PROGRESS ON ADF BOARD DESIGN

Denis Calvet
calev@hep.saclay.cea.fr

CEA Saclay, 91191 Gif-sur-Yvette CEDEX, France

PLAN

ANALOG SPLITTER

ADF BOARD AND CRATES

DIGITAL FILTER

SCL INTERFACE

INTERFACE WITH TAB

FUTURE WORK
ANALOG SPLITTER

PURPOSE

Duplicate the analog signal of some towers to connect the current CTFE's and a prototype ADF card non intrusively

Passive splitter: send EM+ to CTFE and EM- to ADF
- Pro: simple
- Con: divide by 2 the amplitude measured, unipolar signals

Active splitter: duplicate the differential signals
- Pro: transparent, test ADF card with realistic differential input
- Con: more complex

Choice: **Active splitter**

DESIGN AND SPICE SIMULATION COMPLETED

1 fully diff. amplifier of gain $-\sqrt{2}$ driving in parallel 2 fully diff. stages of gain $-\sqrt{2}$

Need 0->6V in output but only +/-5V in CTFE crate: make +/-12V with DC/DC converter

STATUS

Ready to start schematic capture, PCB design, get components...

8 channels (i.e. 4 trigger towers) per splitter

ADF BOARDS AND CRATES

CRATE AND BACKPLANE

Goal is to accommodate 32 channels on a 6U card

CTFE cables are stiff and heavy: robustness is needed

There will be ~340 cables per crate: need good mechanics

OPTIONS 1

6U ADF cards with full height 6U rear transition cards

Custom or standard backplane on P2

Candidate crate: Wiener 6023 Plenum bin (9U height)

- Pros: all I/O at rear of the crate; standard mechanics
- Cons: adds 80 cards, tortuous cabling, expensive crate

OPTIONS 2

6U ADF cards without rear transition cards: front panel I/O

Standard 3 (or 5) rows VME backplane - Bussed signals on P2

- Pros: common VME crate, inexpensive
- Cons: lack of robustness, bending or twisting cables, hard to replace one card
ADF BOARDS AND CRATES (CON’T)

OPTIONS 3

6U ADF cards with rear-side I/O using a custom transition backplane on P2
Pros: all I/O at rear of the crate, only 4 backplanes to make (instead of 80 cards),
short PCB stubs
Cons: some mechanical issues to solve: protrudes at the bottom of the crate;
hard to fit connectors on both sides because of overlap...

OPTION PURSUED AT PRESENT: OPTION 3

Standard VME 64x (5 row connectors) backplane
- geographical addressing
- 3.3 V power supply
- unused bussed signals on P1
- rear side J0 to directly connect 2 hard metric 2 mm cables (to TAB)
- use 64 J2 pins for analog input of 32 channels
- use other J2 available pins for GND shield (and a few bussed signals?)

REAR SIDE I/O TRANSITION CARD

110 pin hard metric 2mm
7.62 mm 3/10”
10 x 5 wires
16 cables from BLS
IEEE P1101.11 Rear Side I/O Transition Card

233 mm (6U)

110 I/O available + 16 GND
95 I/O avail.

VME P1/J1

RJ2/RP2
RJ0/RP0

160 mm

3 x 10 pairs

16 cables from BLS (32 differential analog channels - 64 signal wires)

ADC Card in 6U with Rear-Side I/O

233 mm (6U)

VME interface
Serializer

1M-2M gate FPGA
1M-2M gate FPGA

Line Op Amp - DAC's
ADC's
Rear-side Transition Backplane (2)

Rear-side Transition Backplane (3)
DIGITAL FILTER

ALGORITHM

Matched filter at BC x 2 followed by 3 point peak detector and final Et Look-up-Table
10 bit ADC; sampling rate: BC x 4 (~30 MHz)
Up to 8 tap filter - 6-8 bit unsigned coefficients, programmable coefficients

TEST AND DEBUGGING

Turn on/off peak detector
Load internal memory with raw samples, play, stop and read back
ADF to TAB link driven by: constant value, or Et result or pseudo-random gen.

CALIBRATION AND MONITORING

Record all raw samples, filter output and Et during L1 latency
Freeze buffer upon L1 or monitoring request
Optionally send the raw data that caused a L1 via ADF to TAB links
Data acquisition mode with self trigger when Et > programmable threshold
Per channel latency adjustment
Eventually, programmable channel swap before serializer driving TAB link, etc.

ADC Sampling
- Sampling at BC x 4 and processing at BC x 2
- Per channel ADC clock inversion
 -> phase adjustment of 0 ns; 16.5 ns; 33 ns; 49.5 ns
CHANNEL FUNCTIONAL DIAGRAM

- **CHANNEL #N**
 - 10 bit ser.
 - Raw Samples Buffer
 - Convolver
 - Convolved Samples Buffer
 - Peak Det.
 - Et LUT
 - Result Buffer
 - 8 bit ser. + delay
 - LFSR
 - self trigger
 - nyk

- ADC
 - Thresh.
 - delay
 - Input Select
 - Phase Select
 - XADC
 - Configuration registers
 - Interface bus MUX
 - Shared Signals
 - Address Data IN, Data Out Read/Write
 - Common Logic
 - ADC clock

STATUS ON FPGA AND Firmware

VHDL CODING
- Most of the logic for one channel coded and simulated
- Need to add the bus interface and few other things
- Goal is to run all the logic at BC x 8 (i.e. 60 MHz)
- Current latency is ~5 BC + 1.25 for ADC + 1 for cable + 1 to TAB = ~8-9 BCs

FPGA TARGET
- Need (dual-port) memories, fast multiply-accumulate -> Virtex II family
- Convolver with 1 multiplier: need to run MAC at 121 MHz for 8 tap filter:
 - ~100 MHz achieved after synthesis -> could do 5-6 tap only
 - -> change design and use now a parallel filter with 2 multipliers
- Not enough pins/memory blocks for 32 channels in 1M gate device
 - -> 4 devices 250k gate offer a good number of RAMs, Multipliers and IO pins
 - -> alternative: 2 devices 1 M gate or 1 device 3 M gate
SCL INTERFACE

TIMING CARD

Can be shared with TAB

Timing signals needed to make more than the basic tests of ADF card

If timing card included in the GAB: test of the ADF dependant on the GAB

- do not share timing with TABs and make SCL interface for the ADF?
 - try to make this board simple, no need for slow control
 - acts as a relay to distribute global signals
 - need to include digital delay lines for global synchronization?

GLOBAL SIGNALS PROPOSED FOR THE ADF CARDS

BC clock, L1 Accept, L1 Qualifier (freezes buffers when L1 accept for monitoring)
Reset, Busy/error
Suspend/Resume
Monitoring trigger or self trigger

- can use 10 pair 2 mm cable similar to ADF -> TAB cable and plug it directly on RJ0 in each ADF crate

ADF TO TAB LINKS

CABLE AND CHIPSET

National Semiconductor Channel link 48 bit chipset
10 pair 2 mm HM cable from AMP?
Any gain to use 8 pairs?

PROTOCOL

32 bit streams for data
1 bit lane for framing (8 bit frames and 10 bit frames will be mixed)?
1 bit lane to indicate if 8 bit or 10 bit frames are sent?
Parity?
Some counter (BC or L1A...) to detect loose of synchronization?
Plans

| **Analog Splitter** | Design PCB, get components and assemble cards
| -> try to be ready by September to connect splitters at D0 during shutdown |
| **Crates** | Almost finalized: 6U VME 64x 5 rows connectors + custom rear-side transition backplane
| -> solve remaining issues; purchase crate + Bit3 PCI/VME interface; make backplane |
| **ADF board** | Start board schematic and layout as soon as FPGA target is known
| -> need also to address download bootstrap interface, and power supply circuits |
| **FPGA firmware** | Complete design and simulation of one channel and fit 8-16-32 channels in FPGA
| -> work in progress |

To be thought: SCL timing card; Software: monitoring, download, calibration...