

The VME/SCL Board

Jovan Mitrevski
Columbia University
Run 2b L1 Cal Trigger Meeting
December 11, 2003

Purpose

- The VME/SCL board has two main purposes:
 - Provide a compact serial VME interface for the TAB and GAB boards.
 - Fan out the SCL signals to the TAB and GAB boards.
- The VME/SCL board also provides testing support:
 - Generates fake SCL signals for offline testing.
 - Provides control signals to capture transactions to onboard memories.

Photo

Run 2b L1 Cal Trig - Dec. 11, 2003

Main Components

- VME bus connectors
- Buffers for multi-directional VME bus data lines
- Altera MAX 3000A CPLD for basic VME bus controls, such as AS, DS, and determination if the system is being addressed.
- ♦ Altera ACEX 1K FPGA for the main logic of the board: serializing and directing the remote VME transactions and directing the SCL controller
- SCLR daughter card connector
- Altera MAX 3000A CPLD to fan out or fake SCL data and manage the clocks
- 53MHz crystal
- Clock selector (53MHz/7 or SCLR clock)
- ◆ 2 Clock fanout chips: serial VME (53MHz/2 currently) and 7MHz SCL clocks
- 9 serial VME/SCL connectors (with corresponding LVDS converters) to connect to the 8 TABs and 1 GAB

LVDS Signals

- serial VME clock
- serial VME frame: framing signal followed by VME A[14:7]; there are five or six unused bits here if needed in the future
- serial VME address: originally VME D[31:16]
- serial VME data: originally VME D[15:0]
- serial VME frame out: frame signal for data from remote
- serial VME data out: 16 bits (serially) of data from remote
- SCL clock
- SCL init
- SCL turn (filtered—only after init is seen)
- SCL accept (formed from 11_accept & 11_period, or faked)
- pulse (used to tell boards to store transaction in memory for testing purposes)
- spare to remote, except on GAB port, where it is 11_error from remote

SCLR Signals Watched


```
scl_syncerror
```

$$\bullet$$
 bx[2..0]

```
:output; -- init ack to hub
```

init_ack

Address Map

- ◆ AM == 27 and A[23:19] == !(slot) required for board to respond
- ♦ A[18:15] is the module number:
 - module 0-7 are the TABs
 - module 8 is the GAB
 - module 15 is the VME/SCL board, i.e. local
- ◆ A[14:11] is the chip number, used to select between chips on the remote boards, or functions locally
- ◆ A[10:7] is the group number, used to select functions in a chip remotely, or SCL control functions locally
- A[6:4] is the subgroup, currently unused
- other address bits are not available internally

VME/SCL Address Map

- ♦ Module = 1: go offline (make SCL signals internally)
- ♦ Module = 2: go online (use actual SCL signals)
- ◆ Module = 4: read status
- Module = 6: read/write local scratch register
- ◆ Module = 3: talk to SCL CPLD
 - \bullet chip = 1: set pulse time
 - \bullet chip = 2: set pulse width
 - chip = 3: set accept time (when offline)
 - chip = 4: generate SCL init (when offline)
 - \bullet chip = 5: generate pulse
 - chip = 6: generate pulse and accept
 - chip = 15: reset local data structures: offline/online, run started, etc.