
Monitoring Protocol
24 July, 2001

1. Introduction
During normal data taking, readout of monitoring data is initiated when the collect status
bit is set in the L1 Trigger Qualifier (L1_QUAL) word received by the FRC as part of the
SCL data. A description of the SCL data word and L1_QUAL can be found in the FRC
document prepared for the STT review1. Monitoring data is collected from the various
cards in the system by the in-crate CPU, which then passes this information on to the
Trigger Framework(?). Each card in the system decides whether to prepare its monitoring
data for collection based on the L1_QUAL word in the header of the T/R data from the
FRC. The main actions of the monitoring process taken by the FRC, the CPU and the
other cards in the system are shown in Fig. 1.

2. Implementation of Monitoring Protocol
The monitoring task in the STT is initiated in the FRC (by the Buffer Manager) and
controlled mainly by the CPU after that. Given below is the monitoring sequence as we
foresee its implementation in the STT. This information is also repeated in Fig. 1. In the
list, DB is used to denote a generic logic daughterboard (FRC, STC or TFC).

a) FRC (BM): Get the monitoring request from the Trigger Framework. This is
signaled by the collect_status bit being set in the L1_QUAL word of the SCL
information.
This task is done by the FRC, since it is the first place that SCL information
arrives at the system.

b) FRC (TRDF): Pass monitoring request to the other cards in the system.
This is done as part of the T/R Data header.

c) DB: Interpret collect_status bit in T/R Data.
Each card must decode the L1_QUAL word in the T/R Data header.

d) DB: Each card collects monitoring data, puts it into a VME-accessible
register.
It is up to the individual cards how they can collect and store their monitoring
information most efficiently.

e) DB: Each card signals to the CPU that its monitoring data is ready.
The CPU is informed through VME-accessible registers (MON_DONE[i])
that are set to one when the source has finished collecting monitoring data.

f) FRC (BM): Reserve the VME bus for the CPU to collect monitoring data.
This multi-step process is only begun after the FRC has collected its
monitoring data so that the CPU need not hog the VME bus for longer than is
absolutely necessary.

i. Check for the VBD or SCL Init using the VME bus. This is
accomplished by reading the arbitration registers in the BMError!

Bookmark not defined..
ii. Wait for the VME bus to clear if it is busy.

iii. Set the mon_req arbitration register to 1.

g) FRC (BM): Signal the CPU that monitoring data is (or will be) available.
Send a monitoring interrupt to the CPU.

h) CPU: Collect monitoring data from each board (i).
This could be done using a simple loop over all the boards in the crate. The
loop should start with the FRC since it is guaranteed to have monitoring data
ready.

i. Wait for MON_DONE[i] = 1.
ii. Read monitoring data for board i over VME.

iii. Set MON_DONE[i] = 0.
iv. Repeat for board i+1

i) CPU: Inform FRC (BM) that monitoring data is all collected.

Set register MON_ALL = 1 in FRC (BM).

j) FRC (BM): Release VME bus.
Set mon_req arbitration register to 0.

k) FRC (BM): Finish up.
Set MON_ALL = 0.

VME-accessible control registers that are required in this scheme are listed in Table 1.

Location Name Description
BM MON_REQ Indicates that VME is being used by Monitoring.

Also used to signal CPU if interrupts are not used.
BM MON_ALL Indicates that CPU has finished collecting monitoring data.
Source i MON_DONE[i] Indicates that monitoring data for this source is ready for

readout
Source i MON_START[i] In CPU-initiated monitoring – requests that this source

write its monitoring data to its readout register
Source i MON_DATA[i] Block of VME-accessible memory where monitoring data

is stored.
Table 1: VME accessible registers used in the control of monitoring.

a) Mon Evt
from SCL

collect_stat=1

FRC CPU Other Elements

b) Make
T/R Data

d,e) Wait All
Mon. Data

Ready
mon done[i]: 0→1

f) Wait for VME
free

scl_req=0 & srdy*=1

g) Notify CPU
• Interrupt
• mon_req=1

j,k) VME Released
• mon_all=0
• mon req=0

g) Receive
Monitor
Interrupt

h) Loop over Mon Src’s
• Check mon_done[i]=1
• Read Data
• Set mon_done[i]=0
• Set mon start[i]=0

i) Monitoring Done
• Set mon_all=1

c) Mon. Evt.
from T/R

collect_status=1

d) Fill
Monitoring

Buffers

e) Notify CPU
• mon_done[i]=1

 Mon. Evt.
from CPU

• mon_start[i]=1

Mon Evt
from Trig

Fwrk
Figure 1: Flowchart for collection of monitoring data. Letters refer to steps described in the text.
Dashed lines indicate CPU-initiated monitoring.

3. Interrupt Issues
The BM informs the CPU that monitoring data is ready to be collected by a VME
interrupt. Since the BM talks only to PCI, it issues a PCI interrupt that is then passed to
VME by the Universe II chip.This is also how SCL_INIT is transmitted to the CPU,
requiring (at least) two separate interrupt lines to be used.

Note that the Altera MegaCore PCI interface only provides one interrupt line. The extra
line must be included in the local-side logic designed by us.

4. CPU Initiated Monitoring
It is also necessary for the CPU to be able to initiate a monitoring event without the
collect_status bit being set in L1_QUAL. This happens in two situations:

a) at the end of run, when the trigger framework requests the collection of
monitoring data, and

b) if problems are encountered and a snapshot of the system’s status is desired.
A possible complication in both of these cases is that the CPU cannot simply use the
VME data lines to inform everyone of this request whenever it wants – the VBD may be
hogging the bus.

In the present end-of-run monitoring collection scheme (case a), however, all previous
events have been cleared from the system when an end-of-run monitoring request is
passed to the CPU2. This means that all VBD activity will have finished by the time the
CPU gets its monitoring request – so no special arbitration is necessary. The CPU does
have to notify the rest of the system to latch its monitoring information though. This can
most easily be accomplished by the CPU writing to a register (MON_START[i]=1) in
each of the monitoring data sources. The sources would interpret this register being set as
equivalent to collect_status=1 and would fill their monitoring data registers. The rest of
the monitoring would proceed as normally. This scheme is outlined in Fig. 1.

Monitoring on request (case b) is even more straightforward. This is only done when
there are problems and the run is paused, bypassing the possibility of conflicts with the
VBD. Additionally, what we want in this case is not so much the standard monitoring
information as a detailed system status. This is most easily obtained by designing a
simple program that runs on demand in the CPU and reads all VME-accessible registers
in the system.

References

1 Q. An, et al, The Fiber Road Card in the Silicon Track Trigger, (14 February, 2000)
http://www.nevis.columbia.edu/~evans/stt/frc/frc.pdf
2 Jim Linnemann, statement in the STT Engineering Meeting (28 July, 2000) to which he
will be held come Hell or High Water

	Introduction
	Implementation of Monitoring Protocol
	Interrupt Issues
	CPU Initiated Monitoring

