Channel Link Performance Measurements on ADF board

D. Calvet

DSM/DAPNIA/SEDI, CEA Saclay

91191 Gif-sur-Yvette Cedex
Measurement Setup

- ADFv1 board in standalone
- Channel Link Tester board controlled by PC through // I/O board
- High-end oscilloscope
- Bit rate per differential pair: 8 x 8 x 7 = 448 Mbps
Measurement Setup
Measurement Setup
Channel Link Tester

- Custom-made Mezzanine board plugged on a commercial Xilinx Virtex II evaluation board
- Control software on PC
- Firmware dedicated to ADF links:
 - 36 bit receive data-path
 - 37-bit ternary trigger pattern (1 external input)
- Data mode:
 - capture up to 2048-frames
 - Deserialize data on each line using FRAME
 - Check received parity
- Error counting mode:
 - Generate pseudo-random sequence similar to that generated by ADF
 - Make bit to bit comparison of data pattern
 - Accumulate bit errors and statistics
Clock at cable end closed on Resistor
Data at cable end closed on Resistor
Link #0 Pair #2 at Tester end
Link #1 Pair #3 at Tester end
Link #2 Pair #5 at Tester end
Non DC Balanced Mode
No DC Balance and No Deskew
DC Balanced – Send fixed data=0x3
No DC Balance – Send fixed data=0x3
DC Bal & DESKEW – Send ADC data
Explanations on Measurements

- **Channel Link Chipset Configuration**
 - DC balanced mode with DESKEW (unless otherwise specified); no pre-emphasis
 - data rate: 64 MHz x 36 bit = 2.304 Gbps; pseudo-random data; ADC’s enabled

- **End of cable connected to passive resistor termination**
 - Measure skew/eye introduced by ADF board and cable
 - Reference Clock recovered by oscilloscope « golden PLL » from input signal
 - wide-opened eye on clock pair, a bit less on data pairs

- **Cable connected to Channel Link tester board**
 - Adds the degradation introduce by the Channel Link Receiver board circuitry
 - Cannot access clock pair with probe for mechanical reasons
 - Slight degradation of eye pattern but:
 - Wide opening: 1.7 ns of 2.5 ns period (68%); 280 mV vertical opening
 - BER predicted from eye: from $\sim 10^{-24}$ to $\sim 10^{-15}$ depending on pair and cable
 - Correct operation w/wo DC Balance / DESKEW
 - BER influenced by data pattern: random is worst case

Other data pairs and the 3 output links of the ADF give comparable results
Bit Error Rate Measurements

- Validate the operation of the Channel Link Tester
 - Program ADF to generate pseudo-random pattern with e.g. pattern « 000…0 » occurring only once per repetition period (65535 frames)
 - Program tester to record 2K frames after triggering on pattern « 000…0 »
 - Compare received data with expected data off-line
 - Force errors on the ADF side to see if these are detected
 - Re-run all tests in error counting mode

- Make the measurements
 - Program ADF as in previous test and tester to trigger on pattern « 000…0 »
 - Make tester compare received data with expected data on the fly
 - Run for many hours and check error counters

- Results
 - Stopped run after 40 hours on Link #2; 3.10^{14} bit transmitted with no error
 - Shorter runs (~15 hours) on others links show correct transmission without error

Stable and reliable operation of ADF links in these test conditions
Suggested Path for Validation of Links

- Operate 1 ADF with clock supplied by SCLD board (on-board oscillator then D0 clock recovered via SCLR Mezzanine)
 - Make sure that clock distribution from D0 to 1 ADF works fine
- Operate 2nd ADF in the same crate
 - Make sure that local clock fanout within a crate works fine

- Measure signals on TAB side
 - See the influence of TAB termination on signals sent by the ADF
 - Investigate cable type/length (ERNI 4 m here; AMP 5 m for final system)
 - Determine if pre-emphasis is needed; determine the level

- Check received data on TAB side
 - ADF can send constant, pseudo-random or pre-stored data patterns
 - TAB must be able to check exactness of data automatically during extended test run periods.

All tests must complete with success before producing final boards