Temple Review Post-Mortem

Hal Evans

- 12-15 Aug: Director's Rev. of all CDF & DØ Run IIb Projects
 - Prep for DOE (Lehman) review: week of 23 Sep.
 - Reviewed: Technical Aspects / Cost & Schedule
 - Technical Committee Members
 - L.Bauerdick*, F.Forti, D.Marlow*, J.Pilcher**, M.Selen*,
 H.Sadrozinski, H.Tajima
- Review went well on all fronts (thanks!)
 - New Tevatron Run IIb baseline
 - $L = 4x10^{32} \text{ cm}^{-2}\text{s}^{-1}$ & 396 ns bunch spacing
 - Documentation basically ok
 - need more on Basis of Estimate
 - Technical side also sound. Only 2 recommendations:
 - "The proponents should try to characterize the performance of the upgraded system with a few global figures of merit. The PAC has emphasized the Higgs detection significance."
 - "This task appears ready to baseline."

Schedule to Lehman

Week of	Tasks to Finish
Aug 19	Final changes to schedule by groups
	 Submit note of adequacy of L2 & L3 processing power
Aug 26	• 1st draft of responses to review circulated
	 Revise TDR (mainly simulation for L1Cal)
	Final Project Management Plan
Sep 2	Schedule Frozen (except for BOE changes)
	TDR to internal DØ editors
	• Final draft of responses to review
Sep 9	Final TDR version complete
	Practice talks
	 All Lehman Review material posted to web (9/13)
Sep 16	Committee reads documentation
Sep 23	Lehman Review

What We Need to Do

- Fill holes in Schedule Basis of Estimate
 - see L1Cal Web → Documents → Administratia
- Address Technical Committee's comment
 - 1. Increase in Higgs sensitivity wrt current trigger
 - ZH \rightarrow vvbb (& H \rightarrow $\tau\tau$???)
 - 2. High Pt trigger menu with rate comparisons
 - probably too ambitious
 - 3. Other suggestions ???
- Double-check rate numbers
- Compare Data vs MC for current conditions
 - see Josh Kalk's numbers
- Update TDR with new simulation results
 - Jet Algorithm new eff. vs rate plot(s)
 - EM Algorithm nothing here?
 - Tau Algorithm new eff vs rate plot
 - ICR nothing here?

Data vs MC Rates (now)

	Data		MC QCD5
Trigger	<i>L</i> = 15e30	<i>L</i> = 20e30	<i>L</i> = 18e30
cem(1,5)	600	800	675±25
cem(1,10)	38	50	55±7
cem(1,15)	8.1	10.8	12±5
cem(2,5)	27	36	38±6
cem(2,10)	1	2	3±2
cem(1,5)cjt(2,5)	52	70	62±10
cem(1,10)cjt(2,5)	12	16	17±5
cem(1,10)cjt(2,7)	7	9	10±4
cem(1,15)cjt(2,7)	3	4	4±2
cem(1,10)cjt(2,10)	9	12	5±3
cjt(2,3)	912	1225	650±25
cjt(2,5)	54	72	70±10
cjt(3,5)	10	13	13±4
cjt(3,7)	2	3	4±3
cjt(4,5)	3	4	1.5±1.5
cjt(4,7)	0.6	0.8	0