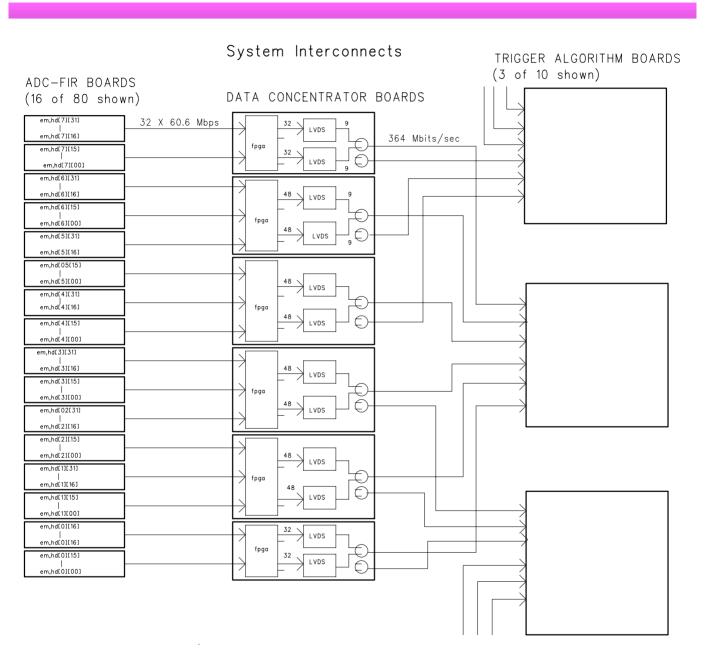
Update on TAB Progress

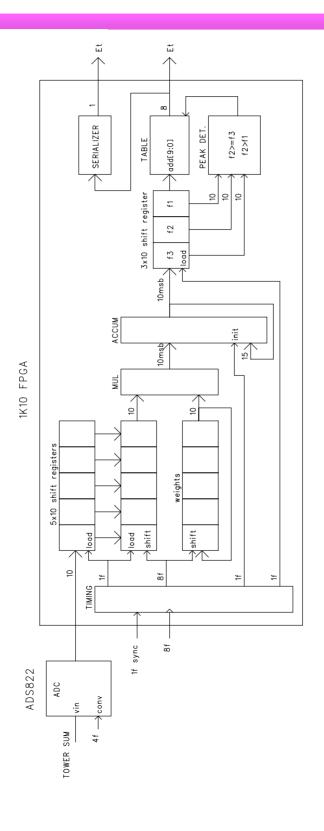
John Parsons Nevis Labs, Columbia University


Feb. 15/2002

- Assumptions about ADC/FIR board
- ADC to TAB data links
- Progress on Trigger Algorithm Board (TAB)
- Urgent issues to be resolved
- Summary and conclusions

Introduction

- to allow a more thorough evaluation, have made certain assumptions to define a "strawman" architecture:
 - ADC+FIR
 - ▲ 32 channels/board
 - ▲ ≈ 80 ADC boards
 - ▲ I/P cable mapping groups neighboring eta, phi towers
 - fast copper ADC-TAB links
 - Trigger Algorithm Board (TAB)
 - ▲ assume processing 1 TT requires 5X5 towers
 - ▲ 1 TAB processes 4 eta X 32 phi ⇒ 10 TABs
- effort has concentrated so far on TAB and implementation of sliding window algorithm (plus interface to ADC board)
 - tried to evaluate with flexibility wrt assumptions, and to identify where choices need to be made soon


System Overview

ADC-FIR Board (1)

- assume 32 channels/board
 - I/P cable mapping groups eta,phi neighbors
- digitize with 10 bit ADC, at multiple of bc frequency of f = 1/132 ns ≈ 7.6 MHz
 - reduce ADC latency
 - allow over-sampling in FIR (if required)
 - candidate device is Burr Brown ADS822
 - ▲ 10-bit, 40 MHz CMOS pipelined ADC
 - ▲ power is 190 mW @ 40 MHz
 - ▲ operate at 4f = 30.3 MHz
 - ▲ pipeline delay = 5 CLKs
 - ▲ for even lower latency, could use pin compatible 60 MHz ADS823 (\$8) or 70 MHz ADS824 (\$9)
 - **▲** Unit cost ≈ \$5
- FPGA to apply FIR, conversion to 8-bit E_T, serialization of output data at 8f = 60.6 MHz
 - candidate device is Altera EP1K10TC100-2
 - ▲ FIR logic clocked at 8f = 60.6 MHz
 - **▲ Example with 5 samples:**
 - utilization ≈ 84% (logic), 16% (memory)
 - max. speed ≈ 67 MHz
 - **▲ Unit cost** \approx \$10 (\$15 if use grade -1)

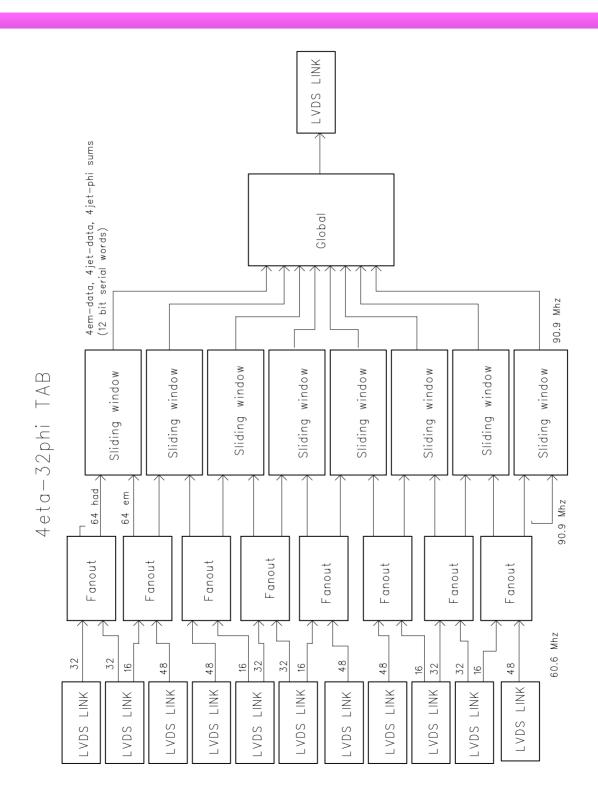
ADC-FIR Board (2)

ADC to TAB Links

- use high bandwidth LVDS serial links to keep cable plant manageable
 - eg. "Channel Link" chipset from National
 - ▲ 48:8 Serializer/Tx (DS90CR483)
 - ▲ 8:48 Rx/Deserializer (DS90CR484)
 - ▲ Unit cost = \$11 each (though for 1k quantity)
 - send 8 data bits on cable at rate of
 7.6 MHz X 8 bits X 6 = 364 MHz
 - CLK sent on additional pair ⇒ 9 pairs in total
 - chipset is rated up to 112 X 6 = 672 MHz

(ATLAS L1 has demonstrated 480 MHz over 20m cables)

- two problems with indiv. cable per ADC board:
 - inefficient, since use only 32 of 48 data lines
 - each TAB (512 inputs) would require 16 cables, which take too much space to fit on (single width)
 9U module
- to resolve these problems, consider merging data from several ADC boards into a Data Concentrator, which then drives the cable


Data Concentrator

- several cable configurations can be considered
- one such possibility is:
 - collect data from 3 ADC boards (32 signals each at 60.6 MHz), for example over custom point-topoint P3 backplane
 - Data Concentrator re-synchs & merges the 3 data streams into 2 LVDS serialisers, and drives the resultant 16 data and 2 CLK signals over a 25-pair cable (extra pairs can be used for control fields)
 - each TAB (512 inputs) would require 6 such cables, which can fit on 9U VME front panel
- Also, due to overlap in sliding window, most TTs are needed on two separate TAB boards
- because of very high signal density in TAB crate, we propose performing this "fanout" at Data Concentrator (even though it doubles the number of cables)
- cable density at I/P to TAB is challenging, and ADC-TAB cabling scheme must be addressed with priority to allow design to continue

Trigger Algorithm Board (TAB)

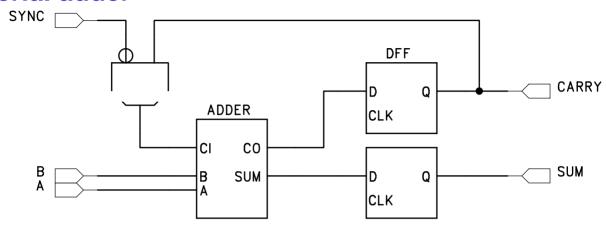
- aim to cover 4 eta X 32 phi in single TAB
 - 10 TAB boards in total system
- assuming 5X5 towers required to evaluate a given TT, number of input signals per TAB is # inputs = 8 eta X 32 phi X 2 (EM,HAD) = 512
- basic architecture (see next slide)
 - LVDS Rx/Deserialisers
 - "Fanout" FPGAs
 - "Sliding Window" FPGAs
 - ▲ apply sliding window algo.'s for EM and jet objects
 - ▲ perform partial E_T sums
 - "Global" FPGA(s)
 - ▲ summarize window results
 - \blacktriangle perform partial E_T , E_T^x and E_T^y sums

TAB Architecture

"Fanout" FPGAs

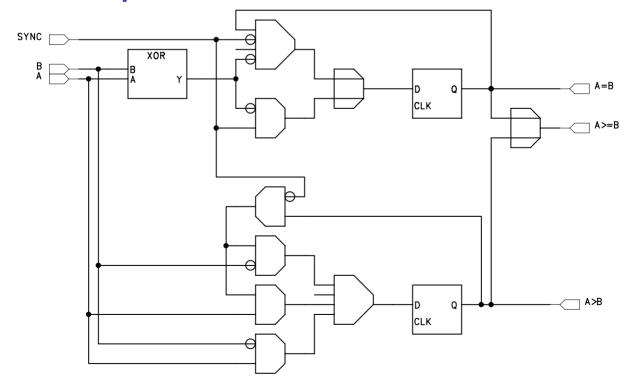
- each chip has:
 - ◆ 64 serial input streams at 8f = 60.6 MHz
 - 128 serial output streams at 12f = 90.9 MHz
- functionality required:
 - align all signals in time
 - pad 8-bit TT E_T's with zeroes to 12 bits
 - ▲ allows more dynamic range in summing trees
 - switch serial transmission frequency from 60.6 MHz to 90.9 MHz
 - ▲ costs 1 b.c. latency

(might do all 3 above in Window FPGA instead)


- perform two-fold fanout of signals
 - required by window overlaps
- allow VME loading of test data for TAB standalone diagnostics
- candidate device = Altera EP1K50FC484-3
 - Unit cost = \$33

"Sliding Window" FPGAs

- aim to cover 4 eta X 4 phi in single FPGA
 - 8 Sliding Window FPGAs per TAB
- assuming 5X5 towers required to evaluate a given TT, number of input signals per FPGA is # inputs = 8 eta X 8 phi X 2 (EM,HAD) = 128
- to minimize data duplication and routing, perform both EM and jet algorithms in the same FPGA
 - with these assumptions, Fanout FPGA must provide X2 fanout only
- basic FPGA design philosophy
 - operate algorithms bit-serially in order to minimize FPGA resources required
 - operate logic at 12f = 90.9 MHz and fully pipeline in order to maintain low latency


Example bit-serial operators

Serial adder

- SYNC is signal which separates one 12-bit serial word (ie. data from one b.c.) from the next

Serial comparator

.

EM Object Algorithm

16 isolation sums

8etax8phi em map

#inputs=2np	=128
#2x2 rois=(n-2)(p-2)	=36
#outputs= $(n-4)(p-4)$	=16

em and had towers

	0 7	1.7	2 7	3 7	4 7	5 7	6 7	7 7
	0 6	1 6	2 6	3 6	4 6	5 6	6 6	7 6
	0 5	1 5	2 5	3 5	4 5	5 5	6 5	7 5
phi	0 4	1 4	2 4	3 4	4 4	5 4	6 4	7 4
F	0 3	1 3	2 3	3 3	4 3	5 3	6 3	7 3
	0 2	1 2	2 2	3 2	4 2	5 2	6 2	7 2
	0 1	1.1	2 1	3 1	4 1	5 1	6 1	7 1
	0 0	1 0	2 0	3 0	4 0	5 0	6 0	7 0
eta								

36 roi sums

			6 7 6 6	7 7 7 6
			ت	۳
1 2	2 2			
1 1	2 1			

remapped roi energys

	Tomappod Tot omorgyo								
0 5	1 5	2 5	3 5	4 5	5 5				
0 4	1 4	2 4	3 4	4 4	5 4				
0 3	1 3	2 3	3 3	4 3	5 3				
0 2	1 2	2 2	3 2	4 2	5 2				
0 1	1.1	2 1	3 1	4 1	5 1				
0 0	1 0	2 0	3 0	4 0	5 0				

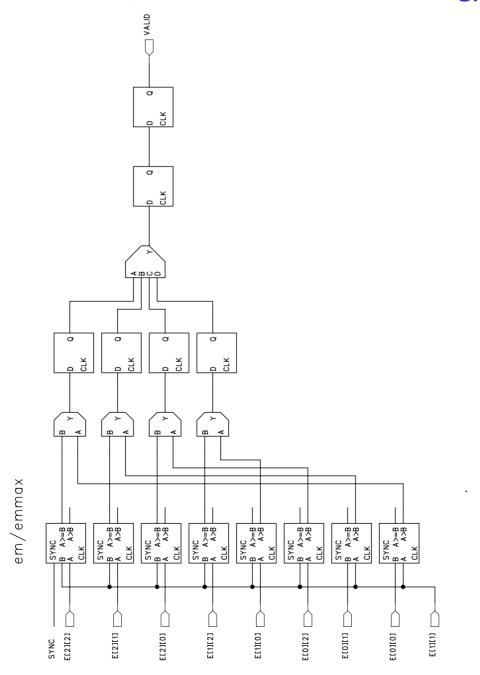

test energy for max

				3 5	4 5	5 5
			I	3 4	4 4	5 4
			Ī	3 3	4 3	5 3
0 2	1 2	2 2	Ī			
0 1	11	2 1	Ī			
0 0	1 0	2 0				
) 1	1 11	0 1 11 2 1	0 1 1 2 1	3 4 3 3 3 2 2 1 2 2 2 3 1 1 2 1	3 4 4 4 3 3 4 4 3 3 4 4 3 3 4 4 3 3 4 4 4 4 3 3 3 3 4 3 4 3 4 3 4 4 3 4 4 4 3 3 3 3 4 4 3 4 4 4 4 3 3 3 3 4 3 4 3 4 3 4 3 4 4 3 4 3 4 3 4 3 4 3 4 3 4 4 4 4 3 3 3 3 4 3

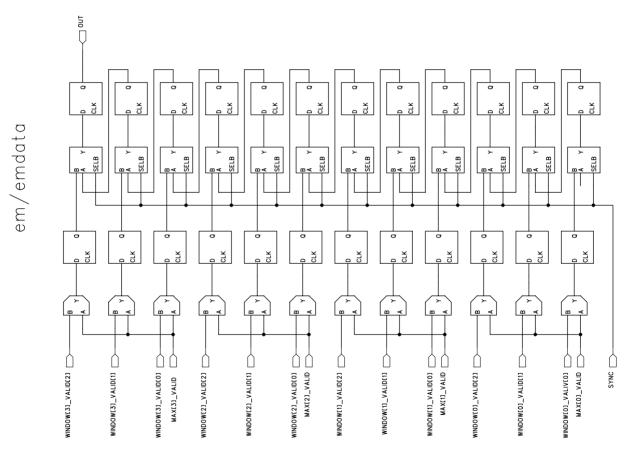
output energy

0 3	1 3	3 3	3 3
0 2	1 2	2 2	3 2
0 1	1 1	2 1	3 1
0 0	1 0	2 0	3 0

Overview of EM Algorithm



EM Window Schematic


"EM Max" Schematic

 compare TT ROI E_T with 8 nearest neighbors, and set VALID only if local max. (paying attention to >,≥ to avoid double counting)

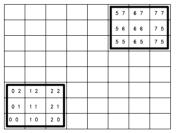
"EM Data" Schematic

- condition threshold bits with local max. VALID
- merge 3-bit threshold data from 4 TT's and serialize output into one 12-bit serial stream
 - serialization costs 1 b.c. latency

- each FPGA handles 4X4 = 16 TTs
 - EM algorithm output is 4 12-bit serial words, encoding highest threshold passed by possible isolated EM objects in each TT

Jet Object Algorithm

8etax8phi jet map


#inputs=2np	=128
#3x3 sums = (n-2)(p-2)	=36
#3x3roi's=(n-4)(p-4)	=16

em and had towers

0 7	1 7	2 7	3 7	4 7	5 7	6 7	7 7
0 6	1 6	2 6	3 6	4 6	5 6	6 6	7 6
0 5	1 5	2 5	3 5	4 5	5 5	6 5	7 5
0 4	1 4	2 4	3 4	4 4	5 4	6 4	7 4
0 3	1 3	2 3	3 3	4 3	5 3	6 3	7 3
0 2	1 2	2 2	3 2	4 2	5 2	6 2	7 2
0 1	1.1	2 1	3 1	4 1	5 1	6 1	7 1
0 0	1 0	2 0	3 0	4 0	5 0	6 0	7 0
	0 6 0 5 0 4 0 3 0 2	0 6 1 6 0 5 1 5 0 4 1 4 0 3 1 3 0 2 1 2 0 1 1 1	0 6 1 6 2 6 0 5 1 5 2 5 0 4 1 4 2 4 0 3 1 3 2 3 0 2 1 2 2 2 0 1 1 1 2 1	0 5 16 2 5 3 6 0 5 15 2 5 3 5 0 4 14 2 4 3 4 0 3 13 2 3 3 3 0 2 12 2 2 3 2 0 1 11 2 1 3 1	0 6 1 6 2 6 3 6 4 6 0 5 1 5 2 5 3 5 4 5 0 4 1 4 2 4 3 4 4 4 0 3 1 3 2 3 3 3 4 3 0 2 1 2 2 2 3 2 4 2 0 1 1 1 2 1 3 1 4 1	0 6 16 2 6 3 6 4 6 5 6 0 5 15 2 5 3 5 4 5 5 5 0 4 14 2 4 3 4 4 4 5 4 0 3 13 2 3 3 3 4 3 5 3 0 2 12 2 2 3 2 4 2 5 2 0 1 11 2 1 3 1 4 1 5 1	0 6 1 6 2 6 3 6 4 6 5 6 6 6 0 5 1 5 2 5 3 5 4 5 5 5 6 5 0 4 1 4 2 4 3 4 4 4 5 4 6 4 0 3 1 3 2 3 3 3 4 3 5 3 6 3 0 2 1 2 2 2 3 2 4 2 5 2 6 2 0 1 1 1 2 1 3 1 4 1 5 1 6 1

eta

36 roi sums

16 roi rim sums

0 4	1 4	2 4	3 4	4 4		
0 3				4 3		
0 2				4 2		
0 1				4 1		
0 0	1 0	2 0	3 0	4 0		

remapped roi energys

1 611	Telliuppeu Tol ellergys							
0 5	1 5	2 5	3 5	4 5	5 5			
0 4	1 4	2 4	3 4	4 4	5 4			
0 3	1 3	2 3	3 3	4 3	5 3			
0 2	1 2	2 2	3 2	4 2	5 2			
0 1	1.1	2 1	3 1	4 1	5 1			
0 0	1 0	2 0	3 0	4 0	5 0			

test energy for max

					3 5	4 5	5 5
				Ī	3 4	4 4	5 4
ľ				Ī	3 3	4 3	5 3
Ī	0 2	1 2	2 2	Ī			
Ī	0 1	11	2 1	Ī			
Ī	0 0	1 0	2 0				

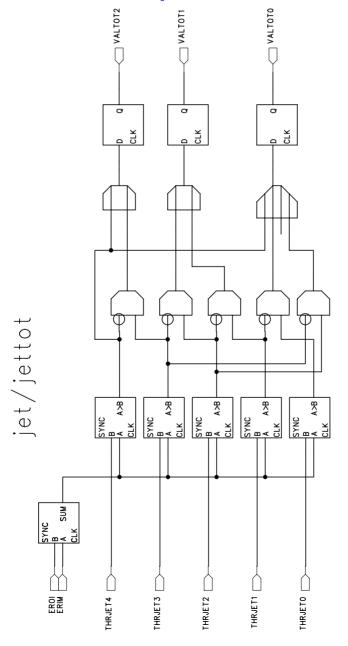
roi energy

		٠,	
0 3	1 3	3 3	3 3
0 2	1 2	2 2	3 2
0 1	1.1	2 1	3 1
0 0	1 0	2 0	3 0

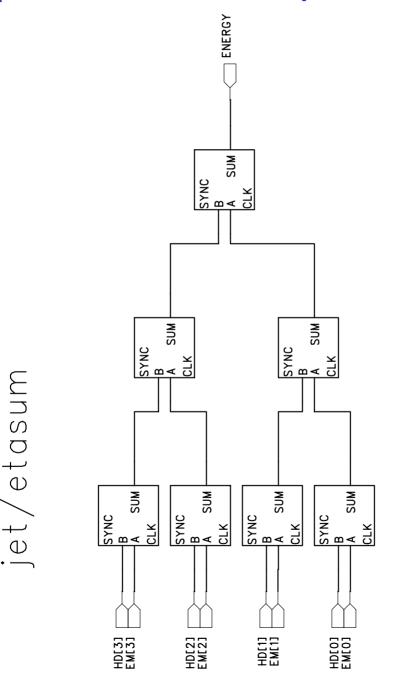
rim energy

0 3	1 3	3 3	3 3
0 2	1 2	2 2	3 2
0 1	1 1	2 1	3 1
0 0	1 0	2 0	3 0

total energy


0 3	1 3	3 3	3 3
0 2	1 2	2 2	3 2
0 1	1.1	2 1	3 1
0 0	1 0	2 0	3 0

Overview of Jet Algorithm


"Jet Total" Schematic

- combine 3X3 ROI and "rim" to get E_T in 5X5
- compare against up to 7 thresholds, and encode highest threshold passed onto 3 bits

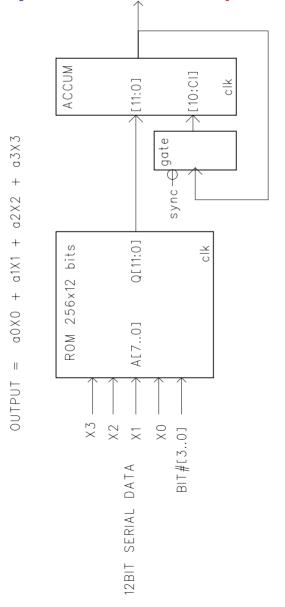
"Jet eta sum" Schematic

 for input to E_T and E_T^{miss}, compute partial 12-bit E_T sums over eta at fixed phi

Sliding Window Implementation

- logic, as described, has been coded and simulated
- with 4X4 TT's/FPGA, and 5X5 TT's needed to evaluate any TT, candidates include:
 - EP1K100FC256-3 (unit cost = \$46)
 - **▲ BUT LC utilization = 91% ⇒ VERY LITTLE flexibility**
 - EP20K160EQC240-3 (unit cost = \$94)
 - ▲ Utilization: LCells = 71%, Mem = 0%
 - ▲ Max. speed = 133 MHz
 - EP20K200EBC356-3 (unit cost = \$130)
 - ▲ LCell utilization = 55%
- code structured to allow quick check of impact of changing assumptions
 - eg. What if need 7X7 to evaluate any TT??
 - ▲ # inputs increases from 128 to 200
 - ▲ # Lcells required increases by 33%
 - ⇒ 20K200 with 73% utilization and 120 MHz max. speed
 - ⇒ most difficult issue with 7X7 arises not from FPGA considerations, but from cabling to TAB (each TAB then requires 640 inputs)

"Global" FPGA


- from each of 8 Sliding Window FPGAs, receive:
 - 4 12-bit streams of encoded EM data
 - 4 12-bit streams of encoded jet data
 - 4 12-bit E_T sums over eta at fixed phi
 - \Rightarrow total of 8 X 12 = 96 12-bit serial inputs
- for entire TAB, calculate and serially output 12bit results for ∑E_T, ∑E_T^x, ∑E_T^y
 - apply x,y weights bit-serially using LUT stored in ROM (see next slide)
- "summarize" EM, jet data to reduce output data volume
 - eg. count number of EM/jet objects above each of the corresponding thresholds (?)

(need to detail what information is needed at L1 and L2, and for the L1 track match logic)

- candidate device = EP20K160EQC240-1
 - -1 speed grade probably needed (due to Accumulator, which is not bit serial)
 - Unit cost = \$264
 - LUTs utilize ≈ 60% of available 81k memory bits

E_Tx,y calculations

- results of single-bit weighted sums precomputed and stored in LUT in FPGA ROM
- Accumulator (with shift) sums single bit results
- before output, re-serialize (costs 1 b.c.)

SERIAL BITS. FEDBACK OUTPUT IS ROM STORES 12BIT ACCUM

TAB Latency Considerations

Fanout FPGA

1 b.c. for changing serialization frequency

Sliding Window FPGA

- pipelined logic involves a total of ≈ 10 stages,
 each of 132/12 = 11 ns ⇒ < 1 b.c.
- 1 b.c. for serializing output streams

Global FPGA

- ◆ 1 b.c. for E_Tx,y calculations
- 1 b.c. for serializing output streams
- Total TAB latency ≈ 5 b.c. = 660 ns
 (expect comparable number from ADC/FIR)
 - can provide lot of time for track match logic
 - Global CAL L1 board will presumably have to store CAL L1 information before transmission to Framework, in order to wait for other detectors

Global L1CAL Board

- one Global L1CAL board for entire system
- from each of 10 TABs, receives:
 - ◆ 12-bit E_T, E_T^x, E_T^y sums
 - "summarized" EM/jet data
- calculate E_Tmiss
 - finishes summing (takes 4 X 11 ns = 44 ns)
 - use multipliers to calculate (E_Tmiss)²
- FPGAs used to determine (and store until the correct time) the 'AND/OR' terms for tranmission to the L1 Framework
- while no detailed design work has yet been done, it is clear this board is less technically challenging than the TAB

Urgent Issues

- to proceed much further with TAB design, some issues need to be resolved:
 - size of region required/TT (ie. 5X5 or 7X7)
 - ▲ # inputs/TAB is either 512 or 640
 - ▲ # inputs/Window FPGA is either 128 or 200
 - ▲ data fanout is either 2 or (in some cases) 3
 - ▲ ADC-TAB cabling looks very different
 - ▲ these are two VERY different scenarios, and we must choose one SOON in order to proceed
 - (my view: given significant increase in cost and complexity, choice of 7X7 should require strong physics case)
 - interfaces to track match, L1, L2
 - ▲ see next slide
 - details of trigger algorithm
 - ▲ less critical now, since FPGAs provide a lot of flexibility (provided we allow some "headroom")
 - A However, if we foresee LARGE additions/changes to the algo. (eg. addition of τ trigger), need to take into account in choice of FPGA sizes
 - [Comment: it would appear to be possible to add a τ trigger without a large impact on complexity/cost.]

Interfaces

- so far, have concentrated on implementation of Sliding Window algorithm
- need to start "folding in" interface requirements
 - L1 CAL-track match
 - ▲ what summary of EM info. is required, and with what granularity?
 - ▲ could come from Window FPGAs directly, from Global FPGA, or from Global CAL board
 - L1 trigger framework
 - ▲ look at generation/timing of And/Or terms
 - + L2
 - ▲ what information is required?
 - ▲ eg. if E_T needed for each TT, could be stored using on-chip memory in Window FPGAs
 - SCL
 - **▲ CLK, L1Accept**
- while use of FPGAs for algorithms provides a lot of flexibility, issues such as "which cables are interconnecting which boards" need to be frozen early in design phase
 - need to proceed soon with interface definition

Summary and Conclusions

- we have investigated a TAB architecture to implement the Sliding Window algoritms for iso.
 EM and jet objects for 4 eta X 32 phi TT's
 - 4 X 4 TTs can be processed in 20K160 (\$94/chip)
 - ▲ 20K200 (\$130/chip) might be preferable if want to be able to make large change, such as adding τ trigger
 - total TAB latency ≈ 5 b.c. (660 ns)
- proceeding much further with TAB design requires making some decisions
 - 5X5 vs 7X7 area required around each TT
 - def'n of ADC-Concentrator-TAB cabling scheme
 - Def'n of interfaces of trk match, L1, L2, etc.