAL PHASE wrt BC REFERENCE CLOCK

Conditions:
- EM trace tek00101.csv
- Sampling @F_{BC} x 2
- 8 bit samples
- Pulse peak amplitude: 128

Simplified correlator:
- 8 ternary coefficients
- Averaging: 4 samples
- 8 bit arithmetic
- Latency: 3 T_{BC}

Matching filter:
- 8 coefficients 6 bits
- Latency: 2 T_{BC}

Phase difference = 0 when peak of signal phase aligned with BC clock (and sampling clock)
Simplified correlator: error of +/-5% on -64, +20 ns range -- wrong assignment if phase > 32 ns
Matched filter: ~2% error on -30, +20 ns range -- peak finder misses pulse if too much shift
Algorithms robust against phase jitter and may not need compensation for static phase shift
Signal Phase wrt BC Reference Clock (con’t)

Conditions:
- EM trace tek00101.csv
- Sampling \(@F_{BC} \times 3 \)
- 8 bit samples
- Pulse peak amplitude: 128

Peak detection:
- 3 conditions
- Averaging: 4 samples
- 8 bit arithmetic
- Latency: 1 \(T_{BC} \)

Signal sampling at \(F_{BC} \times 3 \) for improved peak detection and flatter signal around peak

\(~2\%\) error on estimated peak on phase range from -20 to +60 ns

peak is assigned to previous BC if phase shift in -20, -66 ns

Signal Phase wrt BC Reference Clock (con’t)

Conditions:
- EM trace tek00101.csv
- Sampling \(@F_{BC} \times 2 \)
- 8 bit samples
- Pulse peak amplitude: 128

Deconvolution FIR:
- 12 coefficients
- 32 bit floating point arithmetic
- Latency: 0

FIR coefficient calculations made for only one pulse at phase = 0

\(-5.0\) \(-2.5\) \(0.0\) \(2.5\) \(5.0\)

Phase difference (ns)

Large errors (~50\%) on phase drift by +/-30 ns; non null amplitude for non relevant BCs

Coefficient tuning to correct phase of each channel -- but algorithm remains sensitive to jitter
Separation of Pulses Close in Time

- **Input**: series of pulses (EM tek00101.csv) Peak=128 -- time interval between peaks 1-10 BCs
- Only deconvolution FIR gives correct results in this case

Behavior Under Saturation

- **Input**: series of pulses (EM tek00101.csv) Peak from 256 to 512 -- ADC saturation at 255
- Best results with matched filter -- acceptable output for others if saturation <~320
- For any algorithm, take care of overflow in finite precision arithmetic to avoid roll-over
Fixed-Point Arithmetic - FIR

- **Absolute Error for BC Concerned (LSB)**
- **Conditions:** EM trace tek00101.csv
 - Pulse peak amplitude: 1 to 63

- **Absolute Error for Other BCs (LSB)**

 - **FIR 12 coefficients**
 - **8 bit samples**
 - **Sampling @**F_{BC} x 2

Not too much influence seen for estimation error on BC concerned

- Residual error on adjacent BCs unacceptable if coarse coefficient quantization
- Algorithm sensitive to precision of arithmetic -- signed coeff: 1 bit consumed for sign

Try to take into account number representation when coeff are calculated?

Number of Coefficients - Matched Filter

- **Absolute Error for BC Concerned (LSB)**

 - **8 coeff 6 bit**
 - **5 coeff 6 bit**

- **Conditions:** EM trace tek00101.csv
 - Pulse peak amplitude: 1 to 255
 - **Sampling @**F_{BC} x 2

Limited precision, small number of coefficients OK -- unsigned coeff: all bits used for mantissa

- Residual error on adjacent BCs null in this test

More tests needed to conclude, but very good properties seen so far
Adding White Noise to Signal

Conditions:
- EM trace: tek00101.csv
- Pulse peak amplitude: 128
- Sampling: $T_{BC} \times 3$
- Peak Detector + averaging
- Wide-band uniform dist noise added before anti-aliasing filter

Peak detector: worst – undetected pulses and assignment to wrong BC occur
Matched filter: ~2 LSB error max on BC; 0 on adjacent BCs
Simple correl + averaging: ~3 LSB error max on BC; 0 on adjacent BCs
Deconvolution FIR (32 FP arithm.): <=8 LSB if noise less than [-16, +16]

Noise model unrealistic; this test is for demo only
Good model of noise needed; more work to be done in this area

Demo Test With All Effects Combined

Conditions:
- EM trace: tek00101.csv
- Peak amplitude: uniform in [8, 255]
- Noise: uniform in [-8, +8] LSB
- Pulse inter-delay: fixed 8 T_{BC}
- Pulse time jitter: uniform in [-10, +10] ns

A set of “good” input parameters was picked-up to show a working demo...
but parameters need to be set to realistic values; e.g. time distribution of pulse
inter-arrival is unrealistic and results depend critically on pileup
Model of noise, signal jitter, pileup and tower occupancy needed
Comparison of Algorithms

- Low effective latency
- Hardware simplicity
- Quality
- Noise immunity
- Pileup rejection
- Tolerant to limited precision
- Tolerant to time phase / jitter
- Behavior under saturation

- **Peak detector**
- **Matched filter**
- **Deconvolution FIR**
- **Simple correl.**

Matched filter + Peak detector best choice -- (like theory says and other experiments do...)

Coefficient tuning for optimal pileup/noise rejection

Deconvolution FIR: no satisfactory results obtained -- independent study needed

Summary

Simulation chain developed

- Sample generation from scope trace measurements, filtering and sampling
- Allows to study algorithms off-line on a standalone PC or workstation

4 algorithms described

- Linear: deconvolution with FIR
- Non linear: Peak detection (2 methods) + local averaging or Matched filter + peak detection

Performance evaluation of algorithms

- Large set of parameters to play with
- So far matched filter + peak detection shows best results

Future work on simulation

- Need to quantify incoherent noise, pileup noise, ...
- Refined simulations with realistic input parameters

Still a lot to understand and do...