Silas Hoffman and Georg Steinbrueck

- Introduction
- Current and future measurements
- B_s mixing and physics beyond the SM
Best channel: $B_s^0 \rightarrow D_s^\pm \pi^\pm$, $D_s^\pm \rightarrow \phi \pi^\pm$, $\Phi \rightarrow KK$

The flavor of the B_S at production is determined by different Tagging methods (opposite side or same side tagging)

The D_s^\pm is used to tag the flavor of the B_S at decay time.

Good proper time resolution needed!
Summary table

<table>
<thead>
<tr>
<th></th>
<th>Event Yield</th>
<th>$\delta \Delta m_s ,[\text{ps}^{-1}]$</th>
<th>$\Delta m_s ,$ reach</th>
<th>Δm_d</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td></td>
<td>>14.6 <31.2(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>World ave.</td>
<td></td>
<td>>14.9(‘01)(4)</td>
<td>(0.486+/-0.015) (3)</td>
<td></td>
</tr>
<tr>
<td>Babar</td>
<td></td>
<td>0.507+/-0.015+/-0.022(3)</td>
<td>0.10-0.16 (1)**</td>
<td></td>
</tr>
<tr>
<td>Belle</td>
<td></td>
<td>0.456+/-0.008+/-0.030(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDF/D0</td>
<td>20k (CDF)</td>
<td>60/22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BteV 103 k/yr</td>
<td>0.10</td>
<td>Up to 55*</td>
<td>30(6)</td>
<td></td>
</tr>
<tr>
<td>Atlas 30fb$^{-1}$/yr</td>
<td>0.05-0.16 (1)**</td>
<td>38.5(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMS 4.5 k/yr</td>
<td>0.11(20ps$^{-1}$)(6)</td>
<td>30(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LHCb 86 k/yr</td>
<td>0.011(6)</td>
<td>Up to 60(2)*</td>
<td>48(6)</td>
<td></td>
</tr>
</tbody>
</table>

*assuming Bs lifetime = 1.464 ps **for $\Delta m_s =$20 and 38.5 ps$^{-1}$, respectively
Upper limit sensitive to specific models
Ranges don’t tell the whole story: chi-sq minima might be quite different for the various models
\(\Delta M_s \) does not seem to be a sure candidate in ruling out/ establishing SUSY. One needs to get lucky.

Model dependence in terms of single parameter \(f \)

\[
\Delta M_s = \Delta M_s(SM) [1 + f]
\]

- \(f = 0 \) (SM): \(14.6 \leq \Delta M_s \leq 31.2 \)
- \(f = 0.2 \) (mSUGRA): \(14.6 \leq \Delta M_s \leq 35.5 \)
- \(f = 0.4 \) (non-mSUGRA): \(14.9 \leq \Delta M_s \leq 39.4 \)
- \(f = 0.75 \) (non_SUGRA): \(15.1 \leq \Delta M_s \leq 48.6 \)
Fits to f

2 degrees of freedom (ρ and η):
→ $\chi^2_{\text{min}} > 2$ are disfavored
→ Models with $f > 0.6$ disfavored in current data
Seems like a powerful way to distinguish between models, but quite optimistic

Assuming $\Delta M_s = 17.7 \pm 1.4$ ps$^{-1}$

<table>
<thead>
<tr>
<th></th>
<th>ATLAS</th>
<th>CMS</th>
<th>LHCb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurable values of up to:</td>
<td>30 ps$^{-1}$</td>
<td>26 ps$^{-1}$</td>
<td>48 ps$^{-1}$</td>
</tr>
<tr>
<td>95% CL excl. of ΔM_s values up to:</td>
<td>-</td>
<td>29 ps$^{-1}$</td>
<td>58 ps$^{-1}$</td>
</tr>
<tr>
<td>$\sigma(\Delta M_s)$ for $\Delta M_s = 20$ ps$^{-1}$</td>
<td>0.11</td>
<td>-</td>
<td>0.011</td>
</tr>
</tbody>
</table>
Other factors

The chi-sq fits to f depend on η and ρ and hence the angles of the unitarity triangle. (Specifically $\sin 2\beta$)

By making precise measurements of the angles one can reduce the Allowed regions for f.

\rightarrow Might be able to rule out specific models.

Hard to make more quantitative statements at this point.
Limiting factors for ΔM_s

Theoretical limitations:

Hadronic matrix elements calculated in lattice QCD to $\sim 10\%$ (leptonic decay constants f_{B_s} and B parameters \hat{B}_{B_s})

\[
\Delta M_s = \frac{G_F^2 M_W^2}{6\pi^2} \eta_B S_0(x_t) M_{B_s} \hat{B}_{B_s} f_{B_s}^2 |V_{ts}|^2
\]

Theory errors are reduced in the ratio $\Delta M_s / \Delta M_d$.
Limiting factors for ΔM_s

Experimental limitations:

Proper time resolution

<table>
<thead>
<tr>
<th></th>
<th>ATLAS</th>
<th>CMS</th>
<th>LHCb</th>
<th>BTeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proper time resolution</td>
<td>50 fs (60.5%)</td>
<td>65 fs</td>
<td>43 fs</td>
<td>43 fs</td>
</tr>
<tr>
<td></td>
<td>93 fs (39.5%)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For a proper time resolution reduced by 25%, Atlas could achieve a ΔM_s of 50 ps$^{-1}$ instead of 38.5 ps$^{-1}$! (1)

Other factors: Mistag rates. (Atlas assumes 0.22 for the muon mistag rate by which the wrong charge sign is assigned).

Backgrounds (B$_d$ decays, combinatorical backgrounds).
Conclusions

ΔM_s will be measured at the Tevatron, and the LHC

Better values of the angles of the CKM matrix result in smaller variance of ΔM_s for different models

→ In an optimistic scenario the measurement of ΔM_s can serve to rule out theoretical models

Future Experiments need to have very good proper time resolution to have an impact on ΔM_s.

2) LHCb technical proposal: http://lhcb-tp.web.cern.ch/lhcb-tp/

7) A. Buras et al., hep-ph/0107048