The B_s as a Piece of the New Physics Puzzle

Hal Evans

Assumption

- we will have already discovered beyond the SM Physics at the Tevatron/LHC

Question to address at next generation exp’s

- How can B-physics contribute to our understanding of the nature of the new physics

Specific questions to ask

1) What is the discriminating power of b-measurements to different beyond the SM flavors?
2) What are the projected sensitivities of upcoming exp’s?
3) What are their limiting experimental and theoretical errors?
Acknowledgements

Tulika Bose
Leslie Groer
Silas Hoffman
Burair Kothari
Christos Leonidopoulos
Gabrielle Magro
Georg Steinbrueck
Mike Tuts

any mistakes are purely due to me!
New Physics in the B System*

<table>
<thead>
<tr>
<th>Class</th>
<th>Properties</th>
<th>Example</th>
</tr>
</thead>
</table>
| SM | • CP & Flavor violation only CKM
 $H_{eff}^{\Delta F=2} \propto \sum V_{CKM}^i C_i(\mu)Q_i$ (Q_i = VLL in SM)
 • 1 CPV phase | depressingly many |
| A (MFV) | • Wilson coeff’s of SM op’s modified by new particles | SHDM(II), CMSSM
• tan\(\beta \) = small |
| B | • new op’s possible
 • CPV & FV still only in CKM | SHDM(II), CMSSM
• tan\(\beta \) = large |
| C | • new CPV phases in SM op’s
 • no new op’s | MSSM
• tan\(\beta \) = small
• non-diag M(sqrk) |
| D | • new CPV phases
 • new op’s
 • new Flavor changing contrib’s | • multi-Higgs
• SUSY: spont. CPV
• LR Symmetric |
| E | • CKM not unitary | 4 Generations
• tree FCNCs |

* Buras, hep-ph/0101336
Models & Their Consequences

Class A (Minimal Flavor Violation)

\[C_1^{\text{Wt}} = C_1^{\text{Wt}}(\text{SM}) [1 + f] \]

Class B (General MFV)

\[C_1^{\text{Wt}} = C_1^{\text{Wt}}(\text{SM}) [1 + f_q] \]

\[f_d \neq f_s \neq f_\epsilon \]

\[\Delta M_q = \Delta M_q(\text{SM}) [1 + f_q] \]

\[\sin 2\beta \sim \sin 2\beta(\text{SM}) F [(1 + f_d),(1 + f_s),(1 + f_\epsilon)] \]
More Models…

Class C (Minimal Insertion Approx) Ali & Lunghi, hep-ph/0105200
- all $M(\text{gluino, squark}) \sim \text{TeV}$ except lightest stop
- only 1 unsuppressed off-diagonal elem’s in squark mass matrix
 - $c_L - t_2 \sim$ excluded by $b \rightarrow s \gamma$
 - ΔM_s: $C_1^{Wtt} = C_1^{Wtt}(\text{SM}) [1 + f]$
 - $\varepsilon_K, \Delta M_d, \sin 2\beta$: $C_1^{Wtt} = C_1^{Wtt}(\text{SM}) [1 + f + g] \quad (g = g_R + ig_I)$

Class D (LR Sym + Spont CPV) Ball, et al, hep-ph/9910211
- very restrictive model
 - generally: sign[ε] opp. sign[$a(\psi K_s)$] (same in SM)
 - $M_{12} = M_{12}^{SM} \left(1 + \kappa e^{i\sigma_q}\right) \quad q = d, s$
 - κ, σ_q related mainly to (2) param’s governing spont CPV
Unitarity Triangle Predictions

<table>
<thead>
<tr>
<th>Model</th>
<th>ϵ_K</th>
<th>ΔM_d</th>
<th>$\Delta M_s / \Delta M_d$</th>
<th>$\sin 2\beta_{\text{eff}}$</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (MFV)</td>
<td>\neq SM</td>
<td>\neq SM</td>
<td>$=$ SM</td>
<td>\sim SM</td>
<td>$< $ SM</td>
</tr>
<tr>
<td>B (GMVF)</td>
<td>\neq SM</td>
<td>\neq SM</td>
<td>$>$ SM</td>
<td>\neq SM</td>
<td>$> $ SM</td>
</tr>
<tr>
<td>B (2HDM-II)</td>
<td>\sim SM</td>
<td>\sim SM</td>
<td>\sim SM</td>
<td>\sim SM</td>
<td>$?$</td>
</tr>
<tr>
<td>B (MSSM)</td>
<td>\sim SM</td>
<td>\sim SM</td>
<td>$< $ SM</td>
<td>\sim SM</td>
<td>$< $ SM</td>
</tr>
<tr>
<td>C (MIA)</td>
<td>\neq SM</td>
<td>\neq SM</td>
<td>\neq SM</td>
<td>\neq SM</td>
<td>\neq SM</td>
</tr>
<tr>
<td>D (SB LR) fit</td>
<td>\sim SM</td>
<td>\sim SM</td>
<td>$(0.61.1)SM$</td>
<td>< 0.1</td>
<td>$?$</td>
</tr>
</tbody>
</table>

- Measurements & constraints included in fits to specific models
 - λ, $|V_{cb}|$, $|V_{ub}/V_{cb}|$, B_q, f_{Bi}, m_t, ...
 - ϵ_K, ΔM_d, $b\rightarrow\gamma$, ...

- Other B measurements also see effects:
 - $b\rightarrow s\gamma$, $b\rightarrow d\gamma$: rates and asymmetries
 - $b\rightarrow s^* f$: asymmetries
 - $B_s\rightarrow J/\psi\phi$: asymmetry
 - ...

16 July, 2001

Hal Evans
95% CL Allowed Contours from Fit

\[f_{B_s} \sqrt{B_{B_s}} = 215 \pm 40 \text{ MeV}, \quad B_K = 0.94 \pm 0.15 \]

- \(f = 0 \quad \text{SM} \)
- \(f = 0.2 \quad \text{mSUGRA} \)
- \(f = 0.45 \quad \text{non-mSUGRA} \)
- \(f = 0.75 \quad \text{non-SUGRA + nEDM} \)

Ali and London: hep-ph/0002167

16 July, 2001

Hal Evans
1σ Allowed Contours from Fit

$\Delta M_s = 18.0 \pm 0.05 \text{ ps}^{-1}$

$a(\psi K_s) = 0.5 \pm 0.05$

Various $R_{sd} = \frac{1 + f_s}{1 + f_d}$

Buras, Chankowski, Rosiek, Slawianowska: hep-ph/0107048
95% CL Allowed Contours from Fit

<table>
<thead>
<tr>
<th>f</th>
<th>g_R</th>
<th>g_I</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0.9</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0.7</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>-0.5</td>
</tr>
</tbody>
</table>

Ali and Lunghi: hep-ph/0105200
Allowed Region from all Constraints

\[M_2 = \text{mass of } W_R \]

\[M_H = \text{extra Higgs masses} \]

Decoupling limit \((M_2, M_H \to \infty)\) excluded

Ball, Frere, Matias: hep-ph/9910211
More Constraints: $\Delta \Gamma_s$ & ϕ_s

- **CPV Phase in B_s**
 - $A(t)[B_s \to J/\psi \phi] \Rightarrow \sin \phi_s$
 $$\phi_s = \arg(-M_{12}\Gamma^*_s) = \arg\left[-\frac{V_{cs}V_{cb}^*}{V_{ts}V_{tb}^*}\right] \sim 0.03 \text{ in the SM (signs?)}$$
 - like $\sin 2\beta$ this is free of hadronic uncertainties to $O(10\%)$
 - New Physics $\Rightarrow \phi_s = \phi_s^{SM} + \phi_s^{NP} \sim \phi_s^{NP} = \arg(1 + ae^{i\phi})$

- **B_s Width Difference**
 - $\Delta \Gamma_s = \Gamma_L - \Gamma_H = 2 |\Gamma_{12}| \cos \phi_s$
 - $\Delta \Gamma_{CP} = 2(\Gamma_{CP+} - \Gamma_{CP-}) = 2 |\Gamma_{12}| = \Delta \Gamma_s / \cos \phi_s$
 - Note that $\Delta \Gamma_s$ only decreases with New Physics

- various methods to disentangle $\Delta \Gamma_s$ & $\cos \phi_s$
 - Dunietz, Fleischer, Nierste: hep-ph/0012219

- $\Delta \Gamma_s$ coupled to ΔM_s in the SM
 $$\frac{\Delta \Gamma_s}{\Delta M_s} \propto \left(\frac{m_b}{m_W}\right)^2$$
ϕ_s in New Physics Models

<table>
<thead>
<tr>
<th>Model</th>
<th>a</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector d-quarks (\Rightarrow bsZ)</td>
<td>< 0.25</td>
<td>any</td>
</tr>
<tr>
<td>4th Generation</td>
<td>> 1</td>
<td>any</td>
</tr>
<tr>
<td>RPV SUSY</td>
<td>> 1</td>
<td>any</td>
</tr>
</tbody>
</table>

Experimental Statistics

<table>
<thead>
<tr>
<th>Exp</th>
<th>Start</th>
<th>$\int L , dt , [fb^{-1}]$</th>
<th>b-Events</th>
<th>Time [yr]</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaBar/Belle</td>
<td>1999</td>
<td>60-100</td>
<td>6.5×10^6</td>
<td>1</td>
</tr>
<tr>
<td>DCF/DØ</td>
<td>2001</td>
<td>2</td>
<td>0.4×10^{12}</td>
<td>2 (run Ila) run Ila + Izb</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>3.0×10^{12}</td>
<td></td>
</tr>
<tr>
<td>BTeV</td>
<td>2005/6</td>
<td>2</td>
<td>0.2×10^{12}</td>
<td>1</td>
</tr>
<tr>
<td>Atlas/CMS</td>
<td>2006</td>
<td>10</td>
<td>5×10^{12}</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>15×10^{12}</td>
<td>3 (low lumi)</td>
</tr>
<tr>
<td>LHCb</td>
<td>2006?</td>
<td>2</td>
<td>1×10^{12}</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>5×10^{12}</td>
<td>5</td>
</tr>
</tbody>
</table>
B_s Experimental Sensitivities

<table>
<thead>
<tr>
<th>Meas</th>
<th>SM</th>
<th>Current</th>
<th>CDF/DØ</th>
<th>BTeV</th>
<th>Atlas/CMS</th>
<th>LHCb</th>
</tr>
</thead>
<tbody>
<tr>
<td>sin 2β</td>
<td>0.71 ± 0.09</td>
<td>0.61 ± 0.12</td>
<td>0.03 (IIa)</td>
<td>0.025</td>
<td>0.015</td>
<td>0.010</td>
</tr>
<tr>
<td>t-res [fs]</td>
<td>45/100</td>
<td>43</td>
<td>63</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔM_s [ps⁻¹]</td>
<td>14 – 26</td>
<td>> 14.9</td>
<td>< 20/50</td>
<td>< 48</td>
<td>< 30</td>
<td>< 60</td>
</tr>
<tr>
<td>$\Delta \Gamma_s / \Gamma_s$</td>
<td>(9.3±4.0)%</td>
<td>< 52%</td>
<td>(4-8)%</td>
<td>0.10</td>
<td>0.11</td>
<td>0.011</td>
</tr>
<tr>
<td>ϕ_s (J/ψφ)</td>
<td>0.03</td>
<td>$x_s = 20$</td>
<td>—</td>
<td>0.025</td>
<td>0.014 (3 y)</td>
<td>0.02 (3 y)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$x_s = 40$</td>
<td>—</td>
<td>0.035</td>
<td>0.03 (3 y)</td>
<td>0.03 (3 y)</td>
</tr>
</tbody>
</table>

all sensitivities per year unless otherwise noted

Main Exp Limitations
- Statistics
- Proper Time Resolution
- Backgrounds

Main Theor Uncertainties
- $f_B \sqrt{B_B}$
- m_q
Gauging the Impact of Flavor Physics

Goal
- Compare discriminating power of Flavor Physics for different new physics models
- Quantifies where Flavor Physics makes an impact

Strategy
- Develop standard tests
- Apply these to current situation and expected future

1) Predictions for benchmark SUSY points
2) Allowed regions for classes of models
 a) Define outputs: $\bar{\rho}, \bar{\eta}$ plots, ϕ_s, model params...?
 b) Define inputs: standard current parameter sets
 c) Improvement path: collect expected sens’s vs time

Problems
- do we miss something by narrowing our goals?