

Level-1 Calorimeter Trigger (WBS 1.2.1)

Hal Evans Columbia University for the Run IIb L1Cal group

Outline

1. Overview & Review

- System Architecture
- (Brief) Physics Goals
 - ▲ full justification of Run IIb L1Cal: see Lehman Review/TDR

2. Current Status

- Studies of Data using split signals
- Data Transmission Studies
- Roundup of the Prototype Boards

3. Prototype Integration Test

- Goals of the Test
- Steps to a Successful Test

4. Getting to the End

- Progress on the Schedule
- Projections for the Future
- (5. Handy Glossary of Acronyms)

Run IIa Limitations

- 1. Signal rise > 132 ns
 - ◆ cross thrsh before peak
 ⇒ trigger on wrong x'ing
 - affects high-Et events
 - prevents 132 ns running
- Poor Et-res. (Jet,EM,MEt)
 - slow turn-on curves
 - 5 Gev TT thresh ⇒ 80% eff. for 40 GeV jets
 - low thresholds ⇒ unacceptable rates at L = 2×10³²

Trigger	Phys. Chan	Rate (kHz)
EM Trigger 1 TT>10 GeV	$W \rightarrow ev$	1.3
Jet Trigger 2 TT>5 GeV + MEt>10 GeV	ZH → vvbb	2.1 (L = 2e32)

0.8

0.6

Et (2,1,1) > 10 GeV

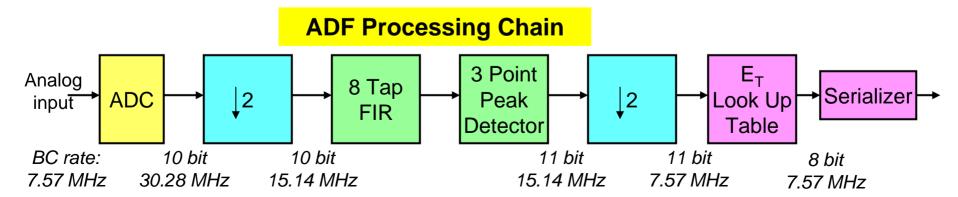
.... Et (Π) > 4 GeV

Et (Π) > 6 GeV

Pt jet (GeV)

L1 Rate Limit 5 kHz

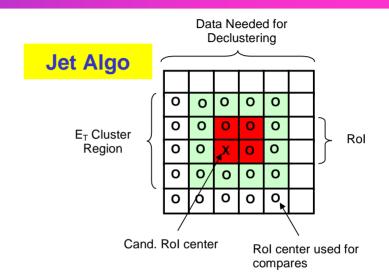
> Dir Rev of Run IIb June 3-5, 2003

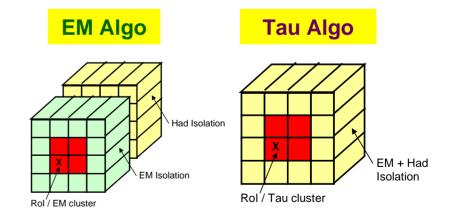


Run IIb Solutions (1)

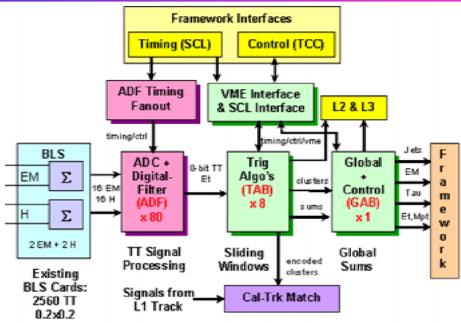
- Solution to Signal Rise Time: Digital Filtering
 - digitize Cal trigger signals
 - ◆ 8-tap FIR (6-bit coeff's) + Peak Detector run at BC×2
 - reformats output for transmission to physics algo stage

Benefits


- allows running at 132 ns (keeps this option open)
- improvements in energy resolution (under study)
- note: this stage is necessary as input to algo stage



Run IIb Solutions (2)


- Solution for Rates: Sliding Windows Algo
 - Et cluster local max. search on 40×32 (η×φ) TT grid
 - Jet, EM & Tau algo's
 - Better calc of missing Et
 - Topological Triggers
 - Jet, EM clust output for matching with L1 Tracks
- Benefits
 - ×2.5-3 Jet Rate reduction at const. eff.
 - **A** ZH→ννbb Rate: 2.1→0.8 kHz
 - Similar gains for EM &Tau
 - MEt, Topological Triggers under study

The Run IIb L1Cal System

Custom Board	No	Purpose
ADF: ACD/Dig. Filt.	80	digitize, filter, E-to-Et
ADF Timing F'out	4	ADF control/timing
TAB: Trig Algo Board	8	algo's, Cal-Trk out, sums
GAB: Global Algo Board	1	TAB ctrl/time, sums, trigs to FWK
VME/SCL Board	1	VME comm & timing f'out to TAB/GAB

Group Responsibilities

Saclay

ADFs/ADF Timing/Splitters

Physicists: J.Bystricky, P.LeDu*, E.Perez

Engineers: D.Calvet, Saclay Staff

Columbia/Nevis

TABs/GABs/VME-SCL

Physicists:
 Engineers:
 H.Evans*, J.Parsons, J.Mitrevski
 J.Ban, B.Sippach, Nevis Staff

Michigan State

Framework/Online Software

Physicists: M. Abolins*

Engineers: D.Edmunds, P.Laurens

Northeastern

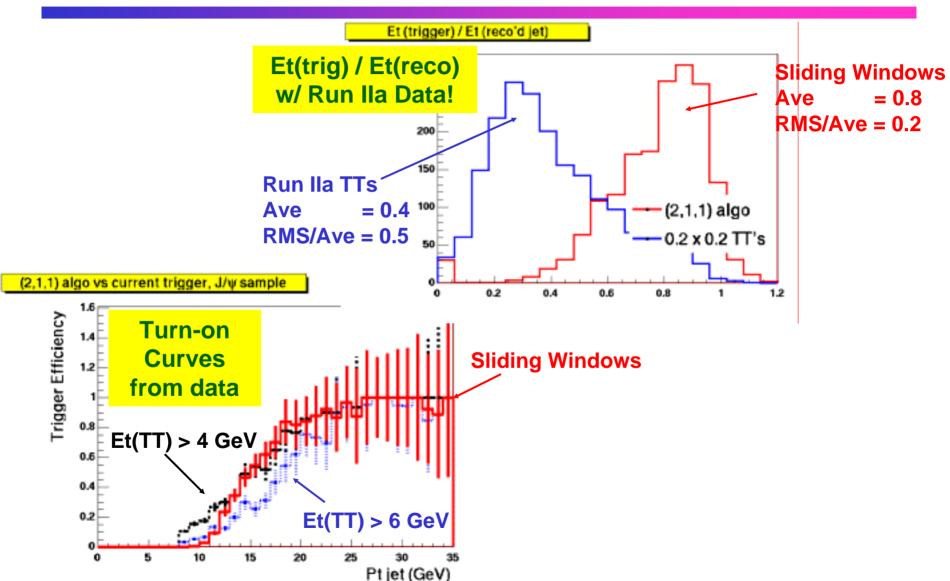
Online Software

Physicists: D. Wood

Fermilab

Test Waveform Generator

Engineers: G.Cancelo, V.Pavlicek, S.Rapisarda


Room for Help (actively discussing with several groups)

Commissioning, Analog Signal Studies, Simulation

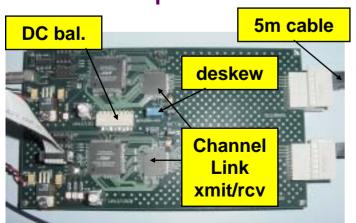
^{*} L1Cal Project Leaders

Algorithm Studies with Data

Signal Splitter

- Access to Real TT Data using "Splitter" Boards
 - designed/built by Saclay
 - active split of analog signals at CTFE input
 - 4 TTs per board
 - installed: Jan. 2003

Splitter Data


- no perturbation of Run IIa L1Cal signals
- allows tests of digital filter algorithm with real data

splitter data plot here

ADF-to-TAB Signal Xmit

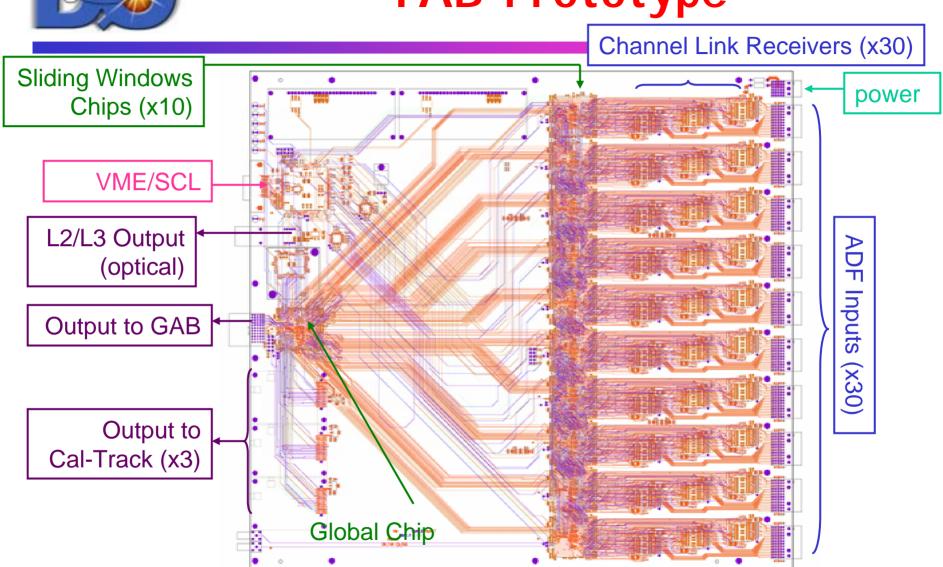
- System Design driven by Data Sharing requirments of Sliding Windows Algorithm
 - ◆ 1 Local Max search requires data from 6×6 TTs
 - Minimize Data Duplication ⇒ 30 ADFs (960 TTs) → 1 TAB
- Data Transmitted Serially using LVDS
 - ◆ 3 identical copies per ADF
 - ◆ Use National Channel Link Chipset (48:8 mux)
 - ▲ Links run at 424 Mbit/s (rated to 5.3 Gbit/s)
 - ◆ Compact Cables: AMP with 2mm HM connectors

<u>Cable Tester</u> (designed/built at Nevis)

- tests done in fall 2002
- vary param's & clock speeds
- ber's<10⁻¹⁴ for 1.5×standard speed

ADF Prototype

VME Digital Out Analog In **Channel Link** Serializers VME interface & glue logic Core FPGA logic DC/DC converters


Analog Section and ADCs

~1300 components on both sides of a 14-layer class 6 PCB

Prototype in Fabrication/Assembly: expected at Saclay end-June

TAB Prototype

Prototype in Fabrication/Assembly: expected at Nevis mid-June

VME/SCL Prototype

New Comp. of TAB/GAB system

proposed:

Feb 03

change control:

Mar 03

- Interfaces to
 - VME (custom protocol)
 - ▲ not enough space on TAB for standard VME
 - DO Trigger Timing (SCL)
 - (previously part of GAB)
- Why Split off from GAB
 - simplifies system design & maintenance
 - allows speedy testing of prototype TAB
- Prototype at Nevis: May 12
 - main VME & SCL functionality tested & working

local osc's & f'out **VME** (standalone runs) interface SCL serial out x9 interface

Prototype Integration Tests

- Want to start "System Tests" asap
 - need to check cross-group links early
- First Tests with Prototypes: Summer/Fall
 - SCL → VME/SCL → TAB, ADF
 - BLS Data (split) → ADF → TAB
 - Flexible, staged schedule allows components to be included as they become available
- Setting up semi-permanent Test Area
 - outside of Movable Counting House
 - connection to SCL, split data signals
 - allows L1Cal tests without disturbing Run IIa data taking
 - infrastructure being set up by J.Anderson's group (Fermilab)
 - power connected to test area during down time last week

Schedule Progress

	Schedule End Dates (∆t from Oct-02 aggressive schedule)				
Prototype	Design	Layout	Fab/Assemb	Bench Test	
Splitter	3/28/02	8/26/02		1/17/03 (+18w)	
ADF	1/24/03 (+9w)	5/16/03 (+19w)	6/30/03 (+18w)	8/26/03 (+17w)	
ADF Timing	6/10/03 (+38w)	7/9/03 (+33w)		8/6/03 (+31w)	
ADF Crate	6/12/03 (+29w)	8/8/03 (+27w)	10/6/03 (+27w)	12/3/03 (+27w)	
ADF-TAB Cables	10/18/02			11/1/02	
TAB	1/28/03 (+17w)	5/9/03 (+31w)	6/23/03 (+24w)	7/22/03 (+10w)	
GAB	6/24/03 (+31w)	7/23/03 (+31w)	8/20/03 (+22w)	10/16/03 (+14w)	
VME/SCL	4/11/03		5/13/03	5/23/03	
Prototype Integr.	7/16/03 – 10/8/03				
P.R.R.'s	1/21/04 (ADF)	11/5/03 (TAB)	7/16/04 (System)		
Pre-Production	10/30/03 – 7/23/04 (ADF)		10/9/03 – 4/7/04 (TAB)		
Pre-Prod Integr.	6/11/04 – 7/9/04				
Production	7/26/04 – 2/21/05 (ADF)		7/19/04 – 4/11/05 (TAB)		

What Have We Learned?

Schedule Successes

Splitter crucial for realistic L1Cal tests

Cables demonstration of system viability

♦ VME/SCL modular functions is a wise move

simplifies of design/test/mainten.

Waveform Gen. useful card for ADF testing

involvement of Fermilab group very helpful

Schedule Slips

- Main Source of Delays: ADF & TAB Layouts
 - ▲ much more complicated than anticipated
 - ▲ layout tools stressed by new, large FPGAs
- Ripple Effect causes Delays in Other Areas
- Plans in Place to Minimize Effects of Delays
- What to Watch
 - Prototype Integration Test is an Important Milestone
 - Need to make sure other boards are fully Integrated
 - ▲ GAB, ADF Timing,...
 - ◆ Integration of Saclay/Nevis/D0 Online Control Software
 - Need to get More Groups involved in Project
 - ▲ commissioning, data studies, simulation

Alphabet Soup

- ADF: ADC & Digital Filter Card
 - Run IIb L1Cal card that digitizes and filters analog signals from BLS
- ADF Timing (aka SCL Interface)
 - Run IIb L1Cal card that distributes SCL signals to ADFs
- BLS: BaseLine Subtractor Card
 - Run IIa/IIb card that constructs analog TT signals from calorimeter cell signals (in collision hall)
- CTFE: Calorimeter Trigger Front End Card
 - Run IIa card that digitizes BLS signals, counts TTs over threshold and does first stage of Et summing (in MCH1)
- GAB: Global Algorithm Board
 - Run IIb card that collects TAB outputs, constructs trigger terms and transmits them to the TFW
- LVDS: Low Voltage Differential Signal
 - Serial data transmission protocol used for communication between Run IIb L1Cal components
- MCH: Movable Counting House
 - ♦ MCH-1 (1st floor) houses L1Cal. This is accessible during data taking.
- SCL: Serial Command Link
 - Means of communicating D0 TFW timing and control signals to all parts of D0 Trigger/DAQ
- Splitter
 - Splits analog signals from BLS (at CTFE) for Run IIb L1Cal studies
- TAB: Trigger Algorithm Board
 - Run IIb card that performs sliding windows and Et summing algorithms on ADF outputs
- TFW: Trigger Framework
 - System that collects trigger terms from all D0 trigger systems, makes final trigger decisions and distributes timing and control
- TT: Trigger Tower
 - 0.2x0.2 (ηxφ) region of calorimeter cells (EM or Hadronic) used as input to L1Cal
- VME/SCL Card
 - Run IIb card that interfaces TABs/GABs to VME using a custom serial protocol and distributes SLC signals to the TABs/GABs