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Sliding Window Algorithms
A 0.2 × 0.2 trigger tower is too small to contain all the 
jet energy, and furthermore, a jet or electron might fall 
on the border between two trigger towers.

Solution: use a sliding-window algorithm.

Electron trigger algorithms must discriminate electrons 
from jets.

Plan is to use hadronic and isolation cuts.

Tau trigger algorithms must discriminate tau jets from 
hadronic jets.

One idea is to use jet width; study is just getting under way.
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Jet Sliding Window Algorithms
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Jet Algorithm Choices
Studying four sliding window jet algorithms, which are 
named by the triplet (size of RoI, minimum separation 
of neighboring RoIs, expansion of RoI region to get ET
cluster energy):
(2, 0, 1): 2×2 RoI, 3×3 decluster, 4×4 ET region
(2, 1, 1): 2×2 RoI, 5×5 decluster, 4×4 ET region
(3, -1, 1): 3×3 RoI, 3×3 decluster, 5×5 ET region
(3, 0, 1): 3×3 RoI, 5×5 decluster, 5×5 ET region

Applied the above algorithms to three types of events: 
ZH → vvbb, WH → evbb, inclusive t tbar. All were 
from Michael Hildreth’s run 2b projects with mb=7.5. 
The WH files are mcp07, while the others are mcp10.
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ET(trig. cluster) / ET(jccb)
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For each JCCB jet, select the trig. 
cluster with the smallest ∆R. Plots 
have the following cuts:

jetid group certification cuts
jccb ET > 10 GeV, tc ET > 1.5 GeV
jccb det. |eta| < 3.5
∆R < 0.25 (0.3) for 2x2 (3x3) RoI
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ET(tc) / ET(jccb) vs Eta
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For each JCCB jet, select the trig. 
cluster with the smallest ∆R. 
Plots have the following cuts:

jetid group certification cuts
jccb ET > 10 GeV
trig. cluster ET > 1.5 GeV
∆R < 0.25 (0.3) for 2x2 (3x3) RoI
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ET(tc) / ET(jccb) vs ET(jccb) 
ET(tc) / ET(jccb) is a function of ET(jccb), as can be seen in this plot of the 
four algorithms under consideration and a few variants in a sample of ZH →
vvbb events. The ET cluster size has the primary effect.
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ET(tc) / ET(jccb) high ET, 
exclude ICR

High-ET jets that don’t fall in the 
ICR result in narrower 
distributions. Applied cuts:

jetid group certification cuts
jccb ET > 20 GeV, tc ET > 7 GeV
jccb det. |eta| < 0.8 || 1.6 < |eta| < 3.5
∆R < 0.25 (0.3) for 2x2 (3x3) RoI
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ET(tc) / ET(jccb) Summary
jccb ET > 10 GeV, tc ET > 1.5 GeV, |eta| < 3.5

jccb ET > 10 GeV, tc ET > 1.5 GeV, |eta| < 0.8 || 1.6 < |eta| < 3.5

   2, 0, 1    2, 1, 1   3, -1, 1    3, 0, 1
mean rms mean rms mean rms mean rms

WH -> evbb 0.68 0.21 0.70 0.20 0.76 0.21 0.77 0.20
ZH -> vvbb 0.79 0.22 0.80 0.20 0.87 0.22 0.89 0.20
inclusive tt 0.82 0.20 0.83 0.19 0.91 0.20 0.92 0.19

Event Types

   2, 0, 1    2, 1, 1   3, -1, 1    3, 0, 1
mean rms mean rms mean rms mean rms

WH -> evbb 0.75 0.17 0.76 0.16 0.83 0.17 0.84 0.15
ZH -> vvbb 0.84 0.19 0.86 0.17 0.93 0.18 0.95 0.17
inclusive tt 0.88 0.16 0.88 0.15 0.97 0.16 0.97 0.15

Event Types
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ET(tc) / ET(jccb) Sum. II
jccb ET > 20 GeV, tc ET > 7 GeV, |eta| < 3.5

jccb ET > 20 GeV, tc ET > 7 GeV, |eta| < 0.8 || 1.6 < |eta| < 3.5

   2, 0, 1    2, 1, 1   3, -1, 1    3, 0, 1
mean rms mean rms mean rms mean rms

WH -> evbb 0.75 0.17 0.75 0.17 0.80 0.18 0.80 0.18
ZH -> vvbb 0.85 0.17 0.86 0.17 0.92 0.17 0.92 0.17
inclusive tt 0.86 0.17 0.86 0.17 0.93 0.17 0.93 0.17

Event Types

   2, 0, 1    2, 1, 1   3, -1, 1    3, 0, 1
mean rms mean rms mean rms mean rms

WH -> evbb 0.82 0.12 0.82 0.12 0.89 0.12 0.88 0.12
ZH -> vvbb 0.91 0.12 0.91 0.12 0.97 0.12 0.97 0.12
inclusive tt 0.91 0.12 0.91 0.12 0.98 0.13 0.98 0.12

Event Types
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Turn-on Curves
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All the sliding window 
algorithms result in similar 
turn-on curves, significantly 
better than the current 
algorithm’s. Applied cuts:

jetid group certification cuts
jccb det. |eta| < 3.5 
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Turn-on Curves
The turn-on curve is sharpened if the area around the 
ICR is excluded. The left picture is the WH plot from 
before, the right further restricts the jccb detector eta of 
the jets to |eta| < 0.8 || 1.6 < |eta| < 3.5.   
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Accuracy in Position
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The accuracy in the position 
of a jet is important for track 
matching. Plots reco-tc delta-
R. Applied cuts:

jetid group certification cuts
reco ET > 10 GeV
trig. cluster ET > 1.5 GeV
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Accuracy in Position for Taus 
and Electrons

The algorithms with the 2×2 RoI have slightly better accuracy in the position 
than do the algorithms with a 3×3 RoI. For narrow events, such as taus and 
electrons, the advantage of the 2×2 RoI algorithms increases.
The plot on the left is for WH → evbb events where the jetid cuts are not 
applied, thus including an electron “jet.”
The plot on the right is H → tau tau. The jetid cuts are not applied.
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(3, -1, 1) Double Counting
Of the four jet sliding-window 
algorithms studied, only the one using 
a 3×3 RoI, 3×3 decluster matrix 
allows two jets to share RoIs:
Situation where the “sig” cell 
contains a narrow shower (such as an 
electron) and the “ns” cells  both 
contain noise cause one jet to be 
considered two.
In a sample t tbar file, roughly 15% 
of the electrons were recognized as 
two jets.

ns

sig

ns

As an aside, all these 
algorithms can double-
count energy if there are 
two neighboring jets 
since the 4×4 or 5×5 
clusters can overlap.
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Evidence for Double Counting

This plot is of WH → evbb events. It displays the number jet triggers with an 
ET > 8 GeV within a radius of 0.6 from from an EMPART_Z electron (passing 
emid cuts) with PT > 15 GeV/c. One trigger is expected, with two occurring on 
occasion due to a nearby jet.

0 1 2 3 4 5 6
0

200

400

600

800

1000

1200

1400

1600

1800 3, -1, 1
3, 0, 1
2, 0, 1
2, 1, 1

The Number of Jet Triggers near a RECO electron



J. Mitrevski DØ Workshop - July 10, 2002 18

Single Jet Trigger
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Efficiency (fraction of 
events that trigger) vs. rate, 
for single jet triggers, |eta| 
< 3.5. Assumed luminosity: 
5×1032 cm-2s-1.
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Double Jet Trigger

0 1000 2000 3000 4000 5000

0.5

0.6

0.7

0.8

0.9

3, -1, 1
3, 0, 1
2, 0, 1
2, 1, 1

Double jet efficiency as a function of rate

WH

Efficiency (fraction of events 
that trigger) vs. rate, for double 
jet triggers (ET cutoff the same 
for both jets), |eta| < 3.5. 
Assumed luminosity: 5×1032

cm-2s-1.
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ICR Question
A question that needs to be answered is whether the detectors in
the ICR should be used by the L1 calorimeter trigger.
Simulation preliminary: trigsim does not model the ICR well, so 
we need to use trigger towers recreated from the precision 
readout. Absolute scales are not comparable, but trends provide 
info:
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ET(tc) / ET(jccb) vs Eta
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Including the ICR detectors 
improves the trigger 
uniformity.
Attempts can be made to tune 
the ICR response without 
actually using the detectors.
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ET(tc) / ET(jccb) in ICR

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

20

40

60

80

100

120

140

160

180 using ICR

not using ICR

variable scaling, no ICR

The jet energy fraction

WH
Not including the ICR 
detectors results in poor 
resolution in the ICR, even if 
some scaling is employed. 
Plots are of of 0.9 < |eta| < 1.5
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Turn-on Curves
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Including the ICR detectors 
improves the turn-on curves.
The simple scaling schemes 
is shown to perform in 
between the with ICR and the 
plain without ICR schemes.
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Single Jet Trigger
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Including the ICR detectors improves 
the efficiency vs. rate curves for single 
jet triggers.
The simple scaling scheme’s effect is 
minimal, but maybe a better scaling 
scheme (e.g. scaling before algorithm) 
will have more of an effect.
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Double Jet Trigger

0 1000 2000 3000 4000 5000
0.4

0.5

0.6

0.7

0.8

0.9

1

using ICR

not using ICR

variable scaling, no ICR

Double jet efficiency as a function of rate

WH

Including the ICR detectors 
improves the efficiency vs. rate 
curves for double jet triggers.
The simple scaling scheme 
performs in between the with ICR 
and the plain without ICR scheme.
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First Look at Taus
The H → tau tau reaction could be important for the 
discovery of the Higgs.
It is difficult to trigger on this reaction with just jet 
triggers while keeping the rate low:
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First Look at Taus
Tau jets tend to be narrower than hadronic jets.
A possible tau trigger could be envisioned that looks for 
narrow jets, cutting on the ratio E(2×2) / E(4×4).
A jet algorithm with a 2×2 RoI makes this easy to do .
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Electron Trigger
We have started intensely studying the electron trigger 
algorithms.

Atlas scheme or regular 2×2 sliding window scheme or none 
of the above?
What are appropriate EM and hadronic isolation cuts?

Does TT energy saturation need to be handled differently for 
hadronic cut?

First results to come shortly.  

X

RoI / EM cluster 

EM isolation

Had isolation 
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Summary
At Nevis we are undertaking simulation studies to decide:

Which jet algorithm to implement—all have similar performance
Bigger cluster results in better low energy jet resolution.
Smaller cluster and decluster matrix find more jets in busy events as ttbar
2×2 RoI has better accuracy in position.
3×3 RoI must be paired with 5×5 decluster to avoid double-counting, 
resulting in a very complicated algorithm.
2×2 RoI is more compatible with tau and electron algorithms.
Larger decluster results in better energy resolution of found jets.
Designs for larger decluster matrix algorithms allow for smaller matrix 
algorithm to be implemented as a backup, but not visa versa. 

Should the ICR detectors be included in the algorithms?
Can a tau trigger be designed?
What electron algorithm should be implemented?
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Recommendation so Far
The (2, 1, 1) algorithm (2×2 RoI, 5×5 decluster, 4×4 ET
region) is the one we should design for:

More flexible than the (2, 0, 1) algorithm. For example:
the (2, 0, 1) algorithm can be implemented in a (2, 1, 1) design, but not 
visa versa
expanding the ET cluster size may be possible.

Easier to incorporate alongside the tau and electron 
algorithms, which are 2×2 in structure, than a 3×3 algorithm 
is.
The only well-performing 3×3 algorithm is the (3, 0, 1), but 
that is too complicated, and it suffers in busy events due to the 
large size.
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