Status of ADF System Design

October 2002

D. Calvet

DSM/DAPNIA/SEDI, CEA Saclay

91191 Gif-sur-Yvette Cedex
Content

- Analog Splitters
- ADF board
- ADF crate
- Timing card
- High speed links
- Test bench
- Software
- Short term plans
Analog Splitter

- Cabling of 1 board 80% completed
 - 1 minor error found: DC/DC converter need to be soldered on other side of PCB due to top/bottom view inversion

- Test of prototype scheduled for October
 - Need BLS/CTFE style cables: some short (~10cm) some ~5 m

- 3 other boards to cable
 - will be done internally or not?

- Still on schedule for installation in D0 during 2003 shutdown (February?) even if a second iteration of design/PCB/cabling is necessary
ADF Board

- **Core FPGA (digital filter)**
 - VHDL coding 100% completed and simulated
 - 8 channels synthetized, fitted in XC2V500 FG456 -4
 - Post-route simulation done

- **VME interface and bootstrap interface**
 - VHDL coding 100% completed and simulated
 - Programmable logic fitted in XC9572XL –10 TQ100C CPLD
 - Post-route simulation done

- **Board-level VHDL simulation**
 - Includes 4 FPGA’s + VME interface + bootstrap logic
 - Just started for behavioral model; must have a more powerful PC for post-route simulations (1Gbyte RAM min.)
 - Need some control software to exercice the VHDL model
VME interface and bootstrap logic

- Download FPGA configuration via VME:
 - all 4 FPGA’s loaded at once or different config on each FPGA
- VME interface A24 D16-D8 only; no DMA; no interrupt
- Provides 5V <-> 3.3V conversion; Virtex 2 I/O not 5V tolerant
ADF Crate

- Crate to be delivered ~November 2002
- Custom backplane: design not started
Custom Backplane

- Passive backplane; controlled impedance traces
- Need some mechanics to hold (heavy) cables
Power Estimation

- **FPGA Core 1.5V**
 - 3.2 A per ADF board
 -> converted from +5V with DC/DC @85% eff.: 1.2 A / board 23 A /crate

- **Logic 3.3 V**
 - 0.75 A per board
 -> converted from +5V with DC/DC @85% eff.: 0.6 A / board 12 A /crate

- **ADC 3.3 V**
 - 2.8 A per board; 60 A per crate

- **ADC driver –5 V**
 - 0.6 A per board; 12 A per crate

- **Crate requirement:** +5V 45A; +3.3V 60A; -5V 12A
• Baseline: segmentation 0.2 x 0.2

• VHDL design in progress
• 3U or 6U mechanics; No slow control
• No slot available in ADF crate: back of slot 0? Space in TAB crate?
High Speed links

- Use 36 bit out of 48 available in Channel Link
 - 32 data bit
 - 1 start of frame bit (active when LSB’s of data are present)
 - 1 indicator of frame length (8 bit or 10 bit)
 - Normal operation: 8 bit frames (digital filter output)
 - If L1 trigger and send raw data enabled: burst of N frames of 10 bit (raw ADC samples for that trigger)
 - 1 BX count
 - Normal operation: counter from SCL; 1 to 159
 - When sending raw ADC samples: send BX Count and Turn Count
 - 1 parity bit

- Operating mode of channel link? DC balanced or not? Deskew?

- Cable:
 - HM 2mm 8 or 10 pairs
 - No progress since last report
Test bench ADF board

- Standards items + dedicated mezzanine card(s)
- Requested summer student for design in 2003

 \[\text{Need PCI/VME interface; EISA/VME unusable (EISA obsolete and not found in PCs for few years)} \]
Software

- Address map: each ADF crate takes full 16 MB space of VME A24
 - need map 4-5 16 MB windows of VME A24-D16/08 in PCI space of TCC computer

<table>
<thead>
<tr>
<th>A23 –A 19</th>
<th>A18</th>
<th>A17-A16</th>
<th>A15-A13</th>
<th>A12-A0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADF Card ID</td>
<td>0</td>
<td>FPGA ID</td>
<td>Channel ID</td>
<td>Registers & LUT</td>
</tr>
<tr>
<td>1</td>
<td>0 0</td>
<td>0 0</td>
<td>Config. PROG_B and CS_B</td>
<td></td>
</tr>
<tr>
<td>0 1</td>
<td>Config. DATA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1</td>
<td>Config. RD_WR_B, CCLK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1</td>
<td>Config. INIT_B, DONE, BUSY</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Compatibility and smooth integration with existing TCC software
 - Libraries: Rogue Wave? STL? Others...
 - Application: multi-threaded? Polling?
- Some code development started to perform board level simulation
Short Term Plans

• Test Analog Splitter
 ~1 week

• Complete ADF board level simulations
 ~1 week

• Design power supply circuit for ADF board FPGA’s
 ~2 weeks

• Start ADF board schematic capture
 Begin ~end October at best