

Trigger Simulation at Columbia University

Jovan Mitrevski
Columbia University
DØ Trigger Workshop in Saclay
4 November 2002

Introduction

- Since the review, the major focus of the trigger simulation studies at Columbia University has been the electron algorithms.
- ◆ But did confirm that the jet trigger results with the new simulator are comparable to the old results, as the next slide will show.
- Tau trigger studies showed promise and we are planning on incorporating a $E_{T2 \square 2}/E_{T4 \square 4}$ cut.
- In order to study ICR issues, missing energy triggers, and be confident of absolute, as opposed to relative values, we need newer Monte Carlo files.

Jet Trigger Performance

• Efficiency to trigger with a single-jet trigger on the ZH \square Tbb events from Michael Hildreth's run 2b project with mb=7.5. (Luminosity = 4 \square 10³² cm⁻² s⁻¹)

J. Mitrevski

DØ Trigger Workshop - 4 Nov. 2002

L1 Cal Electron Trigger

- ◆ Attempt to incorporate in the L1 trigger features currently done in the L2 trigger.
 - Better measure the energy of electrons that land on trigger tower edges
 - Apply hadronic (EM fraction) cut
 - Apply isolation cut

Algorithms Investigated

- We have looked at the following algorithms
 - **♦** RoI: 2□2, decluster: 3□3 (2,0,1)
 - \bullet RoI: 2 2, decluster: 5 5 (2,1,1)
 - ◆ Atlas algorithm on RoI: 2□2, decluster: 3□3 (201Atlas)
 - ◆ Atlas algorithm on RoI: 2□2, decluster: 5□5 (211Atlas)
 - \bullet RoI: 1 1, no decluster, but standard isolation and hadronic cuts (1,0,1)
 - ◆ Run 2a L1 electron algorithm with no cuts (1,0,0)
- \bullet Standard hadronic cut: $E_{Thad} \square 8 < E_{TEM}$
- \bullet Standard isolation cut: $E_{Tring} < 5 \text{ GeV}$
- Want to also investigate Atlas scheme with modified isolation and hadronic cuts based on the Run2a L2 electron algorithm

Preliminary Results Look Promising

- **Preliminary** results based on WH ☐ e☐bb events from Michael Hildreth's run 2b project with mb=7.5.
- Fraction of MC electrons/positrons with $p_T > 6$ GeV/c that fall in $|\Box| < 0.8$ or $1.6 < |\Box| < 3.5$ that are children of Ws, that have an EMPART_S particle (no cuts applied), and that have a L1 electron trigger:

Algorithm	2,0,1	201Atlas	1,0,0	2,1,1	211Atlas	1,0,1
Fraction found	0.88	0.86	0.97	0.88	0.86	0.65

Can try to optimize triggers' hadronic and isolation cuts in the future.

That's not the whole story

- The previous page implies that the run2a electron algorithm is the best. But those results don't penalize fake triggers.
- ♦ Fraction of Trigger electrons/positrons with $p_T > 6$ GeV/c that fall in $|\Box| < 0.8$ or $1.6 < |\Box| < 3.5$, that have an EMPART_S particle (no cuts applied), and that link to a MC electron/positron:

Algorithm	2,0,1	201Atlas	1,0,0	2,1,1	211Atlas	1,0,1
Fraction found	0.83	0.87	0.39	0.83	0.88	0.94

trigger link eff. vs. E_T

Trigger MC link eff. vs. E_T

J. Mitrevski

DØ Trigger Workshop - 4 Nov. 2002

Not making cert. EMPART S cuts makes only a small difference

- Green are given MC electron that is a child of a W, find **EMPARTicle**
- Blue are given EMPARTicle, if can link with an MC electron, only then plot.

From/to cert. EMPART

Results of linking efficiency from certified EMPART_S to trigger clusters (same p_T and \square cuts) look similar but higher overall:

Algorithm	2,0,1	201Atlas	1,0,0	2,1,1	211Atlas	1,0,1
Fraction found	0.98	0.96	1	0.97	0.95	0.74

The reverse looks similar, but lower overall:

Algorithm	2,0,1	201Atlas	1,0,0	2,1,1	211Atlas	1,0,1
Fraction found	0.77	0.81	0.28	0.78	0.81	0.85

Cert. EMPART_S [] trigger

link eff. vs. E_T

DØ Trigger Workshop - 4 Nov. 2002

Trigger [] cert. EMPART_S

link eff. vs. E_T

There are fewer certified low-energy EMPARTicles than triggers.

MC/EMPART linking

- ◆ 97% of certified EMPART_S electrons have a MC electron.
- ♦ 79% of MC electrons that have a W as a parent have a certified EMPART S electron.

Energy Fraction

This plot shows the trigger cluster energy divided by the EMPART_S electron energy. The linking is done by taking certified EMPART S electrons with $p_T > 6 \text{ GeV/c}$ and that fall within $|\Box| < 0.8$ or $1.6 < |\Box| < 3.5$ and finding the nearest trigger cluster electron in delta-R. (Those at zero are no matches.)

Energy fraction vs. E_T

• Using the same linking scheme as before with the same p_T and \square cuts, here is the energy fraction as a function of trigger cluster E_T .

GeV

Energy fraction vs.

- Loosening the □ cut to just |□| < 3.5 for this plot only, here is the energy fraction as a function of □.
 The ICR detectors are not included.
- I do not understand the behavior.

Turn-on Curves

Position

For the track matching, determining the position of the electron is important. Here is the delta-R between EMPART_S electrons and triggers where the linking is done by taking certified EMPART S electrons with $p_T > 6 \text{ GeV/c}$ and that fall within $|\Box|$ < $0.8 \text{ or } 1.6 < |\Box| < 3.5$ and finding the nearest trigger cluster electron in delta-R.

Conclusion

- This is still very much a work in progress.
- Still have not come to a conclusion as to what algorithm should be implemented.
 - Should we try to do different hadronic and isolation cuts?
 - ◆ Is the 2□2 RoI with ring around it for isolation too large of a structure?
- Any ideas would be appreciated.