MegaCore®

PCI

MegaCore Function User Guide

Alm @ pci_mt64 version: 220

pci_mt32 version: 2.2.0
101 Innovation Drive pci_t64 version: 220
San Jose, CA 95134 pci_t32 version: 220
(408) 544-7000 Document Version: v.2.1
http://www.altera.com Document Date:  September 2002

A-UG-PCICOMPILER-2.1


http://www.altera.com

PCI MegaCore Function User Guide

Copyright © 2002 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo,
specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless
noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or
service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents
and pending applications, mask work rights, and copyrights. Altera warrants performance of its semiconductor

products to current specifications in accordance with Altera’s standard warranty, but reserves the right to make n.sal
changes to any products and services at any time without notice. Altera assumes no responsibility or liability —
arising out of the application or use of any information, product, or service described herein except as expressly

agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device

specifications before relying on any published information and before placing orders for products or services.
LS. EN IS0 9001

Altera Corporation



A About this User Guide

®

How to Find
Information

Altera Corporation

This user guide provides comprehensive information about the Altera®
PCI MegaCore® functions included with the PCI compiler.

Table 1 shows the user guide revision history.

See the following sources for more information:

See “Features...” on page 7 for a complete list of the core features,
including new features in this release.

Refer to the PCI compiler readme files for late-breaking information
that is not available in this user guide.

Table 1. User Guide Revision History

Date Description
September 2002 | Updated the user guide for version 2.2.0 of the cores and
compiler.
August 2001 Updated the user guide for version 2.0.0 of the cores and
compiler.
February 2001 Updated documentation for version 1.3 of the cores. As of this

version, the cores were distributed as part of the PCI
compiler.

December 1999 First release of user guide, which described the individual PCI

MegaCore functions, including the pci _nt 64, pci _nt 32,
pci _t 64, and pci _t 32 functions.

The Adobe Acrobat Find feature allows you to search the contents of
a PDF file. Click on the binoculars icon in the top toolbar to open the
Find dialog box.

Bookmarks serve as an additional table of contents.

Thumbnail icons, which provide miniature previews of each page,
provide a link to the pages.

Numerous links, shown in green text, allow you to jump to related
information.



About this User Guide

PCI MegaCore Function User Guide

How to Contact
Altera

For the most up-to-date information about Altera products, go to the
Altera world-wide web site at http://www.altera.com.

For additional information about Altera products, consult the sources

shown in Table 2.

Table 2. How to Contact Altera

Information Type

USA & Canada

All Other Locations

Technical support

http://lwww.altera.com/mysupport/

http://www.altera.com/mysupport/

(800) 800-EPLD (3753)
(7:00 a.m. to 5:00 p.m.
Pacific Time)

(408) 544-7000 (1)
(7:00 a.m. to 5:00 p.m.
Pacific Time)

Product literature

http://www.altera.com

http://www.altera.com

Altera literature services

lit_reqg@altera.com (1)

lit_req@altera.com (1)

Non-technical customer
service

(800) 767-3753

(408) 544-7000
(7:30 a.m. to 5:30 p.m.
Pacific Time)

FTP site

ftp.altera.com

ftp.altera.com

Note:

(1) You can also contact your local Altera sales office or sales representative.

Altera Corporation



http://www.altera.com
http://www.altera.com/mysupport/
http://www.altera.com/mysupport/
http://www.altera.com
http://www.altera.com
mailto:lit_req@altera.com
mailto:lit_req@altera.com
ftp.altera.com
ftp.altera.com

PCI MegaCore Function User Guide

About this User Guide

Typographic
Conventions

The PCI Compiler MegaCore Function User Guide uses the typographic
conventions shown in Table 3.

Table 3. Conventions

Visual Cue

Meaning

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type

External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold type.
Examples: fyyax, \quartus directory, d: drive, chiptrip.gdf file.

Bold italic type

Book titles are shown in bold italic type with initial capital letters. Example:
1999 Device Data Book.

Italic Type with Initial
Capital Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75
(High-Speed Board Design).

Italic type

Internal timing parameters and variables are shown in italic type. Examples: tpja, n + 1.
Variable names are enclosed in angle brackets (< >) and shown in italic type. Example:
<file name>, <project name>.pof file.

Initial Capital Letters

Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title”

References to sections within a document and titles of Quartus® I Help topics are
shown in quotation marks. Example: “Configuring a FLEX 10K or FLEX 8000 Device
with the BitBlaster™ Download Cable.”

Courier type

Signal and port names are shown in lowercase Courier type. Examples: dat al, t di ,
i nput . Active-low signals are denoted by suffix n, e.g., r eset n.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c: \ max2wor k\ t ut ori al \ chi ptri p. gdf . Also, sections of an actual
file, such as a Report File, references to parts of files (e.g., the AHDL keyword
SUBDESI GN), as well as logic function names (e.g., TRl ) are shown in Courier.

1,2,3.,anda,b.,c.,..

Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

[ Bullets are used in a list of items when the sequence of the items is not important.
v The checkmark indicates a procedure that consists of one step only.

I The hand points to information that requires special attention.

“ The angled arrow indicates you should press the Enter key.

.. The feet direct you to more information on a particular topic.

Altera Corporation




About this User Guide PCI MegaCore Function User Guide

Vi Altera Corporation



A |:| —— D A Contents

- n o
ADOUL thiS USEI GUITE . .eueeieeeei ittt et et e et e e e e e e e eaneeeans i
HOW t0 FINd INTOrMALION ..ottt iii
HOW 10 CONTACT AILEIA ....vveieie ettt et ettt st e s iv
TyPOGraphic CONVENTIONS ......ooiiiiiiiieei ittt e sttt ereeee e e e e e ereenas \%
Y 0 10 £ 1Ko 1
INEFOAUCTION .ttt b bbbttt b ettt e b s bbb bbbttt 1
GENEIAl DESCIIPTION ..oiiiiiieiiieete ettt ettt bbbttt 1
FBATUTES. .. ittt ettt h ek bt e e bt e e R e ek b et e e R be e b et e ea e e e e e en b e et e e e e aneann 7
1 @N0 IMOTE FEALTUTES ..ottt ettt eb ettt ettt en et et e s e 8
LC1 ] To TR} 7= 1 =T PP 9
PCI MegaCore DireCtory STIUCTUIE ........ocooiieiiiiiirceere e s 10
Altera PCI MegaCore FUNCtion DeSign FIOW .........ccoocviiiiiiiiiiiiiccce e 11
Obtain the PCI MegaCore FUNCLIONS ..........ccuiiiiiiiiiiiiee e 11
Instantiate a PCI MegaCore Function in Your Design .......c.cccooeveieiiiiiiniiccesesesens 11
SYNENESIZE ..ottt ettt ettt e n et ene e e 11
SIMUIALE .o bbbt bbbt b et e sreane s 12
Obtain PCI Constraint File and Analyze TimMiNg .....cccccooviiiiniinieieieieesenese e 12
License MegaCore FUNCLION ...ttt et 13
CONFIGUIE @ DBVICE ..ooviiieiesie ettt et sr et st ane s 13
Design WalK-TRIOUGN ..ottt st sr e ar e b et nre s 13
Generating a Project-Specific Instance of the pci_mt64, pci_t64, pci_mt32, or pci_t32
0T o] o SRS 13

Generating Project-Specific Constraint Files to Achieve PCI Timing Requirements .. 16
Compilation, Functional Simulation & Timing Analysis in the Quartus Il Software . 19

(0] 401 o 11 F= L1 [ ] o KO PSSP 19

TIMING ANAIYSIS oiiiiiiiiece ettt ettt re e 20
Functional SIMUIATION ..o e 20
MEQACOIE OVEIVIEW ...ttt et e et et et et et et et e et et e e e e e e e eaeens 21
COMPIIANCE SUMIMAIY ..ottt 21
PCIBUS SIQNAIS ...iiiiiiie ittt ettt et ettt n s et e e s e et enns 22
Parameterized Configuration Register Signals .........ccccooieioieiieiiesie e 26
Local Address, Data, Command and Byte Enable Signals .........c..cccooooiiiinniiinins 27
Target Local-Side SIgNalS .........cccoiiiiici e 30
Master LoCal-Side SIGNQAIS .......cc.coviiiiiiiicce e 33
MegaWizard PIUG-IN ...ttt 37

Altera Corporation vii



Contents

PAFAIMETETS ... et b ettt ettt b bbb 37
Application Speed Capability ... e 37
Read-Only PCI Configuration REQISTEIS .........cccvieiieieiieieiee s 38
PCI1 Base Address RegiSters (BARS) ...t 39
Advanced Features in the pci_mt64, pci_mt32, pci_t64, and pci_t32 MegaCore Func-

LR L0] 0 LS TSP TP SO ST POTTP P PPPPR
Optional Registers
Optional Interrupt Capabilities ..o 42
OptioNal MaSter FEATUIES .........ccoiiiiiee e 42
B4-BIt PCI OPLIONS ...ttt ettt sttt sttt nes 43

FUNCLIONAI DESCIIPLION ..viiiiiiiiiicii ettt ettt ettt nasae s 44
Target Device Signals & Signal ASSErtioN ... 44
Master Device Signals & Signal ASSEITION ..........cocoiiieiiiiiiie e 47

SPECITICALIONS ..t e 49

PCI BUS COMMEANTAS ....ciiiiieitiiee ettt bbb 49

CoNFIGUIALION REGISTEIS ..vcviiiiiiiiiiiiiee ettt ettt er e ees 50
VENAOT 1D REQISTET ..viviiiieiiciieiieiie e e b et ettt eb e b s ersersenees 53
DEVICE 1D REGISLET ..viiiiiiiiieiieee ettt ettt b et et ta ettt 53
(0] 0T g aF=TaTe [N LT 1) 1= SRS 53
R3] L0 I {015 1= TSP 54
REVISION 1D REGISTET ... e 56
Class COAE REGISTET ...ocieieieeieiiee ettt ettt nreer s 56
CaChe LiNe SIZ€ REGISTEN ..oiviiiiiiiici ettt ettt e ebaetaeraeraenes 56
LatenCy TIMEr REGISTET ...viviiiiiiiie ettt ettt ettt ettt et et es e nae e 57
Header TYPE REGISTET .....ovoiieiiiiee ettt ner e eee st nenes 57
Base AdAress REGISIENS ..ot e 58
CardBus CIS POINTEr REGISTEN ......coiiiiiiiieiie ettt sae e 61
Subsystem Vendor ID REGISTEN ......cccoiiiiiiiiiiiiiiii bbb enes 61
SUDSYSEEM 1D REGISLET ..ottt ettt sr e sre b sne s 62
Expansion ROM Base AdAress REGISIEN ......cooiiriiiieeiieseee e 62
Capabilities POINTET ..o e 63
INTErTUPT LiNE REGISTET .ocviiiiiiiiiiiiieiet ettt es 63
INTErTUPT PiN REGISTET .iviiiiiiiiiiii ettt naenes 64
MiNIMUM Grant REGISTEN ...iiiiiiiiiiecieee ettt st aresna s 64
Maximum LateNCY REGISTET .....ccviiiiieiieiiii ittt 65

LI Lo (= 1Y (0T L @] o 1= - L o] o N E RSOSSN 65
64-Bit Target Read TranSaCtiONS .........ccoviiiirereeiereieiiee et eee s 68

64-Bit Single-Cycle Target Read TranSaction ..........cccccovviiiiiniiniinieiie i 69
64-Bit Memory Burst Read TranSaction .........cccccoviiiiiiininiinienise s 72
32-Bit Target Read TranSaCLIONS ........ccociiiiiiiiiiiiieieeie ettt sre e ane s 76
32-Bit Memory Read TranSaCtioNs ........cc.civevirieriiriiiieseses e se e s 77
@I R =T Vo B I 1 Y- o £ o] o TSRS 80
Configuration Read TranSaCtion ...........ccoceviiiiiieiiieieee s 82

viil Altera Corporation



Contents

64-Bit Target Write TranSaCtiONS ........ccvciiviiiiiieieese e sresresrearaanaenas 83
64-Bit Single-Cycle Target Write Transaction ..........cc.cccoeveineieneieieceee e 83
64-Bit Target Burst Write Transaction ..........ccccocviiieiiincen e 86

32-Bit Target Write TranSaCtiONS .......cccucoviiiiieiieieei et 90
32-Bit Memory Write TranSaCtion .........ccceviiiiiiiiiiieieieeee e 90
170 WIite TraNSACTION ...c.oiiiiiiiiiiiiiie ettt 93
Configuration Write TranSaction ......c.ccocoeiviiiiiiiieiciee e 95

Target Transaction TErMINATIONS ..........ccoiieiiei e 96
REEIY s 96
DISCONMMECT ....eece et 98
TAPGEL ADOIT .o 103

Master MOAE OPEIALION ....ccciiiiiiiiiiiiieit ettt ettt e stesee e s 105

PCIBUS PArKING ...vvviiieiieie ettt ettt sttt ettt ettt et e ane s 108
DeSigN CONSIABIATION .......iuiiiiiieiieee ettt 108

64-Bit Master Read TranSaCtiONS ...........ccoiiieriieiiiiiee et 108
64-Bit Master Burst Memory Read Transaction with Local-Side Wait State ...... 113
64-Bit Master Burst Memory Read Transaction with PCI Wait State .................. 115
64-Bit Master Single-Cycle Memory Read Transaction ...........cccccccevvvvieieiiesesienn 117

32-Bit Master Read TranSaCtiONS .........c.ccoooiiieeieiiiieee et 119
32-Bit PCI & 64-Bit Local-Side Master Burst Memory Read Transaction ........... 119
32-Bit PCI & 32-Bit Local-Side Master Burst Memory Read Transaction ........... 121
32-Bit PCI & 32-Bit Local Side Single-Cycle Memory Read Transaction ............ 123

64-Bit Master Write TranSaCtiONS ........ccoiiiiiriieicee et 125
64-Bit Master Zero Wait State Burst Memory Write Transaction ............c.c......... 126
64-Bit Master Burst Memory Write Transaction with Local Wait State .............. 131
64-Bit Master Burst Memory Write Transaction with PCI Wait State ................. 133

32-Bit Master Write TranSaCtiONS ........ccocviiiiriieiii e 135
32-Bit PCI & 64-Bit Local-Side Master Burst Memory Write Transaction .......... 135
32-Bit PCI & 32-Bit Local-Side Master Burst Memory Write Transaction .......... 137
32-Bit PCI & 32-Bit Local-Side Single-Cycle Memory Write Transaction ........... 139

Abnormal Master Transaction Termination ..........cccoooviiiiiiiiiienas 141
LatenCy TIMEI EXPITES ...viiiiiiiiiiiiiiiieie ittt sttt 141
R BTy bbbttt 141
Disconnect WithOUL DAtA ..........ccooiririiiiiiiiiiceee e 142
DiSCONNECT WIth DAta ........c.cviiiiiiiiiiiiiie e e 142
TArQGET ADOIT ..ttt 142
MASTET ADOIT .. 142

HOSt Bridge OPEIAtiON ....ociiiiiiiiieie ettt sr e sr e e e 142

Using the PCI MegaCore Function as @ HOSt Bridge ........ccccovviviiiiniinenenecese e 143
PCI Configuration Read Transaction from the pci_mt64 Local Master Device to the
Internal Configuration SPACE ........ccc.oiiiiiei i e 144
PCI Configuration Write Transaction from the pci_mt64 Local Master Device to the
Internal Configuration SPACE ..........cccviiiiiiii i s 146

Implementing Internal Bus Arbitration LOGIC .......ccoocviiiiiiiiiiiccsee s 148

64-Bit Addressing, Dual Address CyCle (DAC) ..ot 148

Target MOAe OPEIatiON ......cc.oiiiiiieiiee ittt ettt ee et seeneas 148

Altera Corporation



Contents

64-Bit Address, 64-Bit Data Single-Cycle Target Read Transaction ..................... 149

[V Eo T (=T Y ol [ @] o =T =1 A o] o NSO 151

64-Bit Address, 64-Bit Data Master Burst Memory Read Transaction ................. 151

Appendix A: Tips for 66-MHZ PCI DESIGNS . .cueuiiiiiiieieee et eeaeen 153
Pipelining the LOCal-Side DESIgN ....cccoiiiiiiiiiiiiiii st 153
Designing to the PCI FUNCLION LOCAl SIAE .......ccoiiiiiiiiiiiiiiiie e 153

DESIGN EXAMPIES ....ooeieeiiciceet ettt ettt ettt er e r bbbt 153
Appendix B: Using PCI Constraint Files ..o 155
PCI CoNStraint File CONTENTS ....c.oooiieiiiieee ettt enesee e 155
Generate a Constraint File fOr YOUFr PrOJECT ......ccociiiiiiiiiiic s 155

PCI SYSIEM SPEEA ..ottt ettt ar s 156

INPUL CONSIFAINT FITE ..o e 157

OULPUL CONSTIAINT FITE ..ivviviiiiiiiiii ettt 157

oo 1= ot A A= Vo - SRS S SRS 157

How to Use PCI Tcl Scripts in the Quartus I SOftWare ... 158
Appendix C: 64-Bit Options for the pci_mt64 and pci_t64 MegaCore Functions ........ 159
INEFOAUCTION .ttt eb ettt bt et 159

64-Bit ONly DEVICES OPLION .iiviiiiiiiiiiiie ittt et sttt et et ereere e 159

Add Internal Data Steering Logic for 32/64-Bit Systems Option ..........ccoovvviiivinininnnnnn, 162
Appendix D: PCI MegaCore Function Parameters ..........ccovoeieiieiieiieiiiiiieaenann. 167

X Altera Corporation



A I:l e A About this Core

-

N o 1

>

o

o

=1

=

>

S

Introduction Altera® peripheral component interconnect (PCI) MegaCore® functions @

provide solutions for interfacing your system to a 32-bit or 64-bit PCI bus.
A PCI bus can be used to implement peripheral devices such as network
adapters, graphic accelerator boards, and embedded control modules.

The Altera PCI functions—pci _mt 64, pci _nt 32, pci _t 64, and

pci _t 32—enhance your productivity by allowing you to focus your
efforts on the custom logic surrounding the PCI interface. The functions
are optimized for Altera APEX™, ACEX™, FLEX®, Excalibur®, Stratix®,
and Cyclone® FPGA devices and are fully tested to meet the requirements
of the PCI Special Interest Group (SIG) PCI Local Bus Specification,
Revision 2.2 and Compliance Checklist, Revision 2.2. You can test-drive
Altera PCI MegaCore functions using the OpenCore™ feature to compile
and simulate the functions within your custom logic. When you are ready
to license a function, contact your local Altera sales representative.

The PCI compiler contains everything you need to use Altera PCI
solutions including the MegaCore functions—which can be instantiated
with a wizard-driven interface—behavioral models, testbench, and
reference designs. You can download the PCI compiler from the IP
MegaStore area on the Altera web site at

http://www .altera.com/IPmegastore. Refer to the PCI Compiler Data
Sheet for more information on the PCI compiler contents and how to
obtain and install the compiler. The PCI MegaCore Function User Guide
provides information on how to get started using the PCI MegaCore
functions and describes the technical specifications of the functions.

[l'="  Youcanusethe PCI compiler to test-drive several PCl MegaCore
functions using the OpenCore feature; however, each PCI
MegaCore function must be licensed separately.

General The PCI MegaCore functions covered in this document are hardware-
.- tested, high-performance, flexible implementations of PCI interfaces.
DeSCrlptlon These functions handle the complex PCI protocol and stringent timing

requirements internally, and their back-end interface is designed for easy
integration. Therefore, you can focus their engineering efforts on value-
added custom development, significantly reducing time-to-market.

Altera Corporation 1


http://www.altera.com/IPmegastore

About this Core

PCI MegaCore Function User Guide

Optimized for Altera® devices, the PCI functions support configuration,
170, and memory transactions. With the high density of Altera’s devices,
you have ample resources for custom local logic after implementing the
PCl interface. The high performance of Altera’s devices also enables these
functions to support unlimited cycles of zero-wait-state memory-burst
transactions. These functions can run at either 33-MHz or 66-MHz PCI bus
clock speeds; they thus achieve 132-MBps throughput in a 32-bit, 33-MHz
PCI bus system and up to 528-MBps throughput in a 64-bit, 66-MHz PCI
bus system.

In the pci _nt 64 and pci _nt 32 functions, the master and target
interface can operate independently, allowing maximum throughput and
efficient usage of the PCI bus. For instance, while the target interface is
accepting zero-wait state burst write data, the local logic may
simultaneously request PCI bus mastership, thus minimizing latency.

To ensure timing and protocol compliance, PCI MegaCore functions have
been vigorously hardware tested. See “Compliance Summary” on page 21
for more information on the hardware tests performed.

As parameterized functions, pci _nt 64, pci _nmt 32, pci _t 64, and

pci _t 32 have configuration registers that can be modified upon
instantiation. These features provide scalability, adaptability, and
efficient silicon implementation. As a result, the same MegaCore
functions can be used in multiple PCI projects with different
requirements. For example, these functions offer up to six BARs for
multiple local-side devices. However, some applications require only one
contiguous memory range. PCI designers can choose to instantiate only
one BAR, which reduces logic cell consumption. After you define the
parameter values, the Quartus Il software automatically and efficiently
modifies the design and implements the logic.

This user guide should be used in conjunction with the latest PCI
specification, published by the PCI Special Interest Group (SIG). Users
should be fairly familiar with the PCI standard before using these
functions. Figures 1 through 4 show the block diagrams for pci _nt 64,
pci _nt 32, pci _t 64, and pci _t 32, respectively. Refer to these figures
for signal names and directions for the individual functions.

The functions consist of several blocks:
m  PCI bus configuration register space. This block implements all of the
configuration registers required by the PCI Local Bus Specification,

Revision 2.2. You can set these registers to your system requirements
by setting the parameters provided.

Altera Corporation



PCI MegaCore Function User Guide About this Core

Altera Corporation

Parity checking and generation. This block is responsible for parity
checking and generation. It also asserts parity error signals and
required status register bits.

Target interface control logic. This block controls the operation of the
corresponding MegaCore function on the PCI bus in target mode.

Master interface control logic. This block controls the PCI bus operation
of the corresponding PCI MegaCore function in master mode. This
block is only implemented in the pci _nmt 64 and pci _nt 32
functions.

Local target control. This block controls the local side interface
operation in target mode.

Local master control. This block controls the local side interface
operation in master mode. This block is implemented only in the
pci _nt 64 and pci _nt 32 functions.

Local address/data/command/byte enables. This block multiplexes and
registers all the address, data, command, and byte enable signals to
the local side interface.

>
o
o
c
—
—t
S.
w
O
o
=
@D




About this Core

PCI MegaCore Function User Guide

Figure 1. pci_mt64 Functional Block Diagram

: » cmd_reg[5..0]

—p stat_reg[5..0]

> cache([7..0]

Local Master
Control

-

: Im_req32n
<¢———— Im_reg64n
¢ : Im lastn
¢ Im_rdyn

—® Im ackn
———p Im adr ackn
— Im dxfrn
i IM_ts1[9..0]

Local Address/
Data/Command/
Byte Enable

«———| disc 64 extn
<———|_adi[63..0]
<€——— |_cbeni[7..0]
e |_(laat0[63..0]
== |_adro[63..0]
—— |_beno[7..0]
== |_cmdo[3..0]

——® | Idat ackn
—® | hdat ackn

Local Target
Control

It_rdyn
It discn
It abortn

___________________________________________________ P64 e,
clk —> Parameterized
rstn —p> Configuration
idsel : > Registers
A
ad[63..0] @———p| PCI Address/
cben[7..0] €———>> Data Buffer >
<>
gntn ———P»
reqn <————
PCI Master
Control >
P
PCI Target
Control
<=
par <—> )
par64 <¢———p| Parity Checker & !
perrn <———p> Generator
serm <———  /

Altera Corporation



PCI MegaCore Function User Guide

About this Core

Figure 2. pci_mt32 Functional Block Diagram

$ cmd_reg[5..0]

- stat_reg[5..0]

> cachel[7..0]

Local Master
Control

P
o
o
c
—
=
=.
(%]
(@]
o
=
[¢>]

4— Im_req32n

¢———— Im_lastn
<4——— Im_rdyn
— % Im_ackn
——® Im_adr_ackn
—— Im_dxfrn
i [M_tSI[9..0]

Local Address/
Data/Command/
Byte Enable

< |_adi[31..0]

<¢———|_cbeni[3..0]
——p> |_dato[31..0]
=== |_adro[31..0]
==————=3|_beno[3..0]
=== |_cmdo[3..0]

................................................... Pl M3 e,
clk —> Parameterized
rstn —9> Configuration
idsel — > Registers
: A
ad[31..0] @———p|  PCI Address/
chen[3..0] —r——p Data Buffer >
>
gntn ————p»|
regn €——
A
i PCI Master
Control -
<
>
* >
* >
framen <—><>—>
irdyn <¢—¢p
trdyn <¢— >} PCI Targlet
devseln <€— | Contro
stopn <—> <
A
intan 4—-—
par 4—-—> .
par64 <¢———p>| Parity Checker &
perm <€———p>| Generator >

Local Target
Control

<——— It_rdyn
<¢——— It_discn
<¢——— It_abortn
4——— lirgn
—— It_framen
———P It_ackn
——— It_dxfrn
—> It_tsr[11..0]

Altera Corporation



About this Core

PCI MegaCore Function User Guide

Figure 3. pci_t64 Functional Block Diagram

» cmd_reg[5..0]

=P stat_reg[5..0]

————1 disc 64 extn
| |_2di[63..0]
i |_lat0[63..0]
i3> | alr0[63..0]
P> | beno[7..0]
9 |_cmdo[3..0]

4>| Idat ackn
—® | hdat ackn

It_rdyn
It discn
It abortn

AAAA

——— lirgn
— > It_framen
—® It ackn
——® It dxfrn
=P |t_tsr[11..0]

_____________________________________________________ el t6A e,
clk —> Parameterized
rstn — > Configuration
idsel ; > Registers
A
ad[63..0] 4—'—> PCI Address/
cben[7..0] ———> Data Buffer >
E Local Address/
<> Data/Command/
Byte Enable
P A
framen —N -
req64n ——-pg-—P>|
irdyn ——p»¢-—p
trdgn <l PCI Target <>
devseln ¢——} Control
acké4n <——
stopn ——f<
int <—L — Local Target
intan : ocal Targe
: Control
par €¢——p> :
par64 <¢———p>| Parity Checker & :
permn <——— Generator
sermn <————  /

Altera Corporation



PCI MegaCore Function User Guide

About this Core

Figure 4. pci_t32 Functional Block Diagram

pci_t32
b
clk —» Parameterized ~p cmd_reg[s..0] e
rstn — P! Configuration = stat_reg[s..0] =
idsel : > Registers : =3
7
A o
o
= @
ad[31..0] @———p>| PCl Address/ 5
cben(3..0] =———>| Data Buffer > <——— | adi[31..0]
Local Address/ [ | dato[31..0]
€| Data/Command/ > :—32:100[[331'6?]
LA Byte Enable |__p " cmdo[3.0]
framen—i)ﬂ—} :
E:gig ¢ : .:_ PCI Target
: Control - :
devseln 4—-»4— < : It_rdyn
: ¢ — It discn
stopn : al ¢ — It abortn
i < : lirgn
intan 4 Local Target —— P It framen
i > Control —— 9 It ackn
: > It dxfrn
ar ¢———p»| i
P i Parity Checker & | o P It_ts[11..0]
perm <——— Generator :
serrn 4— v
This section describes the features of the following PCI MegaCore™
eatures

functions: pci _mt 64, pci _nt 32, pci _t 64, and pci _t 32. These
functions are parameterized MegaCore functions implementing
peripheral component interconnect (PCI) interfaces.

m  Flexible general-purpose interfaces that can be customized for
specific peripheral requirements

m  Dramatically shortens design cycles

= Fully compliant with the PCI Special Interest Group (PCI SIG) PCI
Local Bus Specification, Revision 2.2 timing and functional
requirements

m  Extensively verified using industry-proven Phoenix Technology test

bench

m  Extensively hardware tested using the following hardware and
software (see “Compliance Summary” on page 21 for details)

Altera Corporation

Agilent E2928A PCI Bus Analyzer and Exerciser
Agilent E2920 Computer Verification Tools, PCI series
Altera FLEX 10KE PCI Development Board

Altera APEX 20KE PCI Development Board



About this Core

PCI MegaCore Function User Guide

...and More
Features

Optimized for the APEX, ACEX, FLEX, Excalibur, Stratix, and

Cyclone devices.

66-MHz compliant when used with 66-MHz PCl-compliant Altera

devices

No-risk OpenCore™ feature allows you to instantiate and simulate

designs prior to purchase

Supports most PCI commands, including: configuration read/write,

memory read/write, 1/0 read/write, memory read multiple (MRM),

memory read line (MRL), and memory write and invalidate (MWI)

PCI target features (appliesto pci _nmt 64, pci _nt 32, pci _t 64, and

pci _t 32):

—  Capabilities list pointer support

Parity error detection

Up to six base address registers (BARs) with adjustable memory

size and type

Expansion ROM BAR support

Local side can request a target abort, retry, or disconnect

—  Local-side interrupt request

PCI master features (applies to pci _mt 64 and pci _nt 32):

—  Host bridge application support

Configuration registers:

— Parameterized registers: device ID, vendor ID, class code,
revision 1D, BARO through BARS5, subsystem ID, subsystem
vendor ID, maximum latency, minimum grant, capabilities list
pointer, expansion ROM BAR

—  Parameterized default or preset base address (available for all six
BARs) and expansion ROM base address

— Non-parameterized registers: command, status, header type,
latency timer, cache line size, interrupt pin, interrupt line

64-bit PCI master only features (applies to pci _nt 64):

— Initiates 64-bit addressing, using dual-address cycle (DAC)

— Initiates 64-bit memory transactions

— Dynamically negotiates 64-bit transactions and automatically
multiplexes data on the local 64-bit data bus

64-bit PCI target only features (applies to pci _t 64 and pci _nt 64):

—  64-bit addressing capable

— Automatically responds to 32- or 64-bit transactions

Altera Corporation



A I:l e A Getting Started

Altera® peripheral component interconnect (PCI) MegaCore® functions
provide solutions for interfacing your system to a 32-bit or 64-bit PCI bus.
A PCI bus can be used to implement peripheral devices such as network
adapters, graphic accelerator boards, and embedded control modules.

The Altera PCI functions—pci _mt 64, pci _nt 32, pci _t 64, and

pci _t 32—enhance your productivity by allowing you to focus your
efforts on the custom logic surrounding the PCI interface. The functions
are optimized for Altera APEX, ACEX, FLEX, Excalibur, Stratix, and
Cyclone devices and are fully tested to meet the requirements of the PCI
Special Interest Group (SIG) PCI Local Bus Specification, Revision 2.2
and Compliance Checklist, Revision 2.2. You can test-drive Altera PCI
MegaCore functions using the OpenCore™ feature to compile and
simulate the functions within your custom logic. When you are ready to
license a function, contact your local Altera sales representative.

()
)
=
>
«Q
(%)
—t
<Y
=
[9)
o

The PCI compiler contains everything you need to use Altera PCI
solutions including the MegaCore functions—which can be instantiated
with a wizard-driven interface—behavioral models, testbench, and
reference designs. You can download the PCI compiler from the IP
MegaStore area on the Altera web site at

http://www .altera.com/IPmegastore. Refer to the PCI Compiler Data
Sheet for more information on the PCI compiler contents and how to
obtain and install the compiler. The PCI MegaCore Function User Guide
provides information on how to get started using the PCI MegaCore
functions and describes the technical specifications of the functions.

[l'="  Youcanusethe PCI compiler to test-drive several PCl MegaCore
functions using the OpenCore feature; however, each PCI
MegaCore function must be licensed separately.

This section discusses the following areas:

= PCIl MegaCore directory structure
Design flow using PCI MegaCore functions
= Design walkthrough
— Generating a project-specific PCI instance of the pci _nt 64,
pci _nt 32, pci _t 64, or pci _t 32 functions
—  Generating project-specific constraint files to achieve PCI timing
requirements
— Compilation, timing analysis, and functional simulation

Altera Corporation 9


http://www.altera.com/IPmegastore

Getting Started PCI MegaCore Function User Guide

P

Cl MegaCOre The PCI compiler installs files—including the PCI MegaCore function
files—into several directories; the top-level directory is

Directo ry \pci_compiler_v2.2.0. Figure 1 describes the directory structure for the

S

tructure MegaCore functions only; refer to the PCI Compiler Data Sheet for the
PCI compiler directory structure.

Figure 1. PCI MegaCore Function Directory Structure

Ej pci_compiler_v2.2.0

Contains all of the PCI compiler files.

doc
Contains PCI compiler MegaCore documentation, including the current PCI MegaCore Function User Guide, a well as other relevant
data sheets and application notes.

o D

lib

Contains encrypted lower-level design files and the PCI Compiler wizard files. After installing the PCI Compiler, you should
add a user library in the Quartus Il software that points to this directory. This library allows you to access

all of the necessary PCI MegaCore files.

{7 <rci core>

Contains the MegaCore function files. The PCI compiler includes the pci_mt64, pci_t64, pci_mt32, and pci_t32 functions. Each core
has its specific files in a directory named after the core. For example, the files for the pci_mt64 MegaCore function are found in the
pci_mt64 directory.

—D const_files

Contains constraint files with all necessary assignments to meet your PCI timing requirements. By using the PCI
Compiler wizard you can annotate the assignments in one of these files to your project. See Appendix B for more information.

_D doc

Contains readme files for individual PCI MegaCore functions.

—D examples

Contains a design file instantiating the PCI MegaCore function; the example design achieves PCI timing and can be
used with the functional simulation waveforms in the \sim directory.

L {sim
Contains simulation waveforms that show different PCI protocol transactions; these waveforms can be used to verify
the functionality of the Altera PCI MegaCore function.

10

Altera Corporation



PCI MegaCore Function User Guide Getting Started

Altera PCI
MegaCore
Function
Design Flow

Altera Corporation

Altera PCI MegaCore functions are flexible intellectual property (IP)
functions that can be integrated into any design flow supported by Altera
tools, including third-party EDA tools supported for synthesis and
simulation.

The following steps describe the design flow when using Altera PCI
MegaCore functions:

Obtain the PCI MegaCore Functions

Instantiate a PClI MegaCore Function in Your Design
Synthesize

Simulate

Analyze Timing

License MegaCore Function

Configure a Device

NoookowdE

Obtain the PCI MegaCore Functions

The pci _nt 64, pci _nt 32, pci _t 64, and pci _t 32 functions are
included in the PCI compiler, which can be downloaded from the Altera
web site at http://www.altera.com/IPmegastore. Refer to the PCI
Compiler Data Sheet for more information on the PCI compiler, including
a full list of contents, how to obtain the compiler, and installation
instructions.

Instantiate a PCI MegaCore Function in Your Design

You can use the PCI compiler wizard to choose the desired Altera PCI
MegaCore function, set the parameters, and generate an instance of the
function for your design. After you create the instance, you can add it as
a module to your overall design. The PCI module provides the interface
between the PCI bus and your local design.

Synthesize

After integrating the instance into your overall design, synthesize the full
design. The Altera PCI functions are provided as encrypted design files
that must be synthesized with the Quartus Il software. If you use a third-
party EDA tool for synthesis, instantiate the PCl MegaCore function as a
black box in your design. Then synthesize the design to generate a netlist.
The PCI MegaCore logic is synthesized when the netlist is compiled using
the Quartus Il software.

11

N

pauels fumaso


http://www.altera.com/IPmegastore

Getting Started

PCI MegaCore Function User Guide

12

Simulate

Altera provides behavioral models for functional simulation in third-
party EDA tools, as well as VHDL and Verilog HDL test benches. See AN
169: Simulating the PCI Behavioral Models and the PCI Testbench User
Guide for information on using the models and test benches.

After synthesis, you can perform pre- or post- place-and-route simulation
(functional and timing, respectively) using the Quartus Il software. The
MegaCore functions include functional waveform simulation files, which
you can use to simulate your design using the Quartus Il software.

Alternatively, after you have licensed a PCI MegaCore function, you can
use a VHDL Output File (.vho) or Verilog Output File (.vo)— generated
by the Altera Quartus Il software—to simulate your design in third-party
EDA tools. To perform functional simulation, generate a .vho or .vo with
a Standard Delay Format (SDF) Output File (.sdo) but do not compile the
.sdo in your simulation environment. To perform timing simulation,
compile the .sdo in your simulation environment. Refer to Quartus Il Help
for details on generating .vho and .vo netlist files.

=3

o
1

Altera has developed the Quartus Il Nativelink Guidelines for
use with the Quartus Il software, which describe how to create,
compile, and simulate your design with tools from leading EDA
vendors. These guidelines are available on the software
installation CD-ROMs and on the Altera web site at
http://www.altera.com.

Obtain PCI Constraint File and Analyze Timing

The Quartus Il software provides static timing analysis results, allowing
you to verify that your design timing requirements are achieved. Altera
provides constraint files, which add timing requirements, logic option
settings, and logic location assignments to your project to ensure that the
PCI MegaCore function achieves PCI timing requirements. Refer to
“Generating Project-Specific Constraint Files to Achieve PCI Timing
Requirements” on page 16 for detailed information on integrating PCI
constraint files into your project.

= Constraint files are specific to the core being used, (i.e., pci_mt32,
pci_mt64, etc.) as well as the device and package being used. In
many cases the Quartus Il revision must match. To obtain a PCI
constraint file, visit http://www .altera.com/pci_cf

Altera Corporation


http://www.altera.com
http://www.altera.com/pci_cf

PCI MegaCore Function User Guide Getting Started

Design Walk-
Through

Altera Corporation

License MegaCore Function

Once you have determined that an Altera PCI MegaCore function meets
your design needs, contact your local Altera sales office or distributor
sales representative to license the MegaCore function. Contact
information for all regional offices is available on the Altera web site at
http://www .altera.com.

Configure a Device

N

After you have compiled and analyzed your design and licensed the
desired Altera MegaCore function, you are ready to configure your
targeted Altera device. For more information on configuring Altera
devices, please refer to the Quartus Il software help system.

This section describes the design flow using the Altera PCI compiler
wizard to instantiate the pci _nt 64, pci _t 64, pci _nt 32, or pci _t 32
MegaCore function. The wizard streamlines the design entry process,
making designing with Altera PCI MegaCore functions easier and less
time-consuming. Because the PCI MegaCore functions are parameterized,
you can set the parameters to meet the needs of your specific application.

pauels fumaso

These instructions assume that:

= You are using a PC.
You are familiar with the Quartus |l software.

m  Quartus Il software version 2.1 Service Pack 1 (or higher) is installed
in the default location (c:\quartus).

= The Altera PCI MegaCore files are located in the default directory,
c:\megacore. If the files are installed in a different directory on your
system, substitute the appropriate path name.

®  You are using the OpenCore feature to test-drive the PCI MegaCore
function or you have licensed the function.

IF= You can use Altera’s OpenCore feature to compile and simulate
PCI MegaCore functions, allowing you to evaluate the functions
before deciding to license them.

Generating a Project-Specific Instance of the pci_mt64, pci_t64,
pci_mt32, or pci_t32 Function

Altera provides a MegaWizard Plug-In Manager, which you can use
within the Quartus Il software or as a stand-alone application. Using a
wizard allows you to create or modify design files that instantiate a
MegaCore function. You can then instantiate the design file generated by
the wizard in your project.

13


http://www.altera.com

Getting Started

PCI MegaCore Function User Guide

14

You can use the Altera OpenCore feature to compile and simulate the
MegaCore functions, allowing you to evaluate the functions before
deciding to license them. However, you must obtain a license from Altera
before you can generate programming files or EDIF, VHDL, or

Verilog HDL gate-level netlist files.

s Because the PCI compiler wizard relies on library files that only
exist in version 2.1 Service Pack 1 of the Quartus Il software or
higher, you should not use earlier versions of the software when
working with the wizard.

To create a project-specific instance of the pci _nt 64, pci _t 64,
pci _nt 32, or pci _t 32 function, follow these steps:

1. Create a new project in the Quartus Il software by choosing New
project (File menu); add c:\megacore\PCICompiler_2.2.0\lib as a
user library.

2. Start the MegaWizard Plug-In Manager by choosing MegaWizard
Plug-In Manager (Tools menu).

3.  The MegaWizard Plug-In Manager dialog box is displayed.

e Refer to Quartus Il Help for more information on how to use
the MegaWizard Plug-In Manager.

4. Specify that you want to create a new custom megafunction and
click Next.

5. Select PCI Compiler from the Bus Interfaces folder (see Figure 2).

Altera Corporation



PCI MegaCore Function User Guide Getting Started

Figure 2. Selecting the PCI Compiler Function

Megawizard Plug-In Manager [page 2a]
. e Wwhich megafunction would you like to customize? Select a
Available Megafunctions: megafunction from the list at left,
EI@ Installed Flug-ng

Which twpe of output file do you want to create?

o] & arithrnetic
ARM-Based Excalibur " AHDL

&8 Bus Interfaces ol
- &P  Verlog HDL
‘what name do you want for the output file? Browse. .. |
- storage Ic:\altr_app\pci_top.vhd

(-2 IP MegaStone

Mote: To compile a project successtully in the Quartuz I
software, your design files must be in the project directory or
a uzer library that yau specify in the U zer Libraries tab of
General Settings command [Project menu).

“f'our current uger library directaries are:

chmegacarehpei_compiler-v2. 2. 08B

pauels fumaso

Cancel I <Eack| Mest > I FEirrehy |

6. Select the type of output file that you want to create (i.e., AHDL,
VHDL, or Verilog HDL), and specify a filename. Click Next.

7. Select the PCI system technology, PCI or CompactPCl, the
application speed (turn the PCI 66 MHz Capable option on or off),
and the PCI MegaCore function desired, pci_mt64, pci_t64,
pci_mt32, or pci_t32 (see Figure 3). See “Parameters” on page 37 for
more information on the application speed parameter. See “General
Description” on page 1 to determine which function your design
should target.

Altera Corporation 15



Getting Started

PCI MegaCore Function User Guide

Figure 3. Selecting the PCI Technology & PCI MegaCore Function

Megawizard Plug-In Manager - PCl Compiler version 2.2.0 [Page 3 of 8]

~Technology Cl MegaZore
* Pl i+ E4-Bit MasterTarget (pei_mt64)
= CompactPCl i G4-Bit Target Only (poi_t64)

—Application Speed i 32-Bit MasterTarget (pci_mt32)

[v PCl B6-MHz Capable i~ 32-Bit Target Only (pei_t32)

To generate & project specific PCI constraint file now, click here ”

Cancel | - Prew Finizh |

16

The next several wizard screens allow you to set the MegaCore function
parameters to customize the PCI instance for your application. For a
detailed description of the PCI parameters and configuration registers
available in the PCI functions, see “Configuration Registers” on page 50
and “Parameters” on page 37.

Generating Project-Specific Constraint Files to Achieve PCI
Timing Requirements

After setting the PCI MegaCore function parameters, you have the option
to generate a project-specific constraint file that will ensure the PCI
MegaCore function achieves PCI timing requirements in your design. To
download a device-specific constraint file please visit

http://www .altera.com/pci_cf. If you choose not to generate a constraint
file at this time, click Next and skip to step 7 on page 18.

Altera provides software constraint files to ensure that the PCI MegaCore
function achieves PCI specification timing requirements in Altera devices.
The constraint files contain logic option settings, as well as device, PCI
pin, timing, and location assignments for PCI MegaCore function logic.

When you have chosen a specific Altera device and are ready to assign pin
locations, the constraint files should be incorporated into your design.
Quartus Il constraint files are provided as a Tool Command Language
(.tcl) file that can be used to generate a CSF and ESF in the Quartus 1l
software.

I s For more information on supported devices and using constraint

files in your design, See “Appendix B: Using PCI Constraint
Files” on page 155.

Altera Corporation



PCI MegaCore Function User Guide Getting Started

Refer to Figure 4 for steps 1 through 6.

Figure 4. Generating Project Specific Constraint Files

Megawizard Plug-In Manager - PCl Compiler ¥ersion 2.2.0 [Page 7 of 8]

Dowvwnload Constraint File: IP MegaStore ||

{33 MHz Operation  {* 66 MHz Operation

Input Conztraint File |\64_20_epQDk4DDefcﬁ?2_55_D1_Dﬁ.tcl Browse I
Cutput Constraint File I(Up_tcl Browwsze |

Project Mame ITDp

Hierarchical Mame of MegaCore Ipci_top:inst e.4.- pci_topinst

Generate Constraint Fies MNowe |

()
)
=
>
«Q
(%)
—t
<Y
=
[9)
o

Cancel | -7 Prew | et | Finizh |

1. Use the wizard web link to download a constraint file from the
Altera IP MegaStore site on the Internet. Save the constraint file to
your hard disk. You may also select one of the constraint files
provided in the PCI compiler (<PCI function>\const_files\ for
Quartus Il projects, where <PClI function> is pci_mt64, pci_mt32,
pci_t64, or pci_t32.

2. Select either the 33-MHz operation or the 66-MHz operation option.

3. Select an input constraint file by browsing to the local directory
where your input constraint file is saved. (Valid input files have the
extension .tcl.)

4. Browse to the directory where you would like to save your project
constraint file(s) and enter the name of the output file.

5. Enter the name of your project.

6. Enter the project hierarchy for the PCI MegaCore function instance.
For example, you may have created a PCI function instance named
pci_top through the PCI compiler wizard. You may have
instantiated pci_top:inst in your project top. Thus, the hierarchical
name of the MegaCore function is pci_top:inst. if you do not apply
the correct project hierarchy the project constraints will not be
applied correctly and you may not meet PCI timing requirements.

Altera Corporation 17



Getting Started PCI MegaCore Function User Guide

Choose Generate Constraint Files Now.

If you have a Tcl file as your input and output for the PCI
compiler wizard, you can save these files into any directory.
The Tcl file contains all necessary information to create a CSF
and ESF. To generate a project-specific CSF and ESF—after
generating a project-specific Tcl file with the wizard—run
the Tcl script through the Quartus Il Tcl console while the
PCI project is active. Refer to Quartus Il Help for more
information on using Tcl in the Quartus Il software.

The Tcl file assumes a fresh project, erasing all preexisting
project settings. You must reapply all your project specific
settings after running the PCI Tcl file.

7. Click Next to view the summary screen.

8. The summary screen lists the design files that the PCI compiler
wizard creates as well as the product ordering code for the
MegaCore function targeted in your design (see Figure 5). You will
need the product ordering code to license the MegaCore function.
Click Finish.

18 Altera Corporation



PCI MegaCore Function User Guide Getting Started

Figure 5. Summary Screen

Megawizard Plug-In Manager - PCl Compiler ¥erzion 2.2 0 [Fage 8 of 8] -- summary

Click Finish to creste the follovwing files in directory "hoci_mtGdbuildpci_misdiflexiexamplasisim_topi"

ci_top todf Yariation file

pci_top.inc AHDLMerilog component instantistion file
pci_top.cmp WHOL component instantistion file
poi_top.sym Wariation symiol file

poi_top_params todf AHDL parameterization moduls
pci_top_params.inc AHDL parameterization instantistion file

To progratm the device, you will need the follovwing license:
Product: PCI_MTE4  Ordering Code: PLSM-PCIMTES

Cancel | - Prew | THERES |

Altera Corporation

Compilation, Functional Simulation & Timing Analysis in the
Quartus Il Software

This section explains the steps required to compile your design, to ensure
PCI timing is achieved using static timing analysis, and to simulate your
design functionally in the Quartus Il software.

These steps assume that you use the pci_top.tdf file in the <PCI
function>\examples\quartus2 directory. This example file instantiates six

32-bit BARs and uses all other parameter settings used in the functional
simulation waveform files available with the PCI MegaCore functions.

Compilation

The following steps explain how to compile your design.

1. Create a project with the pci_top.tdf file in the Quartus Il software.
2. Choose the Compile Mode command (Processing menu).

3. Choose Start Compile (Processing menu) to compile your design.

The Quartus Il software may issue several warning messages
indicating that one or more registers are stuck at ground. These
warning messages are due to parameter settings and can be
ignored.

19

()
)
=
>
«Q
(%)
—t
<Y
=
[9)
o




Getting Started PCI MegaCore Function User Guide

Timing Analysis

The following steps explain how to verify the timing results for your
design.

1. Open the Compilation Report (Processing menu) and expand the
Timing Analysis section.

2. The Quartus Il software lets you perform the following five types of
timing analysis:

m  fyax—The fmax section reports the maximum clock frequency
and identifies the longest delay paths between registers.

m  tgy—The tsu section reports the setup times of the registers.
ty—The th section reports the hold times of the registers.

m  tco—The tco section reports the clock-to-output delays of the
registers.

m  tpp—The tpd section reports the combinatorial pin-to-pin
delays.

Functional Simulation

To perform functional simulation, perform the following steps:

1. Change to Simulate Mode (Processing menu) to functionally
simulate your design.

2. Inthe Quartus Il Simulator Settings dialog box, choose the Mode
tab and select Functional. Click Apply.

3. Choose the Time/Vectors tab and specify a Vector Waveform File
(.vwf) from the c:\megacore\PCICompiler_<version>\<PClI
function>\sim\quartus2\<target or master> directory as the source
of vector stimuli and click Apply.

4. Choose Run Simulation (Processing menu) to simulate your design
and view the simulation results. The different simulation files show
the behavior of the PCI and local-side signals for different types of
transactions.

s If you are simulating the MegaCore function using the PCI
behavioral models and the PCI testbench in third-party
simulation tools, refer to AN 169: Simulating the PCI
MegaCore Function Behavioral Models and the PCI
Testbench User Guide for more information.

20 Altera Corporation



A I:l—lzl D )/A MegaCore Overview

Compliance
Summary

Altera Corporation

The pci _nt 64, pci _nmt 32, pci _t 64, and pci _t 32 functions are
compliant with the requirements specified in the PCI SIG PCI Local Bus
Specification, Revision 2.2 and Compliance Checklist, Revision 2.2. The
function is shipped with sample Quartus Il Vector Waveform Files (.vwf),
PCI Testbench, and behavioral model which can be used to validate the
functions.

To ensure PCI compliance, Altera has performed extensive validation of
the PCI MegaCore functions. Validation includes both simulation and
hardware testing.

The following simulations are covered by the validation suite for the PCI
MegaCore functions;

m  PCI-SIG checklist simulations
= Applicable operating rules in PCI specification Appendix C,
including:
—  Basic protocol
—  Signal stability
— Master and target signals
— Data phases
—  Arbitration
— Latency
—  Device selection
- Parity
m  Local-side interface functionality
m  Corner cases of the PCI and local-side interface, such as random wait
state insertion

In addition to simulation, Altera performed extensive hardware testing on
the functions to ensure robustness and PCI compliance. The test platforms
included the Agilent E2928A PCI Bus Exerciser and Analyzer, an Altera
PCI development board with a device configured with the MegaCore
function and a reference design, and PCI bus agents such as the host
bridge, Ethernet network adapter, and video card. (The Altera PCI
MegaCore functions are tested on the following Altera devices:
EPF10K100EFC484-1, EPF10K200SFC672-1, EP20K400EFC672-1,
EP20K1000EFC672-1, EP20K1000CF672C7.) The hardware testing ensures
that the PCI MegaCore functions operate flawlessly under the most
stringent conditions.

21

M3IAIBAQ H




MegaCore Overview

PCI MegaCore Function User Guide

PCI Bus Signals

22

During hardware testing with the Agilent E2928A PCI Bus Exerciser and
Analyzer, various tests are performed to guarantee robustness and strict
compliance. These tests include:

= Memory read/write
m /0 read/write
m  Configuration read/write

The tests generate random transaction types and parameters at the PCI
and local sides. The Agilent E2928A PCI Bus Exerciser and Analyzer
simulates random behavior on the PCI bus by randomizing transactions
with variable parameters such as:

Bus commands
Burst length
Data types

Wait states
Terminations
Error conditions

The local side also emulates a variety of test conditions in which the PCI
MegaCore function experiences random wait states and terminations.
During the tests, the Agilent E2928A PCI Bus Exerciser and Analyzer also
acts as a PCI protocol and data integrity checker as well as a logic analyzer
to aid in debugging. This testing ensures that the functions operate under
the most stringent conditions in your system. For more information on the
Agilent E2928A PCI Bus Exerciser and Analyzer, see the Agilent web site
at http://www.agilent.com.

The following PCI signals are used by the pci _nt 64, pci _nt 32,
pci _t 64, and pci _t 32 functions:

Input—Standard input-only signal.

Output—Standard output-only signal.

Bidirectional—Tri-state input/output signal.

Sustained tri-state (STS)—Signal that is driven by one agent at a time
(e.g., device or host operating on the PCI bus). An agent that drives a
sustained tri-state pin low must actively drive it high for one clock
cycle before tri-stating it. Another agent cannot drive a sustained
tri-state signal any sooner than one clock cycle after it is released by
the previous agent.

m  Open-drain—Signal that is wire-ORed with other agents. The signaling
agent asserts the open-drain signal, and a weak pull-up resistor
deasserts the open-drain signal. The pull-up resistor may require two
or three PCI bus clock cycles to restore the open-drain signal to its
inactive state.

Altera Corporation



PCI MegaCore Function User Guide

MegaCore Overview

Table 1 summarizes the PCI bus signals that provide the interface
between the PCI MegaCore functions and the PCI bus.

Table 1. PCI Interface Signals (Part 1 of 3)

Name

Type

Polarity

Description

clk

Input

Clock. The cl k input provides the reference signal for all other PCI
interface signals, exceptr st n andi nt an.

rstn

Input

Low

Reset. The r st n input initializes the PCI interface circuitry and can
be asserted asynchronously to the PCI bus cl k edge. When active,
the PCI output signals are tri-stated and the open-drain signals,
such as serrn, float.

gntn

Input

Low

Grant. The gnt n input indicates to the PCI bus master device that it
has control of the PCI bus. Every master device has a pair of
arbitration signals (gnt n and r egn) that connect directly to the
arbiter.

regn

Output

Low

Request. The r egn output indicates to the arbiter that the PCI bus
master wants to gain control of the PCI bus to perform a transaction.

ad[ 63. . 0]

Tri-State

Address/data bus. The ad[ 63. . 0] bus is a time-multiplexed
address/data bus; each bus transaction consists of an address
phase followed by one or more data phases. The data phases occur
whenirdyn andt rdyn are both asserted. In the case of a 32-bit
data phase, only the ad[ 31. . 0] bus holds valid data. For

pci _nt 32 and pci _t 32, only ad[ 31. . 0] is implemented.

cben[7..0]

Tri-State

Command/byte enable. Thecben[ 7. . 0] bus is a time-multiplexed
command/byte enable bus. During the address phase, this bus
indicates the command; during the data phase, this bus indicates
byte enables. For pci _nt 32 and pci _t 32, only cben[ 3. .0] is
implemented.

par

Tri-State

Parity. The par signal is even parity across the 32 least significant
address/data bits and four least significant command/byte enable
bits. In other words, the number of 1s on ad[ 31. . 0],

cben[ 3.. 0], and par equal an even number. The parity of a data
phase is presented on the bus on the clock following the data phase.

par 64

Tri-State

Parity 64. The par 64 signal is even parity across the 32 most
significant address/data bits and the four most significant
command/byte enable bits. In other words, the number of 1s on
ad[ 63. . 32],cben[ 7. . 4] ,and par 64 equal an even number. The
parity of a data phase is presented on the bus on the clock following
the data phase. This signal is not implemented in the pci _nt 32 and
pci _t 32 functions.

i dsel

Input

High

Initialization device select. The i dsel inputis a chip select for
configuration transactions.

Altera Corporation

23

M3IAIBAQ H




MegaCore Overview

PCI MegaCore Function User Guide

Table 1. PCI Interface Signals (Part 2 of 3)

Name

Type

Polarity

Description

framen (1)

STS

Low

Frame. The f r anen signal is an output from the current bus master
that indicates the beginning and duration of a bus operation. When
f ramen is initially asserted, the address and command signals are
present on the ad[ 63. . 0] and cben[ 7. . 0] buses (ad[ 31.. 0]
and cben[ 3. . 0] only for 32-bit functions). The f r anen signal
remains asserted during the data operation and is deasserted to
identify the end of a transaction.

req64n (1)

STS

Low

Request 64-bit transfer. The r eq64n signal is an output from the
current bus master and indicates that the master is requesting a 64-
bit transaction. r eq64n has the same timing as f r amen. This signal
is not implemented in pci _nt 32 and pci _t 32.

i rdyn (1)

STS

Low

Initiator ready. The i r dyn signal is an output from a bus master to
its target and indicates that the bus master can complete the current
data transaction. In a write transaction, i r dyn indicates that the
address bus has valid data. In a read transaction, i r dyn indicates
that the master is ready to accept data.

devsel n (1)

STS

Low

Device select. Target asserts devsel n to indicate that the target
has decoded its own address and accepts the transaction.

ack64n (1)

STS

Low

Acknowledge 64-bit transfer. The target asserts ack64n to indicate
that the target can transfer data using 64 bits. The ack64n has the
same timing as devsel n. This signal is not implemented in

pci _nmt 32 and pci _t 32.

trdyn (1)

STS

Low

Targetready. Thet r dyn signal is a target output, indicating that the
target can complete the current data transaction. In a read
operation, t r dyn indicates that the target is providing valid data on
the address bus. In awrite operation, t r dyn indicates that the target
is ready to accept data.

st opn (1)

STS

Low

Stop. The st opn signal is a target device request that indicates to
the bus master to terminate the current transaction. The st opn
signal is used in conjunction with t r dyn and devsel n to indicate
the type of termination initiated by the target.

24

Altera Corporation




PCI MegaCore Function User Guide

MegaCore Overview

Table 1. PCI Interface Signals (Part 3 of 3)

Name

Type

Polarity

Description

perrn

STS

Low

Parity error. The per r n signal indicates a data parity error. The
perrn signal is asserted one clock following the par and par 64
signals or two clocks following a data phase with a parity error. The
PCI functions assert the per r n signal if a parity error is detected on
the par or par 64 signals and the per r n bit (bit 6) in the command
register is set. The par 64 signal is only evaluated during 64-bit
transactions in pci _nt 64 and pci _t 64 functions. In pci _nt 32
and pci _t 32, only par is evaluated.

serrn

Open-Drain

Low

System error. The ser r n signal indicates system error and address
parity error. The PCI functions assert ser r n if a parity error is
detected during an address phase and the ser r n enable bit (bit 8)
in the command register is set.

i ntan

Open-Drain

Low

Interrupt A. The i nt an signal is an active-low interrupt to the host
and must be used for any single-function device requiring an
interrupt capability. The PCI MegaCore functions asserti nt an only

when the local side asserts the | i r gn signal.

Note:

(1) Inthe MegaCore function symbols, the signals are separated into two components: input and output. For example,
f ramen hastheinputf ramen_i n and the outputf r anmen_out . This separation of signals allows the use of devices
that do not meet set-up times to implement a PCl interface. Driving the input part of one or more of these signals to
a dedicated input pin and the output part to a regular 170 pin, allows devices that cannot otherwise meet set-up
times to meet them.

Altera Corporation

25

M3IAIBAQ H




MegaCore Overview PCI MegaCore Function User Guide

Parameterized Configuration Register Signals

Table 2 summarizes the PCI local interface signals for the parameterized
configuration register signals.

Table 2. Parameterized Configuration Register Signals

Name Type Polarity Description

cache[ 7..0] Output - Cache registers output. The cache[ 7. . 0] busis the same as
the configuration space cache register. The local-side logic
uses this signal to provide support for cache commands.
cnd_reg[5..0] Output - Command register output. The cnd_r eg[ 5. . 0] bus drives
the important signals of the configuration space command
register to the local side. See Table 3.

stat_reg[5..0] Output - Status register output. The st at _reg[ 5. . 0] bus drives the
important signals of the configuration space status register to
the local side. See Table 4.

Table 3 shows definitions for the command register output bus bits.

Table 3. PCI Command Register Output Bus (cmd_reg[5..0]) Bit Definition

Bit Number Bit Name Description

0 i 0_ena I/O accesses enable. Bit 0 of the command register.

1 mem enma Memory access enable. Bit 1 of the command register

2 nstr_ena Master enable. Bit 2 of the command register. This signal is

reserved for pci _t 64 and pci _t 32.

3 mM _ena Memory write and invalidate enable. Bit 4 of the command register.
perr_ena Parity error response enable. Command register bit 6.

5 serr_ena System error response enable. Command register bit 8.

Table 4 shows definitions for the PCI status register bits.

Table 4. PCI Status Register Output Bus (stat_reg[5..0]) Bit Definition
Bit Number Bit Name Description

0 perr_rep Parity error reported. Status register bit 8.

1 tabort_sig Target abort signaled. Status register bit 11.
2 tabort_rcvd Target abort received. Status register bit 12.
3 mabort_rcvd Master abort received. Status register bit 13.
4 serr_sig Signaled system error. Status register bit 14.
5 perr_det Parity error detected. Status register bit 15.

26 Altera Corporation



PCI MegaCore Function User Guide

MegaCore Overview

Local Address, Data, Command and Byte Enable Signals

Table 5 summarizes the PCI local interface signals for the address, data,
command, and byte enable signals.

Table 5. PCI Local Address, Data, Command and Byte Enable Signals (Part 1 of 4)

Name Type Polarity Description
| _adi[63..0] Input - Local address/data input. This bus is a local-side time
multiplexed address/data bus. This bus changes operation
depending on the function you are using and the type of
transaction considered.

m  During master transactions, the local side must provide
the address on | _adi [ 63. . 0] when Im_adr_ackn is
asserted. For 32-bit addressing, only the | _adi [ 31. . 0]
signals are valid during the address phase.

m  Thel _adi [ 63.. 0] busisdriven active by the local-side
device during PCI bus-initiated target read transactions or
local-side initiated master write transactions. For
pci _mt 32 and pci _t 32, only | _adi [ 31.. 0] is used.

m  Forthe pci _nt 64 and pci _t 64 functions, the entire
| _adi [ 63..0] bus is used to transfer data from the
local side during 64-bit and 32-bit target read and 64-bit
master write transactions.

| _cbeni[7..0] Input - Local command/byte enable input. This bus is a local-side time

multiplexed command/byte enable bus. During master
transactions, the local side must provide the command on

| _cbeni[3..0] whenl m adr_ackn is asserted. For 64-bit
addressing, the local side must provide the dual address cycle
(DAC) command (B"1101")on | _cbeni [ 3.. 0] and the
transaction command on | _cbeni [ 7. . 4] when

I m_adr _ackn is asserted. The local side must provide the
command with the same encoding as specified in the PCI
Local Bus Specification, Revision 2.2.

The local-master device drives byte enables on the

| _cbeni [7..0] busduring master transactions. The local
master device must provide the byte-enable value on

| _cbeni [7..0] during the next clock after | m_adr _ackn is
asserted. The PCI MegaCore functions drive the byte-enable
value from the local side to the PCI side and maintain the same
byte-enable value for the entire transaction. In pci _nt 32, only
| _cbeni[3..0] isimplemented. Additionally, in pci _nt 64,
onlyl _cbeni [ 3. . 0]is used when a 32-bit master transaction
is initiated.

Altera Corporation

27

M3IAIBAQ H




MegaCore Overview

PCI MegaCore Function User Guide

Table 5. PCI Local Address, Data, Command and Byte Enable Signals (Part 2 of 4)

Name Type Polarity Description
| _disc_64_extn Input Low Local disable 64-bit PCI extension signals. If left unconnected,

the default value is high. When driven high, the ad[ 63. . 0]

andcben[ 7. . 0] signals operate normally and the pci _nt 64

and pci _t 64 functions will initiate and respond to 32- and 64-

bit PCI transactions. When driven low, the ad[ 63. . 32] and

cben[ 7. . 4] signals are disabled—by being driven at all
times—and the pci _nt 64 and pci _t 64 functions will only
initiate and respond to 32-bit PCI transactions.

I’ Thissignalis provided for 64-bit PCI cards that may be
inserted into a 32-bit PCI slot. The PCI card should be
designed to detect whether it's in a 32- or 64-bit PCI
slot and drive the | _di sc_64_ext n signal
accordingly. To avoid damaging the Altera device, do
not allow ad[ 63. . 0] and cben[ 7. . 4] to float.

I~ This signal is not implemented in the pci _nt 32 and
pci _t 32 functions.

| _adro[ 63..0] Output - Local address output. The | _adr o[ 63. . 0] bus is driven by
the PCI MegaCore functions during target transactions. The
pci _nt 32 and pci _t 32 functions only implement

| _adro[ 31.. 0] . During dual address transactions in the

pci _mt 64 and pci _t 64 functions, the | _adr o[ 63. . 32]

bus is driven with a valid address. DAC is indicated by

sampling the | t _tsr[11] status signal set. For more

information on the local target status signals, refer to Table 7.

I'=" The falling edge of It_framen indicates a valid
| _adro[ 63.. 0] .The PCl address is held at the local
side as long as possible and should be assumed
invalid at the end of the target transaction on the PCI
bus. The end of the target transaction is indicated by
It _tsr[8] (targ-access) being deasserted.

28 Altera Corporation




PCI MegaCore Function User Guide

MegaCore Overview

Table 5. PCI Local Address, Data, Command and Byte Enable Signals (Part 3 of 4)

Name

Type

Polarity

Description

| _dato[ 63..0]

Output

Local data output. The | _dat o[ 63. . 0] bus is driven active
during PCI bus-initiated target write transactions or local side-
initiated master read transactions. The functionality of this bus
changes depending on the function you are using and the
transaction being considered. The pci _nt 32 and pci _t 32
functions implement only | _dat o[ 31. . 0] . The operation in
pci _nt 64 and pci _t 64 is dependent on the type of
transaction being considered. During 64-bit target write
transactions and master read transactions, the data is
transferred on the entire | _dat o[ 63. . 0] bus. During 32-bit
master read transactions, the data is only transferred on

| _dat o[ 31.. 0] . During 32-bit target write transactions, the
data is also only transferred on | _dat o[ 31. . 0] ; however,
depending on the transaction address, the pci _nt 64 or

pci _t 64 function will either assert | _| dat _ackn or

| _hdat _ackn to indicate whether the address for the current
byte enables is a QWORD boundary (ad[ 2. . 0] =B"000")
or not.

| _beno[7..0]

Output

Local byte enable output. The | _beno[ 7. . 0] bus is driven by
the PCI function during target transactions. This bus holds the
byte enable value during data transfers. The functionality of
this bus is different depending on the function being used and
the transaction being considered. The pci _nt 32 and

pci _t 32 functions implement only | _beno[ 3.. 0] . The
operationinpci _nt 64 and pci _t 64 is dependent on the type
of transaction being considered. During 64-bit target write
transactions, the byte enables are transferred on the entire

| _beno[ 7.. 0] bus. During 32-bit target write transactions,
the byte enables are transferred on the | _beno[ 3. . 0] bus
and, depending on the transaction address, the pci _nt 64 or
pci _t 64 function will either assert | _| dat _ackn or

| _hdat _ackn to indicate whether the address for the current
byte enables is at a QWORD boundary (ad[ 2. . 0] =B"000")
or not.

| _cndo[ 3..0]

Output

Local command output. The | _cndo[ 3. . 0] bus is driven by
the PCI MegaCore functions during target transactions. It has
the bus command and the same timing as the

| _adro[ 31.. 0] bus. Thecommand is encoded as presented
on the PCI bus.

Altera Corporation

29

M3IAIBAQ H




MegaCore Overview PCI MegaCore Function User Guide

Table 5. PCI Local Address, Data, Command and Byte Enable Signals (Part 4 of 4)

Name Type Polarity Description
| _I dat _ackn Output Low Local low data acknowledge. The | _| dat _ackn output is
used during target write and master read transactions. When
asserted, | _| dat _ackn indicates that the least significant

DWORD is being transferred on the | _dat o[ 31. . 0] bus. In
other words, when | _I dat _ackn is asserted, the address of
the transaction is on a QWORD boundary (ad[ 2. . 0] =
B"000"). The signals | m_ackn or | t _ackn must be used to
qualify valid data. This signal is not implemented in the

pci _nt 32 and pci _t 32 functions.

| _hdat _ackn Output Low Local high data acknowledge. The | _hdat _ackn output is
used during target write and master read transactions. When
asserted, | _hdat _ackn indicates that the most significant
DWORD is being transferred on the | _dat o[ 31. . 0] bus. In
other words, when | _hdat _ackn is asserted, the address of
the transaction is not a QWORD boundary (ad[ 2. . 0] =
B"100"). The signals | m_ackn or | t _ackn must be used to
qualify valid data. This signal is not implemented in the

pci _nt 32 and pci _t 32 functions.

Target Local-Side Signals

Table 6 summarizes the target interface signals that provide the interface
between the MegaCore function to the local-side peripheral device(s)
during target transactions.

s When a local side transaction is not in progress, local side inputs
should be driven to the deasserted state.

Table 6. Target Signals Connecting to the Local Side (Part 1 of 3)

Name Type Polarity Description

| t_abortn Input Low Local target abort request. The local side should assert this
signal requesting the PCI MegaCore function to issue a target
abort to the PCI master. The local side should request an abort
when it has encountered a fatal error and cannot complete the
current transaction.

30 Altera Corporation



PCI MegaCore Function User Guide

MegaCore Overview

Table 6. Target Signals Connecting to the Local Side (Part 2 of 3)

Name

Type

Polarity

Description

I't_discn

Input

Low

Local target disconnect request. The | t _di scn inputrequests
the PCI MegaCore function to issue a retry or a disconnect. The
PCI MegaCore function issue a retry or disconnect depending
on when the signal is asserted during a transaction.

The PCI bus specification requires that a PCI target
issues a disconnect whenever the transaction exceeds
its memory space. When using PCI MegaCore
functions, the local side is responsible for asserting

I t _di scn if the transaction crosses its memory
space.

I't_rdyn

Input

Low

Local target ready. The local side asserts | t _r dyn to indicate
a valid data input during target read, or ready to accept data
input during a target write. During a target read, | t _r dyn
deassertion suspends the current transfer (i.e., a wait state is
inserted by the local side). During a target write, an inactive

I't _rdyn signal directs the PCI MegaCore function to insert
wait states on the PCI bus. The only time the function inserts
wait states during a burstis when | t _r dyn inserts wait states
on the local side.

= 1 t _rdyn is sampled one clock before actual data is
transferred on the local side.

I't_framen

Output

Low

Local target frame request. The | t _f r amen output is asserted
while the PCI MegaCore function is requesting access to the
local side. It is asserted one clock before the function asserts
devsel n, and it is released after the last data phase of the
transaction is transferred to/from the local side.

I't_ackn

Output

Low

Local target acknowledge. The PCI function asserts | t _ackn
to indicate valid data output during a target write, or ready to
accept data during a target read. During a target read, an
inactive | t _ackn indicates that the function is not ready to
accept data and local logic should hold off the bursting
operation. During a target write, | t _ackn de-assertion
suspends the current transfer (i.e., a wait state is inserted by
the PCI master). The | t _ackn signal is only inactive during a
burst when the PCI bus master inserts wait states.

I't_dxfrn

Output

Low

Local target data transfer. The PCI MegaCore function asserts
the | t _dxf r n signal when a data transfer on the local side is
successful during a target transaction.

It _tsr[11..0]

Output

Local target transaction status register. The I t _tsr[11.. 0]
bus carries several signals which can be monitored for the
transaction status. See Table 7.

Altera Corporation

31

M3IAIBAQ H




MegaCore Overview

PCI MegaCore Function User Guide

Table 6. Target Signals Connecting to the Local Side (Part 3 of 3)

Name

Type

Polarity Description

lirgn

Input

Local interrupt request. The local-side peripheral device
asserts | i rqn to signal a PCI bus interrupt. Asserting this
signal forces the PCI MegaCore function to assert the i nt an
signal for as long as the | i r gn signal is asserted.

Table 7 shows definitions for the local target transaction status register

outputs.

Table 7. Local Target Transaction Status Register (It_tsr[11..0]) Bit Definition

Bit Number

Bit Name

Description

5..0

bar_hit[5.. 0]

Base address register hit. Asserting bar _hi t [ 5. . 0] indicates that
the PCl address matches that of a base address register and that
the PCI MegaCore function has claimed the transaction. Each bit in
the bar _hi t[5.. 0] bus is used for the corresponding base
address register (e.g., bar _hi t[ 0] is used for BARQO). The

bar _hit[5..0] bus has the same timing asthe |t _franen
signal. When a 64-bit base address register is used, both

bar _hi t [ 0] and bar _hi t [ 1] are asserted to indicate that

pci _nt 64 and pci _t 64 have claimed the transaction.

exp_rom hit

Expansion ROM register hit. The PCI MegaCore function asserts
this signal when the transaction address matches the address in the
expansion ROM BAR.

trans64bi t

64-bit target transaction. The pci _nt 64 and pci _t 64 assert this
signal when the current transaction is 64 bits. If a transaction is
active and this signal is low, the current transaction is 32 bits. This
bit is reserved for pci _nt 32 and pci _t 32.

targ_access

Target access. The PCI MegaCore functions assert this signal when
PCI target access is in progress.

burst_trans

Burst transaction. When asserted, this signal indicates that the
current target transaction is a burst. This signal is asserted if the PCI
MegaCore functions detect both f r amen and i r dyn signals
asserted at the same time during the first data phase.

10

pci _xfr

PCI transfer. This signal is asserted to indicate that there was a
successful data transfer on the PCI side during the previous clock
cycle.

11

dac_cyc

Dual address cycle. When asserted, this signal indicates that the
current transaction is using a dual address cycle.

32

Altera Corporation




PCI MegaCore Function User Guide MegaCore Overview

Master Local-Side Signals

Table 8 summarizes the pci _nt 64 and pci _nt 32 master interface
signals that provide the interface between the PCI MegaCore function and
the local-side peripheral device(s) during master transactions.

IF= When a local side transaction is not in progress, local side inputs
should be driven to the deasserted state.

Table 8. PCI Master Signals Interfacing to the Local Side (Part 1 of 2)

Name Type Polarity Description

I mreqg32n Input Low Local master request 32-bit data transaction. The local side asserts
this signal to request ownership of the PCI bus for a

32-bit master transaction. To request a master transaction, it is
sufficient for the local-side device to assert| m_r eq32n for one clock
cycle. When requesting a 32-bit transaction, only | _adi [ 31. . 0]
for a master write transaction or | _dat o[ 31. . 0] for a master read
transaction is valid.

= The local side cannot request the bus until the current
master transaction has completed. After being granted
mastership of the PCI bus, the | m_r eq32n signal should
be asserted only after | m t sr[ 3] is deasserted.
| mreg64n Input Low Local master request 64-bit data transaction. The local side asserts
this signal to request ownership of the PCI bus for a
64-bit master transaction. To request a master transaction, it is
sufficient for the local side device to assert | m r eq64n for one
clock. When requesting a 64-bit data transaction, pci _mnt 64
requests a 64-bit PCI transaction. When the target does not assert
its ack64n signal, the transaction will be
32 bits. In a 64-bit master write transaction where the target does not
assert its ack64n signal, pci _nt 64 automatically accepts 64-bit
data on the local side and multiplexes the data appropriately to 32
bits on the PCI side. When the local side requests 64-bit PCI
transactions, it must ensure that the address is at a QWORD
boundary. This signal is not implemented in pci _nt 32.

M3IAIBAQ H

I The local side cannot request the bus until the current
master transaction has completed. After being granted
mastership of the PCI bus, the | m_r eq64n signal should
be asserted only after | m t sr[ 3] is deasserted.

Altera Corporation 33



MegaCore Overview

PCI MegaCore Function User Guide

Table 8. PCI Master Signals Interfacing to the Local Side (Part 2 of 2)

Name

Type

Polarity

Description

I mlastn

Input

Low

Local master last. This signal is driven by the local side to request
that the pci _nt 64 or pci _nt 32 master interface ends the current
transaction. When the local side asserts this signal, the MegaCore
master interface deasserts f r anmen as soon as possible and asserts
i rdyn to indicate that the last data phase has begun. The local side
can assert this signal for one clock at any time during the master
transaction.

I mrdyn

Input

Low

Local master ready. The local side asserts the | m r dyn signal to
indicate a valid data input during a master write, or ready to accept
data during a master read. During a master write, the | m_r dyn
signal de-assertion suspends the current transfer (i.e., wait state is
inserted by the local side). During a master read, an inactive

I m_rdyn signaldirects pci _nt 64 orpci _nt 32 to insert wait states
on the PCI bus. The only time pci _mt 64 or pci _nt 32 inserts wait
states during a burst is when the | m_r dyn signal inserts wait states
on the local side.

=" Thel m_r dyn signal is sampled one clock before actual
data is transferred on the local side.

| m adr _ackn

Output

Low

Local master address acknowledge. pci _nt 64 or pci _nt 32
asserts the | m_adr _ackn signal to the local side to acknowledge
the requested master transaction. During the same clock cycle when
I m adr _ackn is asserted low, the local side must provide the
transaction address onthe | _adi [ 31. . 0] bus and the transaction
command onthel _cndi [ 3. . 0] bus. The local side cannot delay
pci _nt 64 or pci _mnt 32 by registering the address on the

| _adi [31..0] bus.

I m ackn

Output

Low

Local master acknowledge. pci _nt 64 or pci _nt 32 asserts the

I m_ackn signal to indicate valid data output during a master read,
or ready to accept data during a master write. During a master write,
an inactive | m_ackn signal indicates that pci _nt 64 or pci _nt 32
is not ready to accept data, and local logic should hold off the
bursting operation. During a master read, the | m_ackn signal de-
assertion suspends the current transfer (i.e., a wait state is inserted
by the PCI target). The only time the | m_ackn signal goes inactive
during a burst is when the PCI bus target inserts wait states.

I mdxfrn

Output

Low

Local master data transfer. pci _nt 64 or pci _nt 32 asserts this
signal when a data transfer on the local side is successful during a
master transaction.

Imtsr[9..0]

Output

Local master transaction status register bus. These signals inform
the local interface of the transaction’s progress. See Table 9 for a
detailed description of the bits in this bus.

34

Altera Corporation




PCI MegaCore Function User Guide

MegaCore Overview

Table 9 shows definitions for the local master transaction status register
outputs.

Note (1)

Table 9. pci_mt64 & pci_mt32 Local Master Transaction Status Register (Im_tsr[9..0]) Bit Definition

Bit Number

Bit Name

Description

0

request

Request. This signal indicates that the pci _nt 64 or pci _nt 32 function
is requesting mastership of the PCl bus (i.e., itis asserting its r eqn signal).
Ther equest bitis not asserted if the following is true: The PCI bus arbiter
has parked on the pci _nt 64 or pci _nt 32 function and the gnt n signal
is already asserted when the function requests mastership of the bus.

1(1)

gr ant

Grant. This signal is active after the pci _nt 64 or pci _nt 32 function has
detected that gnt n is asserted.

2(1)

adr _phase

Address phase. This signal is active during a PCI address phase where
pci _nt 64 or pci _nt 32 is the bus master.

dat _xfr

Data transfer. This signal is active while the pci _nt 64 or pci _nt 32
function is in data transfer mode. The signal is active after the address
phase and remains active until the turn-around state begins.

| at _exp

Latency timer expired. This signal indicates that pci _nt 64 or pci _nt 32
terminated the master transaction because the latency timer counter
expired.

retry

Retry detected. This signal indicates that the pci _nt 64 or pci _nt 32
function terminated the master transaction because the target issued a
retry. Per the PCI specification, a transaction that ended in a retry must be
retried at a later time.

di sc_wod

Disconnect without data detected. This signal indicates that the pci _nt 64
or pci _nt 32 signal terminated the master transaction because the target
issued a disconnect without data.

di sc_wd

Disconnect with data detected. This signal indicates that pci _nt 64 or
pci _nt 32 terminated the master transaction because the target issued a
disconnect with data.

dat _phase

Data phase. This signal indicates that a successful data transfer has
occurred on the PCI side in the prior clock cycle. This signal can be used
by the local side to keep track of how much data was actually transferred
on the PCI side.

trans64

64-bit transaction. This signal indicates that the target claiming the
transaction has asserted its ack64n signal. Because pci _nt 32 does not

request 64-bit transactions, this signal is reserved.

Altera Corporation

35

M3IAIBAQ H




MegaCore Overview PCI MegaCore Function User Guide

Note:

(1) Some arbiters may initially assert gnt n (in response to either the pci _nt 64 or pci _nt 32 function requesting
mastership of the PCI bus), but then deassert gnt n (before the pci _nt 64 or pci _nt 32 have asserted f r anen) to
give mastership of the bus to a higher priority device. In systems where this situation may occur, the local side logic
should hold the address and command onthe | _adi [ 63.. 0] and | _cbeni[7.. 0] buses until the adr _phase
bitisasserted (I m_t sr[ 2] ) toensure thatthe pci _nt 64 or pci _nt 32 function has assumed mastership of the bus
and that the current address and command bits have been transferred.

36 Altera Corporation



PCI MegaCore Function User Guide MegaCore Overview

MegaWizard

Plug-In

Parameters

Altera Corporation

The PCI MegaWizard® Plug-In streamlines the design entry process,
making it easier and less time consuming to design with Altera MegaCore
functions. You can either launch the PCI compiler MegaWizard Plug-In
from within the Quartus Il software, or from the command line. The PCI
compiler wizard generates an Altera hardware description language
(AHDL), VHDL, or Verilog hardware description language (HDL)
instance of the Altera PCI MegaCore function that can be instantiated in
your design, and the generated files set all nonreserved parameters in the
Altera PCI MegaCore function. The PCI MegaCore parameters are
described in Table 9 on page 35.

When the wizard compilation is complete, the following files are
generated:

m  Text Design File (.tdf), VHDL Design File (.vhd), and Verilog Design
File (.v)—Used to instantiate an instance of the pci _mt 64, pci _t 64,
pci _nt 32, or pci _t 32 MegaCore function.

m  Symbol File (.sym)—Used to instantiate the PCI interface into a
schematic design.

m  Constraint file (optional), (.tcl file which can be used to generate .csf
and .esf for Quartus Il software)—Used to ensure that the PCI
MegaCore function achieves PCI timing requirements.

This section describes the pci _nt 64, pci _nt 32, pci _t 64, and
pci _t 32 MegaCore functions’ features and options available via
parameters, which are easily defined using the PCI compiler wizard.

M3IAIBAQ H

Parameters allow you to customize the PCI MegaCore functions, thus,
you can meet specific application requirements. For example, the
parameters define read-only and read or write PCI configuration space, as
well as setup optional features specific to the Altera PCI MegaCore
functions. When generating a MegaCore instance via the PCI compiler
wizard, parameters can be customized from default settings to
application-specific settings.

If the wizard is not being utilized, parameters can be set directly in the
HDL or graphic design files. For a list of parameter names and
descriptions, see “Appendix D: PCI MegaCore Function Parameters” on
page 167.

Application Speed Capability

Thepci _nt 64,pci _nt 32,pci _t 64,and pci _t 32 MegaCore functions
are capable of operating at PCI clock speeds of up to 66 MHz. Depending
on the PCI device speed, the PCI 66 MHz Capable option can be enabled
or disabled through screen 3 of the PCI compiler wizard. See Figure 1.

37



MegaCore Overview

PCI MegaCore Function User Guide

Figure 1. Choosing the PCI Application Speed

Megawizard Plug-In Manager - PCl Compiler verzion 2.2.0 [Page 3 of 8]

Technology
i+ PCl

i CompactPCl

Gl MegaCore
{* B4-Bit MasterTarget (poi_mtS4)

= B4-Bit Target Only (poi_te4)

—application Speed

|w Pl BE-tHz Capakle (" 32-Bit Target Only (pei_t32)

" 32-Bit MasterTarget (poi_mt32)

To generate a project specific PCl constraint file now, click here ”

Cancel | =" Prev Finish |

When selected, the PCI 66 MHz Capable option enables 66-MHz
operation by setting bit 5 of the PCI configuration space status register.
For more information on the function of this register, see “Configuration

Registers” on page 50.

Read-Only PCI Configuration Registers

Read-only PCI configuration space registers are defined through the
parameters on screen 4 of the PCI compiler wizard. See Figure 2.

Figure 2. Defining Read-Only PCI Configuration Registers

38

Megawizard Plug-In Manager - PCI Compiler Yersion 2.2.0 [Page 4 of 8]

Read-Only PCl Configurstion Registers

Device D ID){DDD4 Wendor D ID)('] 172

Subsystem ID ID){DDDD Subsys Vendar ID ID){DDDD
hdinimum Grart ID){DD higximum Latency IDXDD

Revision ID ID)(D1

lazs Code

Base-Clazs ID}{FF Sub-Class ID}{DD Prog. Interface ID){DD

Cancel | - Prew

Finizh |

Altera Corporation



PCI MegaCore Function User Guide MegaCore Overview

The following read-only PCI configuration space registers are set as
parameters through screen 4:

Device ID

Vendor ID

Revision ID
Subsystem ID
Subsystem Vendor ID
Minimum Grant
Maximum Latency
Class Code

The parameters are in hexadecimal format. For information on the
functionality of the read-only registers, see “Configuration Registers” on
page 50.

PCI Base Address Registers (BARs)

Thepci _nt 64,pci _nt 32,pci _t 64,and pci _t 32 MegaCore functions
can implement up to six 32-bit BARs, as well as the expansion ROM BAR.
The pci _nt 64 and pci _t 64 functions can also implement one 64-bit
BAR using either BAR 1 and BARO, or BAR2 and BARL1 registers.

At least one BAR must be utilized. More than one BAR can be utilized;
however, BARs must be used sequentially. By default, BARO is enabled
and reserves 1 MByte of memory space.

M3IAIBAQ H

In addition to allowing normal BAR operation where the system writes
the base address value during system initialization, Altera PCI MegaCore
functions allow the base address of any BAR to be hardwired using the
Hardwire BAR option. When hardwiring a BAR, the BAR address is
implemented as a read-only value supplied to the MegaCore function
through the parameter value. System software cannot overwrite a base
address that is hardwired; all other BAR attributes are set normally.

The PCI BAR attributes can be defined through parameters on screen 5 of
the PCI compiler wizard. See Figure 3.

Altera Corporation 39



MegaCore Overview

PCI MegaCore Function User Guide

Figure 3. Defining BAR Attributes

Megawizard Plug-In Manager - PClI Compiler Yerzion 2.2.0 [Page 5 of 8]

Baze Address Registers (BARS)

Bl

Bal
Bl
Bl
Bal

Expansion

1| 3264 Bit BARS
BARD =1 MBvytes (Memory) ||—
BARD = 1MBytes (OxFFFO000D0)
D % Memory ) Prefetehable Memory
1
Rezerved Memory Space ||||||||||H|||||||||||
1KB 1MB 268
Harehwire Yalue |0x00000000 B

or | riish |

The pci _nt 64 and pci _t 64 MegaCore functions allow the
implementation of 64-bit BARs. When implementing a 64-bit BAR, most
systems do not require that all of the upper bits be decoded. The Altera
MegaCore functions allow the number of read/write bits on the upper
BAR to be defined for specific application needs. For example, if the
maximum size of memory in your system is 512 GBytes, you only need 8
bits of the most significant BAR to be decoded. The maximum number of
read/write bits is from 8 to 32. When the maximum number of read/write
bits is set to 32, all bits of the most significant BAR will be decoded.
Figure 4 shows some of the steps in setting the attributes of a 64-Bit BAR.

40

Altera Corporation



PCI MegaCore Function User Guide MegaCore Overview

Figure 4. Setting the Number of Address Bits to Decode on the Upper BAR for a 64-Bit BAR

Megawizard Plug-In Manager - PCl Compiler ¥ersion 2.2.0 [Page 5 of 8]

Baze Address Registers (BAR=S)

G4 Bit BAR: BAR 1 /0 = 4 GBytes (Memory) £+ Implement 64-Bit BAR

1 "32.64 Bit BARS

H on BAR1 O
=Hl 64-Bit BAR [BAR1/0)
B BAR1 and BARD = 4GBytes (0xFFFFFFFFO0000004)
B i+ Memary " Prefetchable Memaory

B¢

Rezerved Memoary Space | | | 1
1KB 128MB 512GH

Expansion

Maximum Mumber of Address Bits to Decode on Upper BAR m
inizh |
QK |

Altera Corporation

For more information on the function of the BARs, please refer to “Base
Address Registers” on page 58.

Advanced Features in the pci_mt64, pci_mt32, pci_t64, and
pci_t32 MegaCore Functions

Figure 5 shows the advanced features available with the MegaCore
functions (i.e., optional registers, interrupt capabilities, master features,
and 64-bit PCI options).

Optional Registers

The Altera PCI MegaCore functions support two optional read-only
registers: the capabilities list pointer register and CIS cardbus pointer
register. When used, the value provided via the PCI compiler wizard is
stored in these optional registers. When CompactPCI Technology is
selected in screen 3 of the PCI compiler wizard, the capabilities list pointer
register will be enabled with the default value of 40 Hex.

Advanced features in the pci _nt 64, pci _nt 32, pci _t 64, and

pci _t 32 MegaCore functions can be enabled in screen 6 of the PCI
compiler wizard. See Figure 5.

41

M3IAIBAQ H




MegaCore Overview

PCI MegaCore Function User Guide

Figure 5. Using Advanced Features in PCl MegaCore Functions

Megawizard Plug-In Manager - PCl Compiler ¥erzion 2.2.0 [Page b of 8]

Advance PCl Megacore Features
Capahilties Pointer —Mazter Features
[ Enable Capshiltes List [~ Use in Host Bridge Application
Capazhilties Pointer ID){4D [ &llavw Internal Arbitrstion Logic
—CIE CardBus Pointer [ Disskle Master Latency Timer
_ Mate: Dizabling the latency timer
[~ Enable CIS CardBus Pointer daes not comply with the PCI SIG
: specification and is only recommended
CIS CardBus PolmerIDxDDDDDDDD for use in embedded systems.

Arterrupt Option:

Support Interrupt Acknowledoe Command
I- A ot 2 E4-Bit PCl Options |

[w Use Interrupt Fin

Cancel - Prew Finizh |

42

Optional Interrupt Capabilities

The Altera PCI MegaCore functions support optional PCI interrupt
capabilities. For example, if an application uses the interrupt pin, the
interrupt pin register indicates that the interrupt signal (i.e., i nt an) is
used by storing a value of 01 Hex in the interrupt pin register. Disabling
the interrupt pin results in the interrupt pin register being set to 00. The
PCI MegaCore functions also provide the option to respond to the
interrupt acknowledge command. When disabled, the MegaCore
functions will ignore the interrupt acknowledge command. When
enabled, the MegaCore functions respond to the interrupt acknowledge
command by treating it as a regular target memory read. The local side
must implement the logic necessary to respond to the interrupt
acknowledge command.

For more information on the capabilities list pointer, CIS cardbus pointer,
and interrupt pin registers, please refer to the “Configuration Registers”
on page 50.

Optional Master Features

The pci _nt 64 and pci _mt 32 functions also provide some master-
specific features. For example, the pci _nt 64 and pci _nt 32 functions
can be used as a host bridge application. For more information on using
the pci _nt 64 or pci _nt 32 function in a host bridge application, see
“Host Bridge Operation” on page 142.

Altera Corporation



PCI MegaCore Function User Guide MegaCore Overview

Additionally, the disable master latency timer option allows users to
disable the latency timer time-out feature. If the latency timer time-out is
disabled, the master will continue the burst transaction even if the latency
timer has expired and the gnt n signal is removed. This feature is useful
in systems in which breaking up long data transfers in small transactions
will yield undesirable side effects.

Using the disable master latency timer option violates the PCI
specification; and therefore should only be used in embedded
applications where the designer can control the entire system
configuration. In addition, using the disable master latency timer
option can result in increased latency for other master devices on
the system. If the increased latency will result in undesirable
effects, this option should not be used.

64-Bit PCI Options

The pci _m 64 and pci _t 64 functions provide 64-bit specific features.
Choosing the 64-Bit PCI Options button provides access to two
additional 64-bit options. See Figure 6.

See “Appendix C: 64-Bit Options for the pci_mt64 and pci_t64 MegaCore
Functions” on page 159 for more information on these options.

Figure 6. 64-Bit PCI Options with pci_mt64 and pci_t64 Functions

Megawizard Plug-In Manager - PCl Compiler ¥ersion 2.2.0 [Page b of 8]

Altera Corporation

Advance PCl Megacore Features

~Capabilities Pointer—
RSl 64 Bit PCI Options

[ Enable Capsbilte

&

Provides enhanced master functionslity when using the PCI_MTE4 function
in systems where a 64-bit transaction request will always he accepted by
a B4-bit target (targets always respond with ackb4n asserted).

|— Enable CIS CardE The PCI_MTEG4 master will:

1. Support 64-bit zingle-cycle write transactions

IS CardBus Poirter 2. Azzert irdyn 1 clock-cycle after framen agsertion for reacs and writes

Capshilities Poirter

~CIS CardBuz Pointer

e T E—] |_ Acld Internal Data Steering Logic for 32/64-Bit Systems

Adds internal logic to the PCI_MTE4 and PCI_TE4 local side to provide walid
I Support interrupt | gt on | _datol31 .0 and |_dato[63..32] during;

1. 32-hit master read (when the master requests a G4-bit transaction)

2. 32-bit target write

Mote: Designing the data steering logic for individual design needs outside of
the MegaCore function may result in better Fmax performance.

[22]

[v Use Interrupt Fin

43

M3IAIBAQ H




MegaCore Overview

PCI MegaCore Function User Guide

Functional
Description

44

The 64-Bit Only Devices option provides enhanced master device
functionality when using the pci _nt 64 function in systems where a 64-
bit transaction request will always be accepted by a 64-bit target device.
(Target devices always respond with ack64n asserted.) The pci _nt 64
master will:

m  Support 64-bit single-cycle write transactions
m  Assertirdyn one clock-cycle after the assertion of f r anen for read
and write transactions

s The 64-Bit Only Devices option should only be used in
embedded applications where the designer controls the entire
system configuration.

The Add Internal Data Steering Logic for 32/64-Bit Systems option adds
internal logic to the pci _nt 64 and pci _t 64 local side to provide valid
dataon| _dato[31..0] and| _dat o[ 63. . 32] buses during the
following transactions:

m  32-bit master read (when the master requests a 64-bit transaction)
m  32-bit target write

Enabling the Add Internal Data Steering Logic for 32/64-Bit Systems
option provides full backwards compatibility to the pci _nt 64 and

pci _t 64 functions prior to version 2.0.0. If the Add Internal Data
Steering Logic for 32/64-Bit Systems option is not used, the data steering
logic should be added to the local side application. Adding the data
steering logic to the local side application will most likely result in less
duplicate logic and faster system performance.

This section provides a general overview of pci _nt 64, pci _nt 32,
pci _t 64, and pci _t 32 functionality. It describes the operation and
assertion of master and target signals.

Target Device Signals & Signal Assertion

Figure 7 illustrates the signal directions for a PCI device connecting to the
PCI bus in target mode. These signals apply to the pci _nt 64, pci _t 64,
pci _nt 32, and pci _t 32 functions when they are operating in target
mode. The signals are grouped by functionality, and signal directions are
illustrated from the perspective of the MegaCore function operating as a
target on the PCI bus. The 64-bit extension signals, including r eq64n,
ack64n, par 64, ad[ 63. . 32] ,and cben[ 7. . 4], are not implemented
in the pci _nt 32 and pci _t 32 functions.

Altera Corporation



PCI MegaCore Function User Guide MegaCore Overview

Figure 7. Target Device Signals

System clk ——pp
Signals rstn ——pp Error
B permn Reporting
dsel —®> SeIM| signals
req64n >
Interface frgmen < ) Interrupt
Control irdyn > —®intan  Request
Signals trdyn <€—— Target Device Signal
stopn €—
devseln ¢———
ack64n ¢———
Address, par64 <€—»>
Data & par <—»|
Command ad[63..0] <=
Signals | cben[7..0] m—p

A 32-bit target sequence begins when the PCI master device asserts

f ramen and drives the address and the command on the PCI bus. If the
address matches one of the BARs in the MegaCore function, it asserts
devsel n to claim the transaction. The master then assertsi r dyn to
indicate to the target device that:

M3IAIBAQ H

= For aread operation, the master device can complete a data transfer.
m  For awrite operation, valid data is on the ad[ 31. . 0] bus.

The MegaCore function drives the control signals devsel n,tr dyn, and
st opn to indicate one of the following conditions to the PCI master:

m  The MegaCore function has decoded a valid address for one of its
BARs and it accepts the transactions (assert devsel n).

m  The MegaCore function is ready for the data transfer (assertt r dyn).
When botht rdynandi r dyn are active, a data word is clocked from
the sending to the receiving device.

m  The master device should retry the current transaction.

m  The master device should stop the current transaction.

m  The master device should abort the current transaction.

Altera Corporation 45



MegaCore Overview

PCI MegaCore Function User Guide

Table 10 shows the control signal combinations possible on the PCI bus
during a PCl transaction. The MegaCore function processes the PClI signal
assertion from the local side. Therefore, the MegaCore function only
drives the control signals per the PCI Local Bus Specification,

Revision 2.2. The local-side application can force retry, disconnect, abort,
successful data transfer, and target wait state cycles to appear on the PCI
bus by drivingthel t _rdyn,|t_di scn,and |t _abort n signals to
certain values. See “Target Transaction Terminations” on page 96 for
more details.

The pci _nt 64 and pci _t 64 functions accept either 32-bit transactions
or 64-bit transactions on the PCI side. In both cases, the functions behave
as 64-bit agents on the local side. A 64-bit transaction differs from a 32-bit
transaction as follows:

m Inaddition to asserting the f r arren signal, the PCI master asserts the
r eq64n signal during the address phase informing the target device
that it is requesting a 64-bit transaction.

= When the target device accepts the 64-bit transaction, it asserts
ack64n in addition to devsel n to inform the master device that it is
accepting the 64-bit transaction.

®  Ina64-bit transaction, the r eq64n signal behaves the same as the
f r amen signal, and the ack64n signal behaves the same as
devsel n. During data phases, data is driven over the ad[ 63. . 0]
bus and byte enables are driven over the cben[ 7. . 0] bus.
Additionally, parity for ad[ 63. . 32] andcben[ 7. . 4] is presented
over the par 64n signal.

Table 10. Control Signal Combination Transfer

Type devseln trdyn stopn irdyn
Claim transaction Assert Don't care Don't care Don't care
Retry (1) Assert De-Assert Assert Don't care
Disconnect with data Assert Assert Assert Don't care
Disconnect without data Assert De-assert Assert Don't care
Abort (2) De-assert De-assert Assert Don't care
Successful transfer Assert Assert De-assert Assert
Target wait state Assert De-assert De-assert Assert
Master wait state Assert Assert De-assert De-assert

Notes:

(1) Arretry occurs before the first data phase.
(2) A device must assert the devsel n signal for at least one clock before it signals an abort.

46

Altera Corporation




PCI MegaCore Function User Guide

MegaCore Overview

Altera Corporation

The pci _nt 64, pci _t 64, pci _nt 32, and pci _t 32 functions support
unlimited burst access cycles. Therefore, they can achieve a throughput
from 132 MBps (for 32-bit, 33-MHz transactions) up to 528 MBps (for
64-bit, 66-MHz transactions). However, the PCI Local Bus Specification,
Revision 2.2 does not recommend bursting beyond 16 data cycles because
of the latency of other devices that share the bus. You should be aware of
the trade-off between bandwidth and increased latency.

Master Device Signals & Signal Assertion

Figure 8 illustrates the PCl-compliant master device signals that connect
to the PCI bus. The signals are grouped by functionality, and signal
directions are illustrated from the perspective of the PCI MegaCore
function operating as a master on the PCI bus. Figure 8 shows all master
signals; the 64-bit extension signals, including r eq64n, ack64n, par 64,
ad[ 63..32],and cben[ 7. . 0], are not implemented in the pci _nt 32
function.

Figure 8. Master Device Signals

System clk —»]
Signals rstn ——p»
<4 permn Error
idsel | 4 & serm ggpn(;rltsmg
req64n <€¢——
framen <¢——
Inéerf:\ceI irdyn <¢—— — intan E;ZU:ST
S:)n ro trdyn ——p»| Signal
gnals
stopn —> Master Device
devseln ——p»|
ack64n ——pp»
Arbitration gntn ——p>
Signals reqn <€——
Address, paré4 <¢—»>|
Data & par <¢—»|
Command ad[63..0] =P
Signals | chen[7..0] <g——

A 32-bit master sequence begins when the local side asserts| m r eqn32n
to request mastership of the PCI bus. The PCI MegaCore function then
asserts r eqn to request ownership of the PCI bus. After receiving gnt n
from the PCI bus arbiter and after the bus idle state is detected, the
function initiates the address phase by asserting f r anen, driving the PCI
address on ad[ 31. . 0] , and driving the bus command on cben[ 3. . 0]
for one clock cycle.

47

M3IAIBAQ H




MegaCore Overview

PCI MegaCore Function User Guide

48

s For 64-bit addressing, the master generates a DAC. On the first
address phase, the pci _nt 64 function drives the lower 32-bit
PCIl address on ad[ 31. . 0] , the upper 32-bit PCI address on
ad[ 63. . 32] , the DAC command on cben[ 3. . 0] , and the
transaction command on cben[ 7. . 4] . On the second address
phase, the pci _nt 64 function drives the upper 32-bit PCI
address on ad[ 63. . 0] and the transaction command on
cben[7..0].

When the pci _nt 64 or pci _nt 32 function is ready to present or accept
data on the bus, it asserts i r dyn. At this point, the PCI master logic
monitors the control signals driven by the target device. A target device is
determined by the decoding of the address and command signals
presented on the PCI bus during the address phase of the transaction. The
target device drives the control signals devsel n, t rdyn, and st opn to
indicate one of the following conditions:

The data transaction has been decoded and accepted.

The target device is ready for the data operation. When both t r dyn
andi r dyn are active, a data word is clocked from the sending to the
receiving device.

The master device should retry the current transaction.

The master device should stop the current transaction.

The master device should abort the current transaction.

Table 10 on page 46 shows the possible control signal combinations on the
PCI bus during a transaction. The PCI function signals that it is ready to
present or accept data on the bus by asserting i r dyn. At this point, the
pci _nt 64 master logic monitors the control signals driven by the target
device and asserts its control signals appropriately. The local-side
applicationcanusethel m t sr[ 9. . 0] signals to monitor the progress of
the transaction. The master transaction can be terminated normally or
abnormally. The local side signals a normal transaction termination by
asserting thel m_| ast nsignal. The abnormal termination can be signaled
by the target, master abort, or latency timer expiration. See “Abnormal
Master Transaction Termination” on page 141 for more details.

In addition to single-cycle and burst 32-bit transactions, the local side
master can request 64-bit transactions by asserting the | m_r eq64n signal.
In 64-bit transactions, the pci _nt 64 function behaves the same as a 32-bit
transaction except for asserting the r eq64n signal with the same timing
as the f r amen signal. Additionally, the pci _nt 64 function treats the
local side as 64 bits when it requests 64-bit transactions and when the
target device accepts 64-bit transactions by asserting the ack64n signal.
See “Master Mode Operation” on page 151 for more information on 64-bit
master transactions.

Altera Corporation



A I:l—lzl D )/A Specifications

This section describes the specifications of Altera’s PCI MegaCore™
functions, including the supported peripheral component interconnect
(PCI) bus commands and configuration registers and the clock cycle
sequence for both target and master read/write transactions.

PCIl Bus Table 1 shows the PCI bus commands that can be initiated or responded
to by Altera’s PCl MegaCore functions.
Commands
Table 1. PCI Bus Command Support Summary
cbhen[3..0] Value Bus Command Cycle Master | Target
0000 Interrupt acknowledge Ignored |Yes (1)
0001 Special cycle Ignored |Ignored
0010 I/O read Yes Yes
0011 1/O write Yes Yes
0100 Reserved Ignored |lgnored
0101 Reserved Ignored |lgnored
0110 Memory read Yes Yes
0111 Memory write Yes Yes 4
1000 Reserved Ignored |lgnored
1001 Reserved Ignored |lgnored '(é)
1010 Configuration read Yes Yes %
1011 Configuration write Yes Yes §
1100 Memory read multiple (2) Yes Yes gl
1101 Dual address cycle (DAC) Yes (3) |Yes(3) @
1110 Memory read line (2) Yes Yes
1111 Memory write and invalidate (2) Yes Yes
Notes:

(1) Interrupt acknowledge support can be enabled through the PCI compiler wizard.
When support is enabled, the target accepts the interrupt acknowledge command
and aliases it as a memory read command.

(2) The memory read multiple and memory read line commands are treated as
memory reads. The memory write and invalidate command is treated as a memory
write. The local side sees the exact command on the| _cndo[ 3. . 0] bus with the
encoding shown in Table 1.

(3) This command is not supported by the pci _nt 32 and pci _t 32 MegaCore
functions.

Altera Corporation 49



Specifications

PCI MegaCore Function User Guide

Configuration
Registers

50

During the address phase of a transaction, the cben[ 3. . 0] busisused to
indicate the transaction type. See Table 1.

The PCI functions respond to standard memory read/write, cache
memory read/write, 1/0 read/write, and configuration read/write
commands. The bus commands are discussed in greater detail in “Target
Mode Operation” on page 65 and “Master Mode Operation” on page 105.

In master mode, the pci _nt 64 and the pci _nt 32 functions can initiate
transactions of standard memory read/write, cache memory read/write,
1/0 read/write, and configuration read/write commands. Per the PCI
specification, the master must keep track of the number of words that are
transferred and can only end the transaction at cache line boundaries
during MRL and MWI commands. It is the responsibility of the local-side
interface to ensure that this requirement is not violated. Additionally, it is
the responsibility of the local-side interface to ensure that proper address
and byte enable combinations are used during 1/0 read/write cycles.

Each logical PCI bus device includes a block of 64 configuration DWORDS
reserved for the implementation of its configuration registers. The format
of the first 16 DWORDS is defined by the PCI Special Interest Group
(PCI SIG) PCI Local Bus Specification, Revision 2.2 and the Compliance
Checklist, Revision 2.2. These specifications define two header formats,
type one and type zero. Header type one is used for PCI-to-PClI bridges;
header type zero is used for all other devices, including Altera’s PCI
functions.

Table 2 shows the defined 64-byte configuration space. The registers
within this range are used to identify the device, control PCI bus
functions, and provide PCI bus status. The shaded areas indicate registers
that are supported by Altera’s PCI functions.

Altera Corporation



PCI MegaCore Function User Guide

Specifications

Table 2. PCI Bus Configuration Registers
Address Byte
3 2 1 0
00H Device ID Vendor ID
04H Status Register Command Register
08H Class Code Revision ID
O0CH BIST Header Type Latency Timer |Cache Line Size
10H Base Address Register 0
14H Base Address Register 1
18H Base Address Register 2
1CH Base Address Register 3
20H Base Address Register 4
24H Base Address Register 5
28H Card Bus CIS Pointer
2CH Subsystem ID Subsystem Vendor ID
30H Expansion ROM Base Address Register
34H Reserved Capabilities
Pointer
38H Reserved
3CH Maximum Minimum Grant Interrupt Pin Interrupt Line
Latency

Table 3 summarizes the supported configuration registers address map.
Unused registers produce a zero when read, and they ignore a write
operation. Read/write refers to the status at runtime, i.e., from the
perspective of other PCI bus agents. You can set some of the read-only
registers when creating a custom PCI design by setting the MegaCore
function parameters through the PCI compiler wizard. For example, you
can change the device ID register value from the default value through
screen 3 of the PCI compiler wizard. The specified default state is defined
as the state of the register when the PCI bus is reset.

suoneoloads | N

Altera Corporation 51



Specifications

PCI MegaCore Function User Guide

Table 3. Supported Configuration Registers Address Map
Address Offset Range Bytes Used/ | Read/Write Mnemonic Register Name
(Hex) Reserved (Hex)| Reserved
00 00-01 2/2 Read ven_id Vendor ID
02 02-03 2/2 Read dev_id Device ID
04 04- 05 2/2 Read/write comd Command
06 06- 07 2/2 Read/write status Status
08 08-08 1/1 Read rev_id Revision ID
09 09-0B 3/3 Read cl ass Class code
oC 0C-0C 1/1 Read/write cache Cache line size (1)
oD 0D 0D 1/1 Read/write lat_tnr Latency timer (1)
OE OE- OE 1/1 Read header Header type
10 10-13 4/4 Read/write bar 0 Base address register zero
14 14- 17 4/4 Read/write bar 1 Base address register one
18 18-1B 4/4 Read/write bar 2 Base address register two
1C 1C 1F 4/4 Read/write bar 3 Base address register three
20 20-23 4/4 Read/write bar 4 Base address register four
24 24-27 4/4 Read/write bar5 Base address register five
28 28-2B 4/4 Read cardbus_ptr [CardBus CIS pointer
2C 2C- 2D 2/2 Read sub_ven_id |[Subsystem vendor ID
2E 2E- 2F 2/2 Read sub_id Subsystem ID
30H 30-33 4/4 Read/write exp_rom bar |[Expansion ROM BAR
34H 34-35 1/1 Read cap_ptr Capabilities pointer
3C 3C-3C 1/1 Read/write int_In Interrupt line
3D 303D 1/1 Read int_pin Interrupt pin
3E 3E-3E 1/1 Read m n_gnt Minimum grant (1)
3F 3F-3F 1/1 Read max_| at Maximum latency (1)
Note:

(1) These registers are supported by the pci _nt 64 and pci _nt 32 functions only.

52

Altera Corporation




PCI MegaCore Function User Guide Specifications

Vendor ID Register

Vendor ID is a 16-bit read-only register that identifies the manufacturer of
the device. The value of this register is assigned by the PCI SIG; the default
value of this register is the Altera® vendor ID value, which is 1172 Hex.
However, by setting the VEND _| D value through the wizard, you can
change the value of the vendor ID register to their PCI SIG-assigned
vendor ID value. See Table 4.

Table 4. Vendor ID Register Format

Data Bit Mnemonic Read/Write Definition
15..0 ven_id Read PCI vendor ID

Device ID Register

Device ID is a 16-bit read-only register that identifies the device type. The
value of this register is assigned by the manufacturer. The default value of
the device ID register is 0 Hex. You can change the value of the device ID
register through the wizard. See Table 5.

Table 5. Device ID Register Format

Data Bit Mnemonic Read/Write Definition

15..0 dev_id Read Device ID

Command Register

Command is a 16-bit read/write register that provides basic control over
the ability of the PCI function to respond to the PCI bus and/or access it.
See Table 6.

suoneaoads [N

Altera Corporation 53



Specifications

PCI MegaCore Function User Guide

Table 6. Command Register Format

Data |Mnemonic | Read/Write Definition
Bit
0 i o_ena Read/write |1/O access enable. When high, i o_ena lets the function respond to the PCI
bus 1/0 accesses as a target.
1 mem ena | Read/write |Memory access enable. When high, mem_ena lets the function respond to the
PCI bus memory accesses as a target.
2 mst r _ena | Read/write |Master enable. When high, nst r _ena allows the function to request
mastership of the PCI bus. Bit 2 is hardwired to 1 when PCI master host bridge
options are enabled through the wizard.
3 Unused - -
4 mni _ena | Read/write | Memory write and invalidate enable. This bit controls whether the master may
generate a MWI command. Although the function implements this bit, it is
ignored. The local side must ensure that the mai _ena output is high before it
requests a master transaction using the MWI command.
5 Unused - -
6 perr_ena | Read/write |Parity error enable. When high, per r _ena enables the function to report
parity errors via the per r n output.
7 Unused - -
8 serr_ena | Read/write |System error enable. When high, ser r _ena allows the function to report
address parity errors via the ser r n output. However, to signal a system error,
the perr _ena bit must also be high.
15..9 |Unused - -
Status Register
Status is a 16-bit register that provides the status of bus-related events.
Read transactions from the status register behave normally. However,
status register write transactions are different from typical write
transactions because bits in the status register can be cleared but not set.
A bit in the status register is cleared by writing a logic one to that bit. For
example, writing the value 4000 Hex to the status register clears bit 14
and leaves the rest of the bits unchanged. The default value of the status
register is 0400 Hex. See Table 7.

54 Altera Corporation




PCI MegaCore Function User Guide

Specifications

Table 7. Status Register Format

Data
Bit

Mnemonic

Read/Write

Definition

3.0

Unused

Reserved.

4

cap_list_ena

Read

Capabilities list enable. This bit is read only and is set by the user
when enabling the Capabilities List Pointer through the wizard.
When set, this bit enables the capabilities list pointer register at offset
34 Hex. See “Capabilities Pointer” on page 63 for more details.

pci_66mhz_capable

Read

PCI 66-MHz capable. When set, pci _66nmhz_capabl e indicates that
the PCI device is capable of running at 66 MHz. The MegaCore
function can run at either 66 MHz or 33 MHz depending on the device
used. You can set this bit to 1 by enabling the PCI 66MHz Capable
option in the wizard.

Unused

Reserved.

dat_par_rep

Read/write

Reported data parity. When high, dat _par _r ep indicates that during
aread transaction the function asserted the per r n output as a master
device, or that during a write transaction the per r n output was
asserted as a target device. This bit is high only when the perr _ena
bit (bit 6 of the command register) is also high. This signal is driven to
the local side on the st at _r eg[ 0] output.

10..9

devsel _tim

Read

Device select timing. The devsel _t i mbits indicate target access
timing of the function via the devsel n output. The PCI MegaCore
functions are designed to be slow target devices (i.e.,

devsel _tim=B"10").

11

tabort_sig

Read/write

Signaled target abort. This bit is set when a local peripheral device
terminates a transaction. The function automatically sets this bit if it
issued a target abort after the local side asserted | t _abor t n. This bit
is driven to the local side on the st at _r eg[ 1] output.

12

tar_abrt_rec

Read/write

Target abort. When high, t ar _abrt _r ec indicates that the function
in master mode has detected a target abort from the current target
device. This bitis driven to the local side on the st at _r eg[ 2] output.

13

mstr_abrt

Read/write

Master abort. When high, nst r _abrt indicates that the function in
master mode has terminated the current transaction with a master
abort. This bit is driven to the local side on the st at _r eg[ 3] output.

14

serr_set

Read/write

Signaled system error. When high, serr _set indicates that the
function drove the ser r n output active, i.e., an address phase parity
error has occurred. The function signals a system error only if an
address phase parity error was detected and ser r _ena was set. This
signal is driven to the local side on the st at _r eg[ 4] output.

15

det _par_err

Read/write

Detected parity error. When high, det _par _er r indicates that the
function detected either an address or data parity error. Even if parity
error reporting is disabled (via per r _ena), the function sets the

det _par _err bit. This signal is driven to the local side on the

st at _reg[ 5] output.

Altera Corporation

55

suoneaoads [N



Specifications

PCI MegaCore Function User Guide

56

Revision ID Register

Revision ID is an 8-bit read-only register that identifies the revision
number of the device. The value of this register is assigned by the
manufacturer (e.g., Altera for the PCI functions). For Altera PCI
MegaCore functions, the default value of the revision ID register is the
revision number of the function. See Table 8. You can change the value of
the revision ID register through the wizard.

Table 8. Revision ID Register Format

Data Bit Mnemonic Read/Write Definition

7.0 rev_id Read PCI revision ID

Class Code Register

Class code is a 24-bit read-only register divided into three sub-registers:

base class, sub-class, and programming interface. Refer to the PCI Local
Bus Specification, Revision 2.2 for detailed bit information. The default

value of the class code register is FFO0O00 Hex. You can change the value
of the cl ass_code register through the PCI compiler wizard. See

Table 9.

Table 9. Class Code Register Format

Data Bit Mnemonic Read/Write Definition

23..0 cl ass Read Class code

Cache Line Size Register

The cache line size register specifies the system cache line size in
DWORDS. This read/write register is written by system software at
power-up. The value in this register is driven to the local side on the
cache[ 7. . 0] bus. The local side must use this value when using the
memory read line, memory read multiple, and memory write and
invalidate commands in master mode. See Table 10.

Altera Corporation




PCI MegaCore Function User Guide Specifications

I'==  This register is implemented in the pci _nt 64 and pci _nt 32
functions only.

Table 10. Cache Line Size Register Format

Data Bit Mnemonic Read/Write Definition

7.0 cache Read/write Cache line size

Latency Timer Register

The latency timer register is an 8-bit register with bits 2, 1, and 0 tied to
ground. The register defines the maximum amount of time, in PCI bus
clock cycles, that the PCI function can retain ownership of the PCI bus.
After initiating a transaction, the function decrements its latency timer by
one on the rising edge of each clock. The default value of the latency timer
register is 00 Hex. See Table 11.

[~ This register is implemented in the pci _nt 64 and pci _nt 32
functions only.

Table 11. Latency Timer Register Format

Data Bit Mnemonic Read/Write Definition
2.0 lat _tnr Read Latency timer register
7.3 lat _tnr Read/write Latency timer register

Header Type Register

Header type is an 8-bit read-only register that identifies the PCI function
as a single-function device. The default value of the header type register
is 00 Hex. See Table 12.

suoneaoads [N

Table 12. Header Type Register Format

Data Bit Mnemonic Read/Write Definition
7.0 header Read PCI header type

Altera Corporation 57



Specifications

PCI MegaCore Function User Guide

58

Base Address Registers

The PCI function supports up to six BARs. Each base address register
(BARN) has identical attributes. You can control the number of BARs that
are instantiated in the function by enabling BARs on an individual basis
through the wizard. BARs must be used in sequence, starting with BARO;
one or more of the BARs in the function must be instantiated. The logic for
the unused BARs is automatically reduced by the Quartus Il software
when the PCI function is compiled.

Each BAR has its own parameter BARn (where n is the BAR number).
Each BAR is a 32-bit hexadecimal number that can be updated through the
wizard to select a combination of the following BAR options:

m  Type of address space reserved by the BAR

= Location of the reserved memory

m  Sets the reserved memory as prefetchable or non-prefetchable
m  Size of memory or 1/0 address space reserved for the BAR

= When compiling the PCI function, the Quartus Il software
generates informational messages informing you of the number
and options of the BARs you have specified.

The BAR is formatted per the PCI Local Bus Specification, Revision 2.2.
Bit 0 of each BAR is read only, and is used to indicate whether the reserved
address space is memory or 1/0. BARs that map to memory space must
hardwire bit 0 to 0, and BARs that map to 1/0 space must hardwire bit
0 to 1. Depending on the value of bit 0, the format of the BAR changes. You
can set the type of BAR through the PCI compiler wizard.

In a memory BAR, bits 2 and 1 indicate the location of the address space
in the memory map. You can control the location of specific BAR
addresses (i.e., whether they are mapped in 32- or 64-bit address space)
through options in the PCI compiler wizard. The pci _nt 64 and

pci _t 64 functions allow you to implement a 64-bit BAR using BAR1 and
BARO, or by using BAR2 and BARL1. The BARn parameters will be
updated accordingly.

Bit 3 of a memory BAR controls whether the BAR is prefetchable. If you
choose the prefetchable memory option for an individual BAR in the PCI
compiler wizard, bit 3 of the corresponding BARN parameter will be
updated. See Table 13.

Altera Corporation



PCI MegaCore Function User Guide Specifications

Table 13. Memory BAR Format

Data | Mnemonic | Read/Write Definition

Bit
0 mem i nd Read Memory indicator. The mem_i nd bit indicates that the register maps into
memory address space. This bit must be set to 0 in the BARn parameter.

2.1 mem type Read Memory type. The nem t ype bits indicate the type of memory that can
be implemented in the function’s memory address space. Only the
following two possible values are valid for the PCI functions: locate
memory space in the 32-bit address space and locate memory space in
the 64-bit address space.

3 pre_fetch | Read Memory prefetchable. The pr e_f et ch bit indicates whether the blocks
of memory are prefetchable by the host bridge.

31.4 bar Read/write |Base address registers.

In addition to the type of space reserved by the BAR, the wizard allows
you to define the size of address space reserved for each individual BAR
and sets the BARN parameter value accordingly. The parameter value
BARnN defines the number of read/write bits instantiated in the
corresponding BAR (See Section 6.2.5 in the PCI Local Bus Specification,
Revision 2.2). The number of read/write bits instantiated in a BAR is
indicated by the number of 1s in the corresponding BARnN value starting
from bit 31. The BARn parameter should contain 1s from bit 31 down to
the required bit without any Os in between (e.g., " FFO0O0000" Hex is
legal, but" FF700000" Hex is not). The PCI compiler wizard does not
offer options that set the BARN parameters to illegal values.

For high-end systems that require more than 4 Gbytes of memory space,
the pci _m 64 and pci _t 64 functions support 64-bit addressing. These
functions offer the option to use either BARs 1 and 0 or BARs 2 and 1 to
implement a 64-bit BAR.

When implementing a 64-bit BAR, the least significant BAR contains the
lower 32-bit BAR and the most significant BAR contains the upper 32-bit
BAR. When implementing a 64-bit BAR, the wizard allows the option of
which BARs to use and sets the BARn parameters accordingly. On the
least significant BAR, bits [31..4] are read/write registers that are used to
indicate the size of the memory, along with the most significant BAR. For
the most significant BAR, the wizard allows you to choose the maximum
number of read/write registers to implement per the application.

suoneoloads | N

Altera Corporation 59



Specifications

PCI MegaCore Function User Guide

For example, if a 64-bit BAR on BARs 1 and 0 is implemented and the
designer indicates 8 as the maximum number of address bits to decode on
the upper BAR, the upper 24 bits [31. . 8] of BAR1 will be read-only bits
tied to ground. The eight least significant bits [7. . 0] of BAR1 are
read/write registers, and— along with bits [31. . 4] of BARO—they
indicate the size of the memory. When a 64-bit memory BAR is
implemented, the remaining BARs can still be used for 32-bit memory or
1/0 base address registers in conjunction with a 64-bit BAR setting. If
BARs 2 and 1 are used to implement a 64-bit BAR, BARO must be used as
a 32-bit memory or I/0 base address register.

s Reserved memory space can be calculated by the following
formula: 24°~8) = 4 Gbytes, where 40 = actual available registers
and 8 = user assigned read/write register.

Like a memory BAR, an I/0 BAR can be instantiated on any of the six
BARs available for the PCI function. The wizard offers the option to
implement a 32-bit BAR as memory or I/0 and sets the bits [1. . 0] of the
corresponding BARnN parameter accordingly. The PCI Local Bus
Specification, Revision 2.2 prevents any single 1/0 BAR from reserving
more than 256 bytes of 1/0 space. See Table 14.

Table 14. I/0 Base Address Register Format

Data
Bit

Mnemonic

Read/Write Definition

0

io_ind

Read 1/0 indicator. The i o_i nd bit indicates that the register maps into /0
address space. This bit must be set to 1 in the BARn parameter.

Reserved

31.2

bar

Read/write |Base address registers.

60

In some applications, one or more BARs must be hardwired. The
MegaCore functions allow you to set default base addresses that can be
used to claim transactions without requiring the configuration of the
corresponding BARs. The wizard allows you to implement this feature on
an individual BARnN basis and sets the corresponding parameters
accordingly. When using the hardwire BAR feature, the corresponding
BARnN attributes must indicate the appropriate BAR settings, such as size
and type of address space.

s When implementing a hardwire BAR, the corresponding BAR
registers become read-only. A configuration write to the
hardwired BAR will proceed normally. However, a
configuration read of hardwired BAR registers will return the
value set in the hardwire BARNn parameter.

Altera Corporation




PCI MegaCore Function User Guide Specifications

CardBus CIS Pointer Register

The card information structure (CIS) pointer register is a 32-bit read-only
register that points to the beginning of the CIS. This optional register is
used by devices that have the PCI and CardBus interfaces on the same
silicon. By default, the MegaCore functions do not enable this register. The
CIS Pointer register can be enabled and the register’s value can be set
through the wizard. Table 15 shows this register’s format. For more
information on the CardBus CIS pointer register, refer to the PCMCIA
Specification, Version 2.10.

Table 15. CIS Pointer Register Format

Data Bit Mnemonic Read/Write Definition

0..2 adr_space_ind Read Address space indicator. The value of these bits indicates
that the CIS pointer register is pointing to one of the
following spaces: configuration space, memory space, or
expansion ROM space.

3..27 adr_offset Read Address space offset. This value gives the address space’s
offset indicated by the address space indicator.

31..28 rom_im Read ROM image. These bits are the uppermost bits of the
address space offset when the CIS pointer register is
pointing to an expansion ROM space.

Subsystem Vendor ID Register

Subsystem vendor ID is a 16-bit read-only register that identifies add-in

cards from different vendors that have the same functionality. The value 4
of this register is assigned by the PCI SIG. See Table 16. The default value
of the subsystem vendor ID register is 0000 Hex. However, you can »
change the value through the wizard. S
c:;.
2
Table 16. Subsystem Vendor ID Register Format =
[%2]
Data Bit Mnemonic Read/Write Definition
15..0 sub_ven_id Read PCI subsystem/vendor ID

Altera Corporation 61



Specifications

PCI MegaCore Function User Guide

Subsystem ID Register

The subsystem ID register identifies the subsystem. The value of this
register is defined by the subsystem vendor, i.e., the designer. See
Table 17. The default value of the subsystem ID register is 0000 Hex.
However, you can change the value through the wizard.

Table 17. Subsystem ID Register Format

Data Bit Mnemonic Read/Write Definition

15..0 sub_id Read PCI subsystem ID

Expansion ROM Base Address Register

The expansion ROM base address register contains a 32-bit hexadecimal
number that defines the base address and size information of the
expansion ROM. You can instantiate the expansion ROM BAR through
the wizard; the PCI function’s parameters will be set accordingly. The
expansion ROM BAR functions exactly like a 32-bit BAR, except that the
encoding of the bottom bits is different. Bit 0 in the register is a read/write
and is used to indicate whether or not the device accepts accesses to its
expansion ROM. You can disable the expansion ROM address space by
setting bit 0 to 0. You can enable the address decoding of the expansion
ROM by setting bit 0 to 1. The upper 21 bits correspond to the upper 21
bits of the expansion ROM base address. The amount of address space a
device requests must not be greater than 16 Mbytes. The expansion ROM
BAR is formatted per the PCI Local Bus Specification, Revision 2.2. See
Table 18.

Table 18. Expansion ROM Base Address Register Format

Data | Mnemonic | Read/Write Definition
Bit

0 adr _ena Read/write | Address decode enable. The adr _ena bit indicates whether or not the
device accepts accesses to its expansion ROM. You can disable the
expansion ROM address space by setting this bit to 0. You can enable the
address decoding of the expansion ROM by setting this bit to 1.

10..1 Reserved - -

31..11 | bar Read/write | Expansion ROM base address registers.

62 Altera Corporation




PCI MegaCore Function User Guide Specifications

The MegaCore functions allow you to set a default expansion ROM base
address using the hardwire option in the wizard. Using a hardwire BAR
allows the function to claim transactions without requiring the
configuration of the expansion ROM BAR. When using the hardwire
expansion ROM BAR feature, the expansion ROM BAR attributes must
indicate the appropriate BAR settings.

1= When implementing a hardwire expansion ROM BAR, the
corresponding BAR registers become read only. However, bit 0
is read/write, allowing you to disable the expansion ROM BAR
after power-up.

Capabilities Pointer

The capabilities pointer register is an 8-bit read-only register that can be
enabled through the wizard. The capabilities pointer value entered
through the wizard points to the first item in the list of capabilities. For a
list of the capability IDs, see appendix H in the PCI Local Bus
Specification, Revision 2.2. The address location of the pointer must be 40
Hex or greater, and each capability must be within DWORD boundaries.
See Table 19.

Table 19. Interrupt Line Register Format

Data Bit Mnemonic Read/Write Definition

7..0 cap_ptr Read/write Capabilities pointer register

Configuration transactions to addresses greater than or equal to 40 Hex
are transferred to the local side of the MegaCore functions and operate as
32-bit transactions. The local side must implement the necessary logic for
the capabilities registers.

Interrupt Line Register

suoneaoads [N

The interrupt line register is an 8-bit register that defines to which system
interrupt request line (on the system interrupt controller) the i nt an
output is routed. The interrupt line register is written by the system
software upon power-up; the default value is FF Hex. See Table 20.

Altera Corporation 63



Specifications

PCI MegaCore Function User Guide

64

s The interrupt pin can be enabled or disabled in the PCI compiler
wizard. The interrupt pin register will be set to 00 Hex if the
interrupt option is disabled in the wizard.

Table 20. Interrupt Line Register Format

Data Bit Mnemonic Read/Write Definition

Interrupt line register

7..0 int_In Read/write

Interrupt Pin Register

The interrupt pin register is an 8-bit read-only register that defines the PCI
function PCI bus interrupt request line to be i nt an. The default value of
the interrupt pin register is 01 Hex. See Table 21.

Table 21. Interrupt Pin Register Format

Data Bit Mnemonic Read/Write Definition

7.0 int_pin Read Interrupt pin register

Minimum Grant Register

The minimum grant register is an 8-bit read-only register that defines the
length of time the function would like to retain mastership of the PCI bus.
The value set in this register indicates the required burst period length in
250-ns increments. You can set this register through the wizard. See
Table 22.

Table 22. Minimum Grant Register Format

Data Bit Mnemonic Read/Write Definition

7.0 m n_gnt Read Minimum grant register

Altera Corporation



PCI MegaCore Function User Guide

Specifications

Target Mode
Operation

Maximum Latency Register

The maximum latency register is an 8-bit read-only register that defines
the frequency in which the function would like to gain access to the PCI
bus. See Table 23. You can set this register through the wizard.

Table 23. Maximum Latency Register Format

Data Bit

Mnemonic

Read/Write

Definition

7..0

max_| at

Read

Maximum latency register

This section describes all supported target transactions for the PCI
functions. Although this section includes waveform diagrams showing
typical PCI cycles in target mode for the pci _nt 64 function, these
waveforms are also applicable for the pci _nt 32, pci _t 64, and
pci _t 32 functions. The pci _nt 64 and pci _t 64 MegaCore functions
support both 32-bit and 64-bit transactions. Table 24 lists the PCI and local
side signals that apply for each PCI function.

Table 24. PCI MegaCore Function Signals (Part 1 of 2)

PCI Signals pci_mt64 pci_t64 pci_mt32 pci_t32
cl k v v v v
rstn v v v v
gntn v v
regn v v
ad[ 63. . 0] v v ad[ 31..0] ad[ 31.. 0] 4
cben[7..0] v v chen[ 3..0] chen[3..0] o
par v v v v 2
par 64 v v 2
i dsel v v v v 8
framen v v v v §
req64n v v ?
i rdyn v v v v
devsel n v v v/ v
ack64n v v
trdyn v v v v
st opn v v v v
perrn v v v v
serrn v v v v
i ntan v v v v

Altera Corporation

65



Specifications

PCI MegaCore Function User Guide

Table 24. PCI MegaCore Function Signals (Part 2 of 2)

PCI Signals

pci_mt64

pci_t64

pci_mt32

pci_t32

Local side signals

_adi [63..0]

| _adi[31..0]

| _adi[31..0]

_cheni[3..0]

| _cbeni[3..0]

adr o[ 63. . 0]

| _adro[31..0]

| _adro[ 31..0]

| dato[31..0]

| _dato[31..0]

_beno[7..0]

| _beno[ 3..0]

| _beno[ 3..0]

_cndo[ 3..0]

v/

v/

_ldat _ackn

I

I

I

| _dat o[ 63..0]
I

I

I

I

_hdat _ackn

Target local side

It _abortn

I't_discn

I't_rdyn

I't_framen

I't_ackn

I't_dxfrn

It _tsr[11..0]

lirgn

cache[7..0]

cnd_reg[5..0]

stat_reg[5..0]

SIS ISISISISISISISIST ISISISISISIS IS

SIS ISISISICISISICS

Master local side

I mreg32n

I mreg64n

I mlastn

I mrdyn

I m adr_ackn

I m ackn

| mdxfrn

Imtsr[9..0]

SISTSISISISISISE ISISISISISICISISISISIS ISISISISISICISIS

SISISISISISE IS ISISISISISICISISICISIS

66

The pci _nt 64 and pci _t 64 functions support the following 64-bit

target memory transactions:

64-bit memory single-cycle target read
64-bit memory burst target read

64-bit memory single-cycle target write
64-bit memory burst target write

Altera Corporation




PCI MegaCore Function User Guide Specifications

Altera Corporation

Each PCI function supports the following 32-bit transactions:

m  32-bit memory single-cycle target read

m  32-bit memory burst target read

= 1/0targetread

m  Configuration read

m  32-bit memory single-cycle target write

m  32-bit memory burst target write

m /0 target write

m  Configuration write

e The pci _nt 64 and pci _t 64 functions assume that the local

side is 64 bits during memory transactions and 32 bits during
170 transactions. Therefore, these functions automatically read
64-bit data on the local side and transfer the data to the PCI
master, one DWORD at a time, if the PCI bus is 32 bits wide.

A read or write transaction begins after a master device acquires
mastership of the PCI bus and asserts f r anen to indicate the beginning of
a bus transaction. If the transaction is a 64-bit transaction, the master
device asserts the r eq64n signal at the same time as it asserts the f r anen
signal. The clock cycle where the f r anen signal is asserted is called the
address phase. During the address phase, the master device drives the
transaction address and command on ad[ 31. . 0] and cben[ 3.. 0],
respectively. Whenf r anen is asserted, the MegaCore function latches the
address and command signals on the first clock edge and starts the
address decode phase. If the transaction address matches the target, the
target asserts the devsel n signal to claim the transaction. In the case of
64-bit transactions, the pci _nt 64 and pci _t 64 assertthe ack64n signal
at the same time as the devsel n signal indicating that the pci _nt 64 and
pci _t 64 accepts the 64-bit transaction. All PCI MegaCore functions
implement slow decode (i.e., the devsel n and ack64n signals in the
pci _mt 64 and pci _t 64 functions are asserted three clock cycles after a
valid address is presented on the PCI bus). In all operations except
configuration read/write, one of thel t _t sr[5. . 0] signals is driven
high, indicating the BAR range address of the current transaction.

suoneoloads | N

Configuration transactions are always single-cycle 32-bit transactions.
The MegaCore function has complete control over configuration
transactions and informs the local-side device of the progress and
command of the transaction. The MegaCore function asserts all control
signals, provides data in the case of a read, and receives data in the case of
a write without interaction from the local-side device.

67



Specifications

PCI MegaCore Function User Guide

68

Memory transactions can be single-cycle or burst. In target mode, the
MegaCore function supports an unlimited length of zero-wait-state
memory burst read or write. In a read transaction, data is transferred from
the local side to the PCI master. In a write transaction, data is transferred
from the PCI master to the local-side device. A memory transaction can be
terminated by either the PCI master or the local-side device. The local-side
device can terminate the memory transaction using one of three types of
terminations: retry, disconnect, or target abort. “Target Transaction
Terminations” on page 96 describes how to initiate the different types of
termination.

s The MegaCore function treats the memory read line and
memory read multiple commands as memory read. Similarly,
the function treats the memory write and invalidate command as
amemory write. The local-side application must implement any
special requirements for these commands.

I/0 transactions are always single-cycle 32-bit transactions. Therefore, the
MegaCore function handles them like single-cycle memory commands.
Any of the six BARs in the PCI functions can be configured to reserve 1/0
space. See “Base Address Registers” on page 58 for more information on
how to configure a specific BAR to be an I/0 BAR. Like memory
transactions, 170 transactions can be terminated normally by the PCI
master, or the local-side device can instruct the MegaCore function to
terminate the transactions with a retry or target abort. Because all 1/0
transactions are single-cycle, terminating a transaction with a disconnect
does not apply.

64-Bit Target Read Transactions

In target mode, the pci _nt 64 and pci _t 64 functions support two types
of 64-bit read transactions:

= Memory single-cycle read
m  Memory burst read

For both types of read transactions, the sequence of events is the same and
can be divided into the following steps:

1. The address phase occurs when the PCI master asserts f r amen and
r eq64n signals and drives the address and command on
ad[ 31..0] and cben[ 3. . 0], correspondingly. Asserting the
r eq64n signal indicates to the target device that the master device is
requesting a 64-bit data transaction.

Altera Corporation



PCI MegaCore Function User Guide Specifications

2. Turn-around cycles on the ad[ 63. . 0] bus occur during the clock
immediately following the address phase. During the turn-around
cycles, the PCI master tri-states the ad[ 63. . 0] bus, but drives
correct byte-enables on cben[ 7. . 0] for the first data phase. This
process is necessary because the PCI agent driving the ad[ 63. . 0]
bus changes during read cycles.

3. If the address of the transactions matches one of the base address
registers, the pci _m 64 and pci _t 64 functions turn on the drivers
for the ad[ 63. . 0] , devsel n, ack64n,trdyn, and st opn signals.
The drivers for par and par 64 are turned on in the following clock.

4. The pci _nt 64 and pci _t 64 functions drive and assert devsel n
and ack64n to indicate to the master device that it is accepting the
64-bit transaction.

5. One or more data phases follow next, depending on the type of read
transaction.

64-Bit Single-Cycle Target Read Transaction

Figure 1 shows the waveform for a 64-bit single-cycle target read
transaction. This figure applies to all PCI MegaCore functions, except the
64-bit extension signals as noted for the pci _m 32 and pci _t 32
functions.

suoneoloads | N

Altera Corporation 69



Specifications PCI MegaCore Function User Guide

Figure 1. 64-Bit Single-Cycle Target Read Transaction

i i2 is P4 is5 i6 i7 is P9 10

ad[31.0] § X Adr z X 4 DO_L: e
(1) ad[63..32] X z X P DO_Hj R4
cben[3..0] E X 8 BEO,Li X
(1) cben[7..4] K X BEOJ—; X .
par : : X Adr—PA:R z : X : : : ><D0—L-PA:R><
T s e S p—
framen ‘—'_\_ ! . : : : ;
(1)reqédn i N/

irdyn :

AR VARV A Ve

devseln

(1) ack64n : : : : . : : : . L
L + + + H H H H N
trdyn ! H H H H H HEAN L/ : H

stopn I

I_adro[31..0] ' X ' ' ' Adr

| omdo[3.0] :>< L
I_adi31.0] K X D‘LLT X
(1) L adi[63.32] £ X DO—H: X . :
I_beno[3..0] X BE;’—'— >
(1)1_beno[7..4] X BEiOfH
It_framen : \ / H :
It_rdyn i : : : \ / : : : : >

It_ackn

AR VARV VI VN Ve

A

It_dxfrn

It_tsr[11..0] ( . 000 . . X . . 181 . .>< 581 . ooo.

Note:
(1) These signals do not apply to pci _nt 32 or pci _t 32 for 32-bit target read transactions. For these transactions, the
signals should be ignored.

70 Altera Corporation



PCI MegaCore Function User Guide Specifications

Table 25 shows the sequence of events for a single-cycle target read
transaction.

Table 25. Single-Cycle Target Read Transaction (Part 1 of 2)

Clock
Cycle

Event

1

The PCl bus is idle.

2

The address phase occurs.

3

The MegaCore function latches the address and command, and decodes the address to check if it falls
within the range of one of its BARs. During clock 3, the master deasserts the f r amen and r eq64n
signals and asserts i r dyn to indicate that only one data phase remains in the transaction. For a single-
cycle target read, this phase is the only data phase in the transaction. The MegaCore function begins
to decode the address during clock 3, and if the address falls in the range of one of its BARs, the
transaction is claimed.

The PCI master tri-states the ad[ 63. . 0] bus for the turn-around cycle.

If the MegaCore function detects an address hit in clock 3, several events occur during clock 4:

m  The MegaCore function informs the local-side device that it is going to claim the read transaction
by asserting one ofthe | t _tsr[5..0] signalsand|lt_franen.InFigure1,It_tsr[0] is
asserted indicating that a base address register zero hit.

m  The MegaCore function drives the transaction command on | _cndo[ 3. . 0] and address on
| _adro[ 31..0].

m  The MegaCore function turns on the drivers of devsel n, ack64n, t rdyn, and st opn, getting
ready to assert devsel n and ack64n in clock 5.

m |t _tsr[7] isasserted to indicate that the pending transaction is 64-bits.

m |t _tsr[8] isasserted to indicate that the PCI side of the MegaCore function is busy.

The MegaCore function asserts devsel n and ack64n to claim the transaction. The function also
drives | t _ackn to the local-side device to indicate that it is ready to acceptdataon | _adi [ 63. . 0] .
The MegaCore function also enables the output drivers of the ad[ 63. . 0] bus to ensure that it is not
tri-stated for a long time while waiting for valid data. Although the local side asserts | t _r dyn during
clock 5, the data transfer does not occur until clock 6.

It _rdyn is asserted in clock 5, indicating that valid data is available on | _adi [ 63. . 0] in

clock 6. The MegaCore function registers the data into its internal pipeline on the rising edge of
clock 7. The local side transfer is indicated by the | t _dxf r n signal. The | t _dxf r n signal is low during
the clock where a data transfer on the local side occurs.

1= The local side data transfer occurs if | t _ackn is asserted on the current clock edge while
I't _rdyn is asserted on the previous clock edge. The | t _dxf r n signal is asserted to
indicate a successful data transfer.

The rising edge of clock 7 registers the valid data from | _adi [ 63. . 0] and drives the data on the
ad[ 63. . 0] bus. At the same time, the MegaCore function asserts the t r dyn signal to indicate that

there is valid data on the ad[ 63. . 0] bus.

Altera Corporation 71

suoneaoads [N



Specifications PCI MegaCore Function User Guide

Table 25. Single-Cycle Target Read Transaction (Part 2 of 2)

Clock Event
Cycle
8 The MegaCore function deasserts t r dyn, devsel n, and ack64n to end the transaction. To satisfy
the requirements for sustained tri-state buffers, the MegaCore function drives devsel n, ack64n,
t rdyn, and st opn high during this clock cycle. Additionally, the MegaCore function tri-states the
ad[ 63. . 0] bus because the cycle is complete. The rising edge of clock 8 signals the end of the last
data phase because f r anen is deasserted and i r dyn and t r dyn are asserted. In clock 8, the
MegaCore function also informs the local side that no more data is required by deasserting
It _franmen,and|t_tsr[10]is asserted to indicate a successful data transfer on the PCI side during
the previous clock cycle.
9 The MegaCore function informs the local-side device that the transaction is complete by deasserting
thelt_tsr[11..0] signals. Additionally, the MegaCore function tri-states devsel n, ack64n,
t rdyn, and st opn to begin the turn-around cycle on the PCI bus.
1= The local-side device must ensure that PCI latency rules are not
violated while the MegaCore function waits for data. If the local-
side device is unable to meet the latency requirements, it must
assert | t _di scn to request that the MegaCore function
terminate the transaction. The PCI target latency rules state that
the time to complete the first data phase must not be greater than
16 PCI clocks, and the subsequent data phases must not take
more than 8 PCI clock cycles to complete.
64-Bit Memory Burst Read Transaction
The sequence of events for a burst read transaction is the same as that of a
single-cycle read transaction. However, during a burst read transaction,
more data is transferred and both the local-side device and the PCI master
can insert waits states at any point during the transaction. Figure 2
illustrates a burst read transaction. This figure applies to all PCI
MegaCore functions, except the 64-bit extension signals as noted for the
pci _nt 32 and pci _t 32 functions.
72 Altera Corporation




PCI MegaCore Function User Guide Specifications

Figure 2. 64-Bit Zero Wait State Target Burst Read Transaction

1 2 3 4 5 6 7 8 9 10 11 12 13
S 720 N /A /2 N 72 W72 N 72 U 7 N /2 N N/ /A WA N

DO_L D1_L D2_L: D3_L:

ad[31..0] Adr 4

(1) ad[63..32] z DO_H D1_H D2_H D3_H

cben[3..0] 6 BEO_L BET_L BE2 L BE3 L

BEO_H BE1_H BE2_H BE3_H

(1) cben[7..4]

par Adr-PAR Z DO-L-PAR X D1-L-PAR X D2-L-PAR X D3-L-PAR

(1) par64 D0-H-PAR Y D1-H-PAR XD2-H-PAR X D3-H-PAR

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

|_adro[31..0] Adr

|_cmdo[3..0]

1_adi[31..0] DO_L] Di_L D2 L D3 L. D4_L

(1) |_adi[63..32] DO_H Di_H D2_H D3_H D4_H

It_framen

It_rdyn

It_ackn

It_dxfrn

It_tsr[11..0] i 000 381 i i i _781 ‘ ‘ 000

Note:
(1) These signals do not apply to pci _nt 32 or pci _t 32 for 32-bit target read transactions. For these transactions, the
signals should be ignored.

Altera Corporation 73

(%2}
-
@
o
=
o
@
=
)
>
7]




Specifications

PCI MegaCore Function User Guide

74

Figure 2 shows a 64-bit zero wait state burst transaction with four data
phases. The local side transfers five quad words (QWORDS) in clocks 6
through 10. The PCI side transfers data in clocks 7 through 10. Because of
the MegaCore function’s zero wait state requirement, the PCI side reads
ahead from the local side. Also, because the | _beno[ 7. . 0] signals are
not available until after a local data phase has completed, the delay
between data transfers on the local side and PCI side requires the local
target device to supply valid data on all bytes. If the local side is not
prefetchable (i.e., reading ahead will result in lost or corrupt data), it must
not accept burst read transactions, and it should disconnect after the first
QWORD transfer on the local side. Additionally, Figure 2 shows the

It _tsr[9] signal asserted in clock 4 because the master device has
franmen andi r dyn signals asserted, thus indicating a burst transaction.

I

o

A burst transaction can be identified if both the i r dyn and
framen signals are asserted at the same time during a
transaction. The function asserts| t _t sr[ 9] ifbothi r dyn and
f r amen are asserted during a valid target transaction. If

It _tsr[9] isnotasserted during a transaction, it indicates that
i rdyn and f ranen have not been detected or asserted during
the transaction. Typically this situation indicates that the current
transaction is single-cycle. However, this situation is not
guaranteed because it is possible for the master to delay the
assertion of i r dyn in the first data phase by up to 8 clocks. In
other words, if | t _t sr[ 9] is asserted during a valid target
transaction, it indicates that the impending transaction is a burst,
butifl t _tsr[9] isnotasserted it may or may not indicate that
the transaction is single-cycle.

Figure 3 shows the same transaction as in Figure 2 with the PCI bus
master inserting a wait state. Figure 3 applies to all PClI MegaCore
functions, except the 64-bit extension signals as noted for the pci _nt 32
and pci _t 32 functions. The PCI bus master inserts a wait state by
deasserting i r dyn in clock 8. The effect of this wait state on the local side
is shown in clock 9 because | t _ackn is deasserted, and as a result

I t _dxfrnisalso deasserted. This situation prevents further data from
being transferred on the local side because the internal pipeline of the
MegaCore function is full.

Altera Corporation



PCI MegaCore Function User Guide Specifications

Figure 3. 64-Bit Target Burst Read Transaction with PCI Master Wait State

1 2 3 4 5 6 7 8 9 10 1 12 13
a /N Y Y Y Y Y Y
ad[31..0] Adr z DO_L. Di_L D2 L z
(1) ad[63..32] z DO_H D1_H D2_H z
cben[3..0] 6 BEO_L BE1_L BE2_L
(1) cben[7..4] BEO_H BE1_H BE2_H
par Adr-PAR z DO-L-PAR Dii-L-PAR D2-L-PAR z
(1) par64 D0-H-PAR D1-H-PAR D2-H-PAR z
framen
(1) req64n
irdyn
devseln PN————
(1) ack64n N
trdyn PN —
stopn —
|_adro[31..0] Adr
|_cmdol[3..0] 6
I_adi[31..0] DO_L D1_L D2_L D3_L
(1)1_adi[63..32] DO_H D1_H D2_H D3_H
It_rdyn
It_framen T
It_ackn 4
It_dxfrn wn
=]
It_tsr[11..0] 000 381 781 381 781 000 2
)
QO
=4
Note: S
. . . . . . >
(1) These signals do not apply to pci _nt 32 or pci _t 32 for 32-bit target read transactions. For these transactions, the »

signals should be ignored.

Figure 4 shows the same transaction as shown in Figure 2 with the local
side inserting a wait state. The local side deasserts |t _r dyn in clock 6.
Deasserting | t _r dyn in clock 6 suspends the local side data transfer in
clock 7 by deasserting the | t _dxf r n signal. Because no data is
transferred in clock 7 from the local side, the function deassertst r dyn in
clock 8 thus inserting a PCI wait state.

Altera Corporation 75



Specifications PCI MegaCore Function User Guide

Figure 4. 64-Bit Target Burst Read Transaction with PCI with Local-Side Wait State

1 2 3 4 5 6 7 8 9 10 1" 12 13

73 2 S 72 N 2 N /5 N /8 NS /2 U 72 U /5 N 7 N 72 U 72 U W

ad[31..0] Adr z DO_L! D1_L D2 L z

(1) ad[63..32] z DO_Hi D1_H D2_Hi 3

cben[3..0] 6 BEO_L BE1 L BE2_|

(1) cben[7..4] BEO_H BE1_H BE2_H

par Adr-PAR z DO-L-PAR D1-L-PARX D2-L-PAR

(1) par6a DO-H-PAR D1-H-PAR X D2-H-PAR

framen

(1) req64n

irdyn

devseln

(1) ack64n
/ T~
trdyn

stopn

|_adro[31..0] Adr

|_cmdol[3..0]

|_adi[31..0] DO_L D1_L D2 L D3 L

(1)1_adi[63..32] DO_H D1_H D2_H: D3_H

It_rdyn /

It_framen

It_ackn

It_dxfrn /

Its[11.0] ‘ 000 ‘ ‘ 381 ‘ ‘ 781 381 8 ‘ 000

Note:
(1) These signals do not apply to the pci_mt32 or pci_t32 functions for target read transactions. For these transactions,
the signals should be ignored.

32-Bit Target Read Transactions

The PCI MegaCore functions respond to three types of 32-bit target read
transactions:

m  Memory read transactions

= |/0O read transactions
m  Configuration read transactions

76 Altera Corporation



PCI MegaCore Function User Guide Specifications

Altera Corporation

32-Bit Memory Read Transactions

For all MegaCore functions, 32-bit memory read transactions are either
single-cycle or burst. For the pci _nt 32 and pci _t 32 functions, the
waveforms for 32-bit memory read transactions are described in Figures 1
through 4, excluding the 64-bit extension signals as noted. For 32-bit
memory read transactions, the pci _nt 64 and pci _t 64 functions always
assume a 64-bit local side. The pci _nt 64 and pci _t 64 functions
automatically read 64-bit data on the local side and transfer the data to the
PCI master, one DWORD at a time, if the PCI bus is 32 bits wide. In a
memory read cycle, pci _nt 64 and pci _t 64 assert both | _| dat _ackn
and | _hdat _ackn to indicate that data is transferred 64 bits at a time on
the local side. The pci _nt 64 and pci _t 64 functions decode whether the
low or high DWORD is addressed by the master, based on the starting
address of the transaction:

m  If the address of the transaction is a QWORD boundary
(ad[ 2. .0] == B"000"), the first DWORD transferred to the PCI
side is the low DWORD, and pci _nt 64 or pci _t 64 assert both
| _Idat _acknand| _hdat _ackn.

m  However, if the address of the transaction is not at a QWORD
boundary (ad[ 2. . 0] == B"100"), the first DWORD transferred to
the PClI side is the high DWORD of the first 64-bit data phase. The low
DWORD of the first 64-bit data phase is not transferred to the PCI
side. After the 64-bit data phase, the low DWORD of the following
phases is transferred to the PCI side before the high DWORD,
followed by the high DWORD.

Figure 5 shows a 32-bit single-cycle memory read transaction, which
appliestothe pci _nt 64 and pci _t 64 functions. Refer to Figure 1 for the
description of a 32-bit single-cycle memory read transaction using the
pci _nt 32 and pci _t 32 functions.

The sequence of events in Figure 5 is exactly the same as in Figure 1,
except for the following cases:

m  During the address phase (clock 3), the master does not assert
r eq64n because the transaction is 32 bits.

m  Thepci_nt 64 orpci _t 64 function does not assertack64n when it
asserts devsel n.

m  The local side is informed that the pending transaction is 32 bits
because |t _t sr[ 7] isnotasserted whilel t _f r amen is asserted.

Figure 5 shows that the local side transfers a full QWORD in clock 6. In
clock 7, the pci _nt 64 and pci _t 64 functions transfer a full QWORD,
however, only the least significant DWORD is accepted by the PCI bus
master. The pci _nt 64 and pci _t 64 functions drive the correct parity
value on the par 64 signal in clock 8.

77

suoneoloads | N



Specifications PCI MegaCore Function User Guide

Figure 5. 32-Bit Single-Cycle Memory Read Transaction

ad(31.0] } X __Adr z X X Doij X

e G T OEYX

ST S G T

cben[7..4] ></ P@fﬂ/ )< :

I DXarPArX 2z X I BCEEZD
pr, (T T T T T T T DX
-\

reqé4n

AR VAR VARV A V4

irdyn

devseln

ackean | ; ; ; i i i i i —
S
trdyn i i i i i i : i i

stopn

|_adro[31..0] >< Adr

| omdo[3..0] f >< 6

I_adi[31.0] § X DOJ-: X

Ladi(63.32] %/59552/)( : :
B e

BEO_H

I_beno[7..4]

AV VR VAR

A
A

It_framen \

It_rdyn | . / >

It_ackn

It_dxfrn i \ /

It_tsr[11..0] . 000 . . __10f . . 501 X 000 >

78 Altera Corporation



PCI MegaCore Function User Guide Specifications

Altera Corporation

L=  Thepci _nt64andthepci _t 64 functions always transfer 64-
bit data on the local side. In a 32-bit single-cycle memory read
transaction, only the least significant DWORD is transferred to
the PCI master. Therefore, the local side is only required to
transfer the least significant DWORD in a 32-bit single-cycle
transaction. See Figure 5.

Figure 6 shows a 32-bit burst memory read transaction. This figure only
applies to the pci _nt 64 and pci _t 64 functions. For pci _nt 32 and
pci _t 32, Figure 2 reflects the waveforms for a 32-bit burst read
transaction, excluding the 64-bit extension signals as noted. The events in
Figure 6 are the same as in Figure 2. The main difference between the two
is that a 64-bit transfer takes one clock on the local side, but requires two
clocks on the PCI side. Therefore, the function automatically inserts local
wait states in clocks 7 and 9 to temporarily suspend the local transfer
allowing sufficient time for the data to be transferred on the PCI side. In
Figure 6,1t _tsr[ 7] isnotassertedand |t _tsr[9] isasserted
indicating that the transaction is a 32-bit burst. If the local side cannot
handle 32-bit burst transactions, it can disconnect after the first local
transfer.

79

suoneaoads [N



Specifications

PCI MegaCore Function User Guide

Figure 6. 32-Bit Burst Memory Read Transaction

ie

1 i2

clk

ad[31..0] Adr

DO_L:

ad[63..32]

cben[3..0]

BEO_L

BE1_H

cben[7..4]

par Adr-PAh

DO-L-P

AR X D0-H-PAR X D1-L-PAR D1-H-PAR

P TS

par64

framen

req64n

irdyn

devseln

acke4n

trdyn

stopn

|_adro[31..0]

Adr

|_cmdo[3..0]

_adi[31..0]

D1_|

D2_L

DL

I_adi[63..32]

DO_H

D1_|

D2_H

It_framen

It_rdyn

It_ackn

It_dxfrn

000

It_tsr{11..0] 301

701 000

1/0 Read Transaction

170 read transactions by definition are 32 bits. Figure 7 shows a sample
1/0 read transaction. This figure applies to all PCl MegaCore functions.
The sequence of events is the same as 32-bit single-cycle memory read
transactions. The main distinction between the two transactions is the
command onthelt_cndo[ 3..0] bus.InFigure7,It_tsr[11..0]
indicates that the base address register that detected the address hit is
BAR1. Additionally, during an 1/0 transaction| _| dat _ackn and

| _hdat _ackn are not relevant.

80

Altera Corporation



PCI MegaCore Function User Guide

Specifications

I =

The PCI MegaCore functions do not ensure that the combination
of thead[ 1. . 0] and cben[ 3. . 0] signals is valid during the
address phase of an I/0 transaction. Local side logic should
implement this functionality if performing I/0 transactions.
Refer to the PCI Local Bus Specification, Revision 2.2 for more
information on handling invalid combinations of these signals.

Figure 7. 1/0 Read Transaction

ck

ad[31..0] <

z ' ' ' Do L X

cben(3..0] < i 2

par

DO-L-PAR

framen

irdyn \

devseln

trdyn

stopn

|_adro[31..0]

Adr .

|_cmdol[3..0]

I_adi[31..0]

DO_L

|_benol[3..0]

BEO_L

It_framen :

It_rdyn

It_ackn i

It_dxfrn

ittsri1.0] K 000

Altera Corporation

02 ' ' 502 000

81

suoneaoads [N



Specifications PCI MegaCore Function User Guide

Configuration Read Transaction

Configuration read transactions are 32 bits. Configuration cycles are
automatically handled by the MegaCore functions and do not require
local side actions. Figure 8 shows a typical configuration read transaction.
This figure applies to all PCl MegaCore functions. The configuration read
transaction is similar to 32-bit single-cycle transactions, except for the
following terms:

During the address phase, i dsel must be asserted

Because the configuration read does not require data from the local
side, the MegaCore functions assert t r dyn independent from the

I t _rdyn signal. This situation results in t r dyn being asserted in
clock 6 instead of clock 7 as shown in Figure 4. The configuration read
cycle ends in clock 8.

Figure 8. Configuration Read Transaction

1 2 3 4 5 6 7 8
clk E
idsel ; : : i : :
ad[31..0] < X Adri z X X DO—LT X . :
cben[3..0] < . A . BEOL . X >
par < : : Adr-PA:R z: X : : DO-L-PA:R :
framen \ /
irdyn : :
devseln
trdyn
stopn
It_tst[11..0] 000 100i sooi X oooi

'~ The local side cannot retry, disconnect, or abort configuration
cycles.

82 Altera Corporation



PCI MegaCore Function User Guide Specifications

Altera Corporation

64-Bit Target Write Transactions

In target mode, the MegaCore function supports two types of 64-bit
memory write transactions.

= Memory single-cycle write
m  Memory burst write

For both types of write transactions, the events follow the sequence
described below:

1. The address phase occurs when the PCI master asserts the f r amen
and r eq64n signals and drives the address and command on
ad[ 31.. 0] and cben[ 3. . 0] correspondingly. Asserting r eq64n
indicates to the target device that the master device is requesting a
64-bit data transaction.

2. If the address of the transaction matches one of the BARs, the
pci _mt 64 or pci _t 64 function turns on the drivers for
ad[ 63. . 0] ,devsel n,ack64n,trdyn,and st opn. The drivers for
par and par 64 are turned on during the following clock.

3. Thepci _nt 64 orpci _t 64 function asserts devsel n and ack64n
to indicate to the master device that it is accepting the 64-bit
transaction.

4. One or more data phases follow next, depending on the type of write
transaction.

64-Bit Single-Cycle Target Write Transaction

Figure 9 shows the waveform for a 64-bit single-cycle target write
transaction. This figure applies to all PCl MegaCore functions, excluding
the 64-bit extension signals as noted for the pci _mt 32 and pci _t 32
functions.

83

suoneoloads | N



Specifications

PCI MegaCore Function User Guide

Figure 9. 64-Bit Single-Cycle Target Write Transaction

clk

ad[31..0]

(1) ad[63..32]
chen[3..0]

(1) cben[7..4]
par

(1) par64
framen

(1) req64n
irdyn

devseln

(1) acké4n
trdyn

stopn
|_adro[31..0]
|_cmdo[3..0]
|_dato[31..0]
(1)|_dato[63..32]
|_beno[3..0]
(1) 1_beno[7..4]
(1)1_ldat_ackn
(1) 1_hdat_ackn
It_framen
It_rdyn

It_ackn

It_dxfrn

It_tsr{11..0]

Note:

(1) These signals do not apply to the pci _nt 32 or pci _t 32 functions for 32-bit target write transactions. For these

transactions, the signals should be ignored.

84

1 2 3 (4 |5 ;6 (7 |8 P 1
E>< - E EDo_L E>< E >
H :>< H :Do?H :>< H >
:>< 7 : : :BEO_L :>< : >
i i >< i :BEO_H : >< H >

: XAdr-PAi:a : D:O-L-PAR : : X : >
: : X : D:O-H-PAR : : X : >
S
X Adr >
X 7 . X >
. X DOfL. P . >
: X DOﬁH: X : >
X TBEO_L X :
: X :BEO_H X
000 181 581: 000

Altera Corporation



PCI MegaCore Function User Guide Specifications

Table 26 shows the sequence of events for a 64-bit single-cycle target write
transaction.

Table 26.

64-Bit Single-Cycle Target Write Transactions (Part 1 of 2)

Clock
Cycle

Event

The PCl bus is idle.

The address phase occurs.

The MegaCore function latches the address and command, and decodes the address to check if it
falls within the range of one of its BARs. During clock 3, the master deasserts the f r anen and

r eq64n signals and asserts i r dyn to indicate that only one data phase remains in the transaction.
For a single-cycle target write, this phase is the only data phase in the transaction. The MegaCore
function uses clock 3 to decode the address, and if the address falls in the range of one of its BARSs,
the transaction is claimed.

If the MegaCore function detects an address hit in clock 3, several events occur during clock 4:

m  The MegaCore function informs the local-side device that it is going to claim the write transaction
by asserting one ofthe I t _tsr[5..0] signalsand|t_franen.InFigure 9,1t _tsr[0] is
asserted indicating that a base address register zero hit.

m  The MegaCore function drives the transaction command on | _cndo[ 3. . 0] and address on
| _adro[31..0].

m  The MegaCore function turns on the drivers of devsel n, ack64n, t rdyn, and st opn getting
ready to assert devsel n and ack64n in clock 5.

m |t _tsr[7] isasserted to indicate that the pending transaction is 64 bits.

m | t_tsr[8] isasserted to indicate that the PCI side of the MegaCore function is busy.

The MegaCore function asserts devsel n to claim the transaction. Figure 9 also shows the local side
asserting | t _r dyn, indicating that it is ready to receive data from the MegaCore function in clock 6.

To allow the local side ample time to issue a retry for the write cycle, the MegaCore function does not
assert t r dyn in the first data phase unless the local side asserts | t _rdyn. Ifthel t _r dyn signal is
not asserted in clock 5 (Figure 9), the MegaCore function delays the assertion of t r dyn accordingly.

The MegaCore function asserts t r dyn to inform the PCI master that it is ready to accept data.
Because i r dyn is already asserted, this clock is the first and last data phase in this cycle.

The rising edge of clock 7 registers the valid data from ad[ 63. . 0] and drives the data on the

| _dat o[ 63.. 0] bus, registers valid byte enables from cben[ 7. . 0] , and drives the byte enables
onl _beno[ 7.. 0] . Atthe same time, the MegaCore function assertsthe | t _ackn signal to indicate
that there is valid data on the | _dat o[ 63. . 0] bus and a valid byte enable on the | _beno[ 7. . 0]
bus. Because | t _rdyn is asserted during clock 6, and | t _ackn is asserted in clock 7, data will be
transferred in clock 7.1t _dxf rn is asserted in clock 7 to signify a local-side transfer. | t _t sr[ 10]
is asserted to indicate a successful data transfer on the PCI side during the previous clock cycle. The
MegaCore function also deasserts t r dyn, devsel n, and ack64n to end the transaction. To satisfy
the requirements for sustained tri-state buffers, the MegaCore function drives devsel n, ack64n,
trdyn, and st opn high during this clock cycle.

The MegaCore functionresetsalll t _tsr[ 11.. 0] signals because the PCI side has completed the
transaction. The MegaCore function also tri-states its control signals.

Altera Corporation 85

suoneaoads [N



Specifications PCI MegaCore Function User Guide

Table 26. 64-Bit Single-Cycle Target Write Transactions (Part 2 of 2)

Clock Event
Cycle

9 The MegaCore function deasserts | t _f r amen indicating to the local side that no additional data is
in the internal pipeline.

64-Bit Target Burst Write Transaction

The sequence of events in a burst write transaction is the same as for a
single-cycle write transaction. However, in a burst write transaction, more
data is transferred and both the local-side device and the PCI master can
insert wait-states.

Figure 10 shows a 64-bit zero wait state burst transaction with five data
phases. This figure applies to all PCl MegaCore functions, excluding the
64-bit extension signals as noted for the pci _nt 32 and pci _t 32
functions. The PCI master writes five QWORDs to the MegaCore function
during clocks 6 through 10. The local side transfers the same data during
clocks 7 through 11 correspondingly. Additionally, Figure 10 shows the
It _tsr[9] signal asserted in clock 4 because the master device has the
franmen andi r dyn signals asserted, thus indicating a burst transaction.
= A burst transaction can be identified if both the i r dyn and
f r amen signals are asserted at the same time during a
transaction. The MegaCore function asserts| t _t sr[ 9] if both
i rdyn and franen are asserted during a valid target
transaction. IfI t _t sr[ 9] is notasserted during a transaction, it
indicates thati r dyn and f r anen have not been detected or
asserted during the transaction. Typically this event indicates
that the current transaction is single-cycle. However, this
indication is not guaranteed because it is possible for the master
to delay the assertion of i r dyn in the first data phase by up to 8
clocks. In other words, if | t _t sr[ 9] is asserted during a valid
target transaction, it indicates that the pending transaction is a
burst, butifthe |l t _t sr[ 9] is not asserted it may or may not
indicate that the transaction is single-cycle.

86 Altera Corporation




PCI MegaCore Function User Guide

Specifications

Figure 10

clk

ad[31..0]

(1) ad[63..32]
chen[3..0]
(1) cben[7..4]
par

(1) par64
framen

(1) req64n
irdyn
devseln

(1) ack64n
trdyn

stopn
|_adro[31..0]
|_cmdo[3..0]
|_dato[31..0]
(1)1_dato[63..32]
|_beno[3..0]

(1)1_beno[7..4]

. 64-Bit Zero Wait State Target Burst Write Transaction

1 Q2 .3 4 i 5 ;6 07

12 13 P L

Adr DO_L D1 L

7 BEO_L

BE2_L

BE3_L

BE4_L

BEO_H

BE2_H

BE3_H

BE4_H

Adr-PAR DO-L-PAR

D1-L-PAR

D2-L-PAR

D3-L-PAR

D4-L-PAR

DO-H-PAR

D1-H-PAR

D2-H-PAR

D3-H-PAR

D4-H-PAR

DO_H

D1_H

D2_H

D3_H

D4_H

BEO_L

BEL L

BE2_L

BE3_L

BE4_L

BEO_H

BEL_H

BE2_H

BE3_H

BE4_H

(1) 1_ldat_ackn

(1)1_hdat_ackn

It_framen

It_rdyn

It_ackn

It_dxfrn

It_tsr{11..0] 000 X 381 781 000

suoneaoads [N

Note:
(1) These signals do not apply to the pci _nt 32 or pci _t 32 functions for target write transactions. For these
transactions, the signals should be ignored.

Figure 11 shows the same transaction as in Figure 10 with the PCI bus
master inserting a wait-state. It applies to all PCI functions, except the
64-bit extension signals as noted for pci _nt 32 and pci _t 32. The PCI
bus master inserts a wait state by deasserting the i r dyn signal in clock 7.
The effect of this wait state on the local side is shown in clock 8 with

It _ackn deasserted, and as a result | t _dxf r n is also deasserted. This
transaction prevents data from being transferred to the local side in clock
8 because the internal pipeline of the function does not have valid data.

Altera Corporation 87



Specifications

PCI MegaCore Function User Guide

Figure 11. 64-Bit Target Burst Write Transaction with PCI Master Wait State
1 32 33 34 35 36 37 38 39 310 ill 312 313 il
clk ; ; ; ; ; ; ; ; ; ; ; ; ;
ad[31..0] Adr DO_L D1 L D2 L D3 L
(1) ad[63..32] : DO_H D1_H D2_H D3_H
cben(3..0] 7 BEO_L : BEliLl BEZﬁL; BE37L;
(1) cben(7..4] BEO_H BElJ—i BEZ_H BES_H
par Adr—PAjR DjOVL—PAR : Dl—L—PAjR D2—L—PAjR D3—L—PA?R
(1) paré4 D(;»H-PAR Dl-H»P/;R D2-H-PA1R D3-H-P,’;R
framen
(1) req64n
irdyn
devseln
(1) ack64n
trdyn
stopn
|_adro[31..0] Adr
I_cmdo[3..0] 7
|_dato[31..0] DO_L D1 L D2 L D3 L
(1)1_dato[63..32] DO_H D1_H D2_H D3_H
|_beno[3..0] ;3E0_L BEl_L BEZ_Il BE3_Ii
(1)1_beno[7..4] ;BEoiH BElJ:-i BEZJ; BEZU:-!
(1)1idat_ackn -
(1)1_hdat_ackn P
It_framen P
It_rdyn
It_ackn
It_dxfrn
It_tsr[11..0] 000 381 ‘ 781 ‘ 381 ‘ 781‘ ‘ 000
Note:
(1) These signals do not apply to the pci _nt 32 or pci _t 32 functions for 32-bit target transactions. For these
transactions, the signals should be ignored.
Figure 12 shows the same transaction as in Figure 10 with the local side
inserting a wait-state. It applies to all PCI functions, except the 64-bit
extension signals as noted for pci _nt 32 and pci _t 32. The local side
deasserts | t _rdyn inclock 7. The function shows that deasserting
It _rdynin clock 7 suspends the local side data transfer in clock 8 by
deasserting | t _dxf r n. Because the local side is unable to accept
additional data in clock 8, the function deasserts t r dyn in clock 8 as well,
preventing PCI data from being transferred from the master device.
88 Altera Corporation



PCI MegaCore Function User Guide Specifications

Figure 12. 64-Bit Target Burst Write Transaction with Local-Side Wait State

1 P2 13 P4 15 16 17 1 8 19 : 10 P11 P12 113 Pl

clk

ad[31..0] Adr DO_L D1 L D2_L D3 L

(1) ad[63..32] DO_H D1 H D2_H D3_H

cben[3..0] 7 BEO_L BEL L BE2_L BE3_L

(1) cben(7..4] BEO_H BEL H BE2_H BE3 H

par Adr-PAR DO-L-PAR D1-L-PAR D2-L-PAR D3-L-PAR

(1) par64 DO-H-PAR D1-H-PAR D2-H-PAR D3-H-PAR

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

|_adro[31..0] Adr

|_cmdo[3..0] 7

|_dato[31..0] i ‘ ‘ ‘ ‘ ‘ Do L oLl ‘ D2 L D3l

(1)1_dato[63..32] DO_H D1_H D2_H D3_H

I_beno[3..0] BEQ_L BEL L BE2_L BE3_L

(1)1_beno[7..4] BEO_H BEL H BE2_H BE3_H

(1)1_Idat_ackn

(1)1_hdat_ackn

It_framen

It_rdyn

It_ackn

It_dxfrn

It_tsr{11..0] 000 381 781 381 781 000

suoneaoads [N

Note:
(1) These signals do not apply to the pci_mt32 or pci_t32 functions for 32-bit target write transactions. For these
transactions, the signals should be ignored.

s The local-side device must ensure that PCI latency rules are not
violated while the MegaCore function waits to transfer data. If
the local-side device is unable to meet the latency requirements,
it must assert| t _di scn to request that the MegaCore function
terminate the transaction. The PCI target latency rules state that
the time to complete the first data phase must not be greater than
16 PCI clocks, and the subsequent data phases must not take
more than 8 PCI clocks to complete.

Altera Corporation 89



Specifications

PCI MegaCore Function User Guide

90

32-Bit Target Write Transactions

The PCI MegaCore functions respond to three types of 32-bit target write
transactions

= Memory write transaction
= |/0 write transaction
m  Configuration write transaction

The following sections explain the variations of each type in more detail.

32-Bit Memory Write Transaction

For all MegaCore functions, 32-bit memory write transactions are either
single-cycle or burst transactions. For the pci _nt 32 and pci _t 32
functions, the waveforms for 32-bit memory write transactions are
described in Figures 9 through 12, excluding the 64-bit extension signals
asnoted. Thepci _m 64 and pci _t 64 functions transfer 32-bit data from
the PCI side and drive that data to the | _dat o[ 31. . 0] bus. The

pci _nt 64 and pci _t 64 functions decode whether the low or high
DWORD is addressed by the master device, based on the starting address
of the transaction. If the address of the transaction is a QWORD boundary
(ad[ 2..0] == B"000"), the first DWORD transferred is considered the
low DWORD and pci _nt 64 or pci _t 64 asserts| _| dat _ackn
accordingly; if the address of the transaction is not at a QWORD boundary
(ad[ 2..0] == B"100"), the first DWORD transferred is considered to
be the high DWORD and the pci _nt 64 or pci _t 64 function asserts

| _hdat _ackn accordingly.

Figure 13 shows a 32-bit single-cycle memory write transaction. This
figure applies to all PCI MegaCore functions, excluding the 64-bit
extension signals as noted for the pci _nt 32 and pci _t 32 functions. The
sequence of events in Figure 13 is exactly the same as in Figure 9, except
for the following:

m  Duringthe address phase (clock 3) the master does not assertr eq64n
because the transaction is 32 bits.

m  The MegaCore function does not assert ack64n when it asserts
devsel n.

m  The local side is informed that the pending transaction is 32 bits
becausethel t _tsr[ 7] isnotasserted whilel t _f ranmen is asserted
in clock 4.

Altera Corporation



PCI MegaCore Function User Guide

Specifications

Figure 13. 32-Bit Single-Cycle Memory Write Transaction
3 4 5 6 7 8 9 10

clk

ad[31..0] ( Adr

. DO_L . . X

cben[3..0]

.BEO_L ' ' X

par

' X AdrPAR

DOLPAR ' X

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

|_adro[31..0]

Adr ' ' X

|_cmdo[3..0]

|_dato[31..0]

X Dofl_f X

(1) |_dato[63..32]

|_benol[3..0]

BEO_L X

(1) |_beno[7..4]

(1) I_ldat_ackn

(1)1_hdat_ackn

It_framen :

It_rdyn

It_ackn :

It_dxfrn

A

It_tsr{11..0] 000

Note:

101 501 X 000

(1) These signals do not apply to the pci _nt 32 or pci _t 32 functions for 32-bit target write transactions. For these
transactions, the signals should be ignored.

Altera Corporation

91

suonesyoads [



Specifications

PCI MegaCore Function User Guide

92

In Figure 13, the local-side transfer occurs in clock 7 because | t _dxfrnis
asserted during that clock. At the same time, | _I dat _ackn is asserted to
indicate that the low DWORD is valid. This event occurs because the
address used in the example is at QWORD boundary.

Figure 14 shows a 32-bit burst memory write transaction; the events are
the same for Figure 10. Figure 14 only applies to the pci _nt 64 and

pci _t 64 functions. Forthe pci _m 32 and pci _t 32 functions, Figure 10
reflects the waveforms for a 32-bit burst memory write transaction,
excluding the 64-bit extension signals as noted. The main difference
between the two figuresis thatl _| dat _acknand| _hdat _ackn toggle
to indicate which DWORD is valid on the local side. In Figure 14, the high
DWORD is transferred first because the address used is not a QWORD
boundary. This situation occurs because | _hdat _ackn isasserted during
clock 6 and continues to be asserted until the first DWORD is transferred
on the local side during clock 7. The local side is informed that the
pending transaction is a 32-bit burst because | t _t sr[ 7] is not asserted
and |t _tsr[9] isasserted. If the local side cannot handle 32-bit burst
transactions, it can disconnect after the first local transfer.

Altera Corporation



PCI MegaCore Function User Guide Specifications

Figure 14. 32-Bit Burst Memory Write Transaction

1 ) i3 L4 '5 i 6 07 :8 i9 ;10 It (12 (13 ;14

clk

ad31.0] ‘ Adr ‘ Do_L ‘ ‘ DL L D2 L CERN D4_L

cben[3..0] 7 BEO_L BELL X BE2L BE3 L BE4_L

par Adr-PAR DO-L-PAR D1-L-PAR X D2-L-PAR X D3-L-PAR X D4-L-PAR

framen

req64n

irdyn

devseln

ack64n

trdyn

stopn

|_adro[31..0] Adr

|_cmdo[3..0] ) ) ] ] ] ] 7

|_dato[31..0] DO_L D1 L D2_L D3 L D4_L

|_dato[63..32]

I_beno[3..0] BEO_L BEL_L BE2_L BE3 L BE4_L

|_benol[7..4]
|_ldat_ackn \ /

|_hdat_ackn

It_framen

It_rdyn

It_ackn

It_dxfrn

It_tsr[11..0] ‘ 000 ‘ ‘ 301 ‘ ‘ ‘ 701 000

I/0 Write Transaction

suoneaoads [N

1/0 write transactions by definition are 32 bits. Figure 15 shows a sample
1/0 write transaction. This figure applies for PCI MegaCore functions.
The sequence of events is the same as 32-bit single-cycle memory write
transactions. The main distinction between the two transactions is the
commandonthel t _cndo[ 3. . 0] bus.

The PCI MegaCore functions do not ensure that the combination
of thead[ 1. . 0] and cben[ 3. . 0] signals is valid during the
address phase of an 170 transaction. Local side logic should
implement this functionality if performing I/0 transactions.
Refer to the PCI Local Bus Specification, Revision 2.2 for more
information on handling invalid combinations of these signals.

Altera Corporation 93



Specifications PCI MegaCore Function User Guide

Figure 15. I/O Write Transaction
1 52 53 54 55 56 57 58 59 510 Ell

clk ; ; ; ; ; .

adi31.0] K : Y Adr : ™ : :DO_L : : N

chen[3..0] X 3 X iBEOiL X _

par i E : XAdr-PAIE?X : DEO-L-PAR : : X

framen \ /
irdyn | ; i\

devseln

(1) ack64n
trdyn : : : : ; ; \ : / ;
stopn

I_adro[31..0] §< : : e : : v : : ¢
e
I_dato31..0] K )4 DofLi P

|_beno|[3..0] X fBEO_L X .

It_rdyn \

/
It_ackn i i i i i ; ; \—
A

It_dxfrn

It_tsr11..0] 000 X 102 X502

000 >

94 Altera Corporation



PCI MegaCore Function User Guide Specifications

Configuration Write Transaction

Configuration write transactions are 32 bits. Configuration cycles are
automatically handled by the MegaCore functions and do not require
local side actions. Figure 16 shows a typical configuration write
transaction. This figure applies for PCl MegaCore functions. The
configuration write transaction is similar to a 32-bit single-cycle
transaction, except for the following:

m  Duringthe address phase, i dsel must be asserted in a configuration
transaction

m  Because the configuration write does not require local side actions,
the MegaCore function asserts t r dyn independent from the
It _rdyn signal.

Figure 16. 32-Bit Configuration Write Transaction

clk
idsel : : : :
ad31.0] K X Adr , bo_L i X : i i >

BEO_L

chen[3..0] < i B

par

Adr-PAR DO-L-PAR

framen

irdyn

devseln

trdyn

stopn

it tsmi1.0] € 000 X 100 500 X 000 >

I The local side cannot retry, disconnect, or abort configuration
cycles.

Altera Corporation 95

suoneaoads [N




Specifications

PCI MegaCore Function User Guide

96

Target Transaction Terminations

For all transactions except configuration transactions, the local-side
device can request a transaction to be terminated with one of several
termination schemes defined by the PCI Local Bus Specification,
Revision 2.2. The local-side device can use thel t _di scn signal to request
aretry or disconnect. These termination types are considered graceful
terminations and are normally used by a target device to indicate that it is
not ready to receive or supply the requested data. A retry termination
forces the PCI master that initiated the transaction to retry the same
transaction at a later time. A disconnect, on the other hand, does not force
the PCI master to retry the same transaction.

The local-side device can also request a target abort, which indicates that
a catastrophic error has occurred in the device. This termination is
requested by asserting | t _abor t n during a target transaction other than
a configuration transaction.

For more details on these termination types, refer to the PCI Local Bus
Specification, Revision 2.2.

Retry

The local-side device can request a retry, for example, because the device
cannot meet the initial latency requirement or because the local resource
cannot transfer data at this time. A target device signals a retry by
asserting devsel n and st opn, while deasserting t r dyn before the first
data phase. The local-side device can request a retry as long as it did not
supply or request at least one data phase in a burst transaction. In a write
transaction, the local-side device may request a retry by asserting

It _di scnaslongasitdid notassertthel t _rdyn signal to indicate it is
ready for a data transfer. If | t _r dyn is asserted, it can result in the
MegaCore function asserting the t r dyn signal on the PCI bus. Therefore,
asserting | t _di scn forces a disconnect instead of a retry. In a read
transaction, the local-side device can request a retry as long as data has not
been transferred to the MegaCore function. Figure 17 applies to all PCI
functions, excluding the 64-bit signals as noted for pci _nt 32 and

pci _t 32.

Altera Corporation



PCI MegaCore Function User Guide Specifications

Figure 17. Target Retry

clk

adp.0] K Adr DO_L DIL

(1) ad[63..32] DO_H D1 H

cben3.0] K 7 BEO_L BEL L

(1) cben(7..4] BEO_H BEL H

par Adr-PAR DO-L-PAR D1-L-PAR

AR VARV VR I V4

(1) par64 DO-H-PAR D1-H_PAR

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

|_adro[31..0] Adr

|_cmdo[3..0] ) ) ] ] ] 7 ]

I_dato[31..0]

(1) |_dato[63..32]

|_beno[3..0] BEO_L

(1) I_beno[7..4]

AVARR VARV V4

L

BEO_H

(1) I_Ildat_ackn

suonesyoads [

(1) I_hdat_ackn

It_framen

It_discn

It_rdyn

It_ackn

It_dxfrn

It_tsr[11..0] ' 000 _ ' ' ' 381 ' ' 000 _

Note:
(1) These signals do not apply to the pci _nt 32 and pci _t 32 functions and should be ignored.

Altera Corporation 97



Specifications

PCI MegaCore Function User Guide

98

Disconnect

A PCI target can signal a disconnect by asserting st opn and devsel n
after at least one data phase is complete. There are two types of
disconnects: disconnect with data and disconnect without data. In a
disconnect with data, t r dyn is asserted while st opn is asserted.
Therefore, more data phases are completed while the PCI bus master
finishes the transaction. A disconnect without data occurs when the target
device deasserts t r dyn while st opn is asserted, thus ensuring that no
more data phases are completed in the transaction. Depending on the
sequence of thel t _rdynand |t _di scn signals’ assertion on the local
side and the irdyn signal’s assertion on the PCI side, the MegaCore
function issues either a disconnect with data or disconnect without data.

Figure 18 shows an example of a disconnect during a burst write
transaction that ensures only a single data phase is completed. Figure 18
applies toall PCl functions, excluding the 64-bit extension signals as noted
forpci _mt 32 andpci _t 32.InFigure 18, bothlt _rdynandlt_di scn
are asserted in clock 5. This transaction informs the MegaCore function
that the local side is ready to accept data but also wants to disconnect. As
aresult, the MegaCore function issues a disconnect with data and accepts
only one data phase.

Altera Corporation



PCI MegaCore Function User Guide

Specifications

Figure 18. Single Data Phase Disconnect in a Burst Write Transaction

clk

ad[31..0]

(1) ad[63..32]
cben[3..0]

(1) cben[7..4]
par

(1) par64
framen

(1) req64n
irdyn

devseln

(1) acké4n
trdyn

stopn
|_adro[31..0]
|_cmdo[3..0]
|_dato[31..0]
(1) |_dato[63..32]
|_beno[3..0]

(1) I_beno[7..4]
(1) I_ldat_ackn
(1) I_hdat_ackn
It_framen
It_discn

It_rdyn

It_ackn

It_dxfrn

It_tsr{11..0]

Note:

(1) These signals do not apply to the pci _nt 32 and pci _t 32 functions and should be ignored.

Altera Corporation

1 12 15 16 17 19 1 10
Adr ' .D07L DI ' >
B0_H DA ! >
7 .BEO_L BEl_L. ' >
.BEO_H . X BE17|—i . >
AdrPAR DOLPAR NCDLLPAR . >
DO-HPAR D1—H_P/'AR ' >
_\ N
_\ PN
/ -
) N S,
Adr
DO_L. . >
DO_H' ' >
. d .BEO_L . >
' éEo_H ' >
A
\ /
A
A
000 381 781 381 000

suonesyoads [



Specifications PCI MegaCore Function User Guide

Figure 19 shows an example of a disconnect during a burst target write
transaction where multiple data phases are completed. Figure 19 applies
to all PCI functions, excluding the 64-bit extension signals as noted for
pci _nt 32 and pci _t 32. One additional data phase will be completed on
the local side following the assertion of | t _di scn—when it is asserted
after | t _r dyn during a burst target write transaction.

100 Altera Corporation



PCI MegaCore Function User Guide Specifications

Figure 19. Disconnect in a Burst Write Transaction

1 2 3 4 5 6 7 8 9 10 11 12 13 14
ad[31..0] : Adr : : :DO_L : : D1_L: DZ_L: D3_L: D4_L: : : :
(1) ad[63..32] DO_H leHj D27Hj D37Hj D47Hj
chen(3..0] ‘ 7 ‘ :BEOJ_ : ‘ BE17L: BEZﬁL: BE37L: BE47L:
(1) chen(7..4] jBEO_H BEl_I—; BEZ_Hj BE3_|—; BE4_I—;
par Adr-PAIj? DjO-L»PAR Dl-L-PAjR D2-L-PA?R D3-L»PA?R D4-L-PAjR
(1) par64 : : : : DEJ-H-PAR : : D1-H-PA:R DZ-H-PA:\R D3—H-P/;R DA-H-PA:R
framen
(1) req64n
irdyn
devseln
(1) ack64n
trdyn
stopn
|_adro[31..0] Adr
|_cmdol[3..0] y » - - - - T ’
|_dato[31..0] DO_L D1_L D2_L D3_L D4_L
(1)1_dato[63..32] DUiHj DliHj D27Hj D37Hj D47Hj
|_beno[3..0] ‘ ‘ ‘ ‘ ‘ : BEO_L : BEl_Ii BEZ_\: BES_I: BE4_I:
(1)1_beno[7..4] ‘ ‘ ‘ ‘ ‘ : BEO_H : BELH; BEZJ—; BE37I—; BEAJ—;
(1) I_Idat_ackn
(1) 1_hdat_ackn
It_framen
It_discn wn
It_rdyn g
(@]
It_ackn E"
o
It_dxfrn g“,
o
t_tsi11..0] 000 381 781 381 000 a
Note:

(1) These signals do not apply to the pci _nt 32 and pci _t 32 functions and should be ignored.

Altera Corporation 101



Specifications PCI MegaCore Function User Guide

Figure 20 shows an example of a disconnect during a burst target read
transaction, and it applies to all PCI functions—excluding the 64-bit
extension signals as noted for pci _nt 32 and pci _t 32. During burst
target read transactions, | t _di scn should be asserted with the last data
phase on the local side. The | t _r dyn signal is asserted during clock 7
indicating that valid data will be available on the local side in clock 8.
Then, I t _di scnisasserted in clock 8 indicating the last data phase to be
completed on the local side.

Figure 20. Disconnect in a Burst Read Transaction

1 2 3 4 5 6 7 8 9 10 11 12

a /N N/ Y Y

ada1.0] < Adr z DO_L DLL

(1) ad[63..32] A DO_H D1 H

cben[3..0] 6 BEO_L: BE1 L

(1) cben(7..4] BEO_H BE1_H

par Adr-PAR XX Z XD0-L-PAR X D1-L-PAR X

(1) par64 DO-H-PAR X D1-H-PAR

framen

(1) req64n

irdyn

devseln

(f

(1) ack64n

trdyn

stopn

|_adro[31..0] Adr

|_cmdo[3..0] 6

I_adi[31..0] DO_L D1 L

(1) 1_adi[63..32] DO_H DI_H

It_framen /

It_discn

It_rdyn

It_ackn

It_dxfrn

It_tsr[11..0] 000 X 381 781 381

Note:
(1) These signals do not apply to the pci _nt 32 and pci _t 32 functions and should be ignored.

102 Altera Corporation



PCI MegaCore Function User Guide Specifications

I = The PCI Local Bus Specification, Revision 2.2 requires that a
target device issues a disconnect if a burst transaction goes
beyond its address range. In this case, the local-side device must
request a disconnect. The local-side device must keep track of the
current data transfer address; if the transfer exceeds its address
range, the local side should request a disconnect by asserting
I't_discn.

Target Abort

Target abort refers to an abnormal termination because either the local
logic detected a fatal error, or the target will never be able to complete the
request. An abnormal termination may cause a fatal error for the
application that originally requested the transaction. A target abort allows
the transaction to complete gracefully, thus preserving normal operation
for other agents.

A target device issues an abort by deasserting devsel nandt r dyn and
asserting st opn. A target device must set the t abort _si g bitin the PCI
status register whenever it issues a target abort. See “Status Register” on
page 54 for more details. Figure 21 shows the MegaCore function issuing
an abort during a burst write cycle. It applies to all PCI functions,
excluding the 64-bit extension signals as noted for pci _nt 32 and

pci _t 32.

I'=~  The PCI Local Bus Specification, Revision 2.2 requires that a
target device issues an abort if the target device shares bytes in
the same DWORD with another device, and the byte enable
combination received byte requests outside its address range.
This condition most commonly occurs during 1/0 transactions.
The local-side device must ensure that this requirement is met,
and if it receives this type of transaction, it must assert
I t _abort n to request a target abort termination.

suonealoads

Altera Corporation 103



Specifications PCI MegaCore Function User Guide

Figure 21. Target Abort

clk

ad[31..0] Adr DO_L D1-L D2 L D3 L

(1) ad[63..32] DO_H D1_H D2_H D3_H

chen[3..0] 7 BEO_L X BEL L BE2 L BE3 L

(1) cben[7..4] BEO_H BEL_H BE2_H BE3_H

par Adr-PAR DO-L-PAR D1-L-PAR X D2-L-PAR D3-L-PAR

par64 DO-H-PAR D1-H_PARXD2-H_PAR D3-H_PAR

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

|_adro[31..0] Adr

|_cmdo[3..0]

|_dato[31..0]

(1) |_dato[63..32] DO_H DI_H D2_H

|_beno[3..0] BEO L BE1 L BE2_L

(1) |_beno[7..4] BEO_H > BELH BE2_H

(1) I_Idat_ackn

(1) I_hdat_ackn

It_framen

It_abortn

It_rdyn /

It_ackn

It_dxfrn

It_tsr[11..0] i 000 i i i 381‘ ‘ ‘ 781 ‘ ‘ ‘381 ‘ 000 ‘

Note:
(1) These signals do not apply to the pci _nt 32 and pci _t 32 functions and should be ignored.

104 Altera Corporation



PCI MegaCore Function User Guide

Specifications

Master Mode
Operation

Altera Corporation

This section describes all supported master transactions for both the

pci _nt 64 and pci _nt 32 functions. Although this section includes

waveform diagrams showing typical PCI cycles in master mode for the
pci _nt 64 function, the waveforms also apply to the pci _nt 32 function.
Table 27 lists the PCI and local side signals that apply for each PCI

function.

Table 27. PCI MegaCore Function Signals (Part 1 of 2)

PCI Signals pci_mt64 pci_mt32
clk v v
rstn v v
gntn v v
regn v v
ad[ 63. . 0] v ad[31..0]
cbhen[7..0] v cben[3..0]
par Vv v
par 64 v
i dsel v v
framen v v
req64n v
irdyn v v
devsel n v v
ack64n v
trdyn v v
st opn v v/
perrn v v
serrn v v
i ntan v v
Local side signals
| _adi[63..0] v | _adi[31..0]
| _cbeni[7..0] v | _cbeni[3..0]
| _adro[63..0] v | _adro[31..0]
| _dat o[ 63..0] v | _dat o[ 31..0]
| _beno[7..0] v | _beno[3..0]
| _cmdo[ 3..0] v v
| | dat _ackn v
| _hdat _ackn v
Target local side
I't_abortn v v
It_discn v v

105

suoneaoads [N




Specifications PCI MegaCore Function User Guide

Table 27. PCI MegaCore Function Signals (Part 2 of 2)

PCI Signals pci_mt64 pci_mt32

It_rdyn

It_franmen

It _ackn

It _dxfrn

It_tsr[11..0]

lirgn

cache[7..0]

cnd_reg[5..0]

stat _reg[5..0]

Master local side

I mreq32n

I mreq64n

Imlastn

I mrdyn

I m adr _ackn

I m ackn

I mdxfrn

SISTSISISISISIS ISISICISISICISISIS
SISISISISISE IS ISISISISISISISICIS

Imtsr[9..0]

The MegaCore functions support both 64-bit and 32-bit transactions. The
pci _nt 64 function supports the following 64-bit PClI memory
transactions:

64-bit memory burst master read

64-bit memory single-cycle master read

64-bit memory burst master write

64-bit memory single-cycle master write (only supported if the 64-Bit
Only Devices option is turned on in the wizard)

Thepci _nt 64 and pci _mt 32 functions support the following 32-bit PCI
transactions:

32-bit memory burst master read

32-bit memory single-cycle master read
Configuration read

1/0 master read

32-bit memory burst master write
Configuration write

1/0 master write

106 Altera Corporation



PCI MegaCore Function User Guide Specifications

Altera Corporation

A master operation begins when the local-side master interface asserts the
I m_r eq64n signal to request a 64-bit transaction or the | m_ r eq32n
signal to request a 32-bit transaction. The PCI function asserts the r egn
signal to the PCI bus arbiter to request bus ownership. When the PCI bus
arbiter grants the PCI function bus ownership by asserting the gntn signal,
the local side is alerted and must provide the address and command.

Once the PCI MegaCore function has acquired mastership of the PCI bus,
the function asserts f r anen to indicate the beginning of a bus transaction,
which is referred to as the address phase. During the address phase, the
function drives the address and command signals onthe ad[ 31. . 0] and
cben[ 3. . 0] buses. If the local side requests a 64-bit transaction when
using the pci _nt 64 function, the function asserts the r eq64n and

f r amen signals at the same time. After the MegaCore function master
device has completed the address phase, the master waits for the target
devices on the bus to decode the address and claim the transaction by
asserting devsel n. With a 64-bit transaction, the target device asserts
ack64n and devsel n at the same time if it can accept the 64-bit
transaction. If the target device does not assert ack64n, the master device
completes a 32-bit transaction.

Both the pci _nt 64 and pci _nt 32 functions support single-cycle and
memory burst transactions. In a read transaction, data is transferred from
the PCI target device to the local-side device. In a write transaction, data
is transferred from the local side to the PCI target device. A memory
transaction can be terminated by the local side or by the PCI target device.
When the PCI target terminates the transaction, the local side is informed
of the conditions of the termination by specific bits in the Im t sr[ 9. . 0]
bus. The function treats memory write and invalidate, memory read
multiple, and memory read line commands in a similar manner to the
corresponding memory write/read commands. Therefore, the local side
must implement any special handling required by these commands. The
function outputs the cache line size register value to the local side for this
purpose.

The pci _m 64 and pci _nt 32 functions can generate any transaction in
master mode because the local side provides the function with the exact
command. When the local side requests 1/0 or configuration cycles, the
function automatically issues a 32-bit single-cycle read/write transaction.

1= The local-side device may require a long time to transfer data
to/from the function during a burst transaction. The local-side
device must ensure that PCI latency rules are not violated while
the function waits for data. Therefore, the local-side device must

not insert more than eight wait states before asserting | m_r dyn.

107

suoneoloads | N



Specifications

PCI MegaCore Function User Guide

108

PCI Bus Parking

By asserting the gnt n signal of a master device that has not requested bus
access, the PCI bus arbiter may park on any master device when the bus
is idle. In accordance with the PCI Local Bus Specification, Revision 2.2,
if the arbiter parks onthe pci _mnt 64 or pci _mnt 32, the function drives the
ad[ 31..0],cben[3..0] and par signals.

If the arbiter has parked the buson pci _mt 64 or pci _nt 32 and the local
side requests a transaction, the r equest bit (i.e.,,| m_t sr[ 0] ) will not be
asserted on the local side. The local state machine will immediately assert
the grant bit (i.e, | mtsr[1]).

Design Consideration

The arbiter may remove the gnt n signal after the local side has asserted
I m reqg64n orl m req32n to request the bus, but before the master
function has been able to assert the f r anen signal to claim the bus. In this
case, the | m_t sr signals will transition from the grant state (i.e.,

I m tsr[ 1] asserted) back to the request state (i.e.,| m_ t sr[ 0] asserted)
until the arbiter grants the bus to the requesting function again. In systems
where this situation may occur, the local-side logic should hold the
address and command on the | _adi [ 31..0] and| _cbeni [3..0]
buses until the address phase bit (i.e., | m_t sr[ 2] ) is asserted to ensure
that the pci _mt 64 or pci _nt 32 function has assumed mastership of the
bus and that the current address and command have been transferred.

64-Bit Master Read Transactions

In master mode, the pci _nt 64 function supports two types of 64-bit read
transactions:

m  Burst memory read
= Single-cycle read

For both types of transactions, the sequence of events is the same and can
be divided into the following steps:

1= The events for 32-bit master read transactions with pci _nmt 32
are the same as 64-bit master read transactions in pci _nt 64
except that | m r eq32n is used instead of | m r eq64n and the
64-bit extension signals are not implemented in pci _nt 32.

1. The local side asserts | m r eq64n to request a 64-bit transaction.

Consequently, the pci _nt 64 function asserts r egn to request bus
ownership from the PCI arbiter.

Altera Corporation



PCI MegaCore Function User Guide Specifications

2. When the PCI arbiter grants bus ownership by asserting the gnt n
signal, the pci _nt 64 function asserts | m_adr _ackn on the local
side to acknowledge the transaction address and command. During
the same clock cycle when | m_adr _ackn is asserted, the local side
must provide the addresson | _adi [ 31. . 0] and the command on
| _cbeni[3..0].Atthe same time, the pci _nt 64 function turns
on the drivers for f r amen and r eq64n.

3. The pci _nt 64 function begins the PCI address phase. During the
PCI address phase, the local side must provide the byte enables for
the transactionon | _cbeni [ 7. . 0] ; for burst transactions, the local
side must ensure that| _cbeni [ 7. . 0] = B"00000000". The byte
enables provided will be used throughout the master transaction. At
the same time, the pci _nt 64 function turns on the driver for
i rdyn.

4. Aturn-around cycle on the ad[ 63. . 0] occurs during the clock
immediately following the address phase. During the turn-around
cycle, the pci _nt 64 function tri-states ad[ 63. . 0] , but drives the
correct byte enables on cben[ 7. . 0] for the first data phase. This
process is necessary because the pci _m 64 function must release
the bus so another PCI agent can drive it.

5. A PCI target asserts devsel n to claim the transaction. One or more
data phases follow next, depending on the type of read transaction.

The pci _nt 64 and pci _nt 32 functions treat memory read, memory
read multiple, and memory read line commands in the same way. Any
additional requirements for the memory read multiple and memory read
line commands must be implemented by the local-side application.

Figure 22 shows the waveform for a 64-bit master zero-wait-state burst
memory read transaction. This figure applies to both the pci _nt 64 and
pci _m 32 MegaCore functions, excluding the 64-bit extension signals as
noted for pci _nt 32. In this transaction, three 64-bit words are
transferred from the PCI side to the local side.

suoneoloads | N

Altera Corporation 109



Specifications

PCI MegaCore Function User Guide

Figure 22. 64-Bit Master Zero-Wait-State Burst Memory Read Transaction

clk

reqn

gntn

ad[31..0]

(1) ad[63..32]
cben(3..0]

(1) cben([7..4]
par

(1) par64
framen

(1) req64n
irdyn

devseln

(1) ack64n
trdyn

stopn

(2) Im_req64n
|_adi[31..0]
|_cbeni[3..0]
(1) |_cbeni[7..4]
Im_adr_ackn
Im_lastn
Im_rdyn

(1) I_Idat_ackn
(1) I_hdat_ackn
Im_ackn

Im_dxfrn

|_dato[31..0]

) |_dato[63..32]

Im_tsr[9..0]

Notes:

1

/N

6

/N

7 8

9

/N

10

11

12

13

0 Adr z DO_L D1 L D2_L z
0 : z DO_H ‘ D1_H : D2_H : z
0 6 ‘BEﬁL ‘ ‘ z
0 ‘BEﬁH z
Adr-PAI:? z : DO-H-PA:R Dl-H-F'A:R D2-H-P/;R
: z : DO—H—PA:R Dl—H—PA:R DZ—H—P»;R
N~
N
Adr
6 ‘ BEﬁL:
BEiH:
X Do_L D1_L D2_L
: DofH: D1_H D2_H
000 001 002: 004 : 008 : 208 : 308 200: 000

(1) Thissignal does not apply to pci _nt 32 for 32-bit transactions. For these transactions, the signal should be ignored.
(2) Forpci_mt 32,1 mreq64n should be exchanged with | m r eq32n for 32-bit master transactions.

110

Altera Corporation



PCI MegaCore Function User Guide Specifications

Table 28 shows the sequence of events for a 64-bit zero-wait-state master
burst memory read transaction.

Table 28.

64-Bit Master Zero-Wait-State Burst Memory Read Transaction (Part 1 of 3)

Clock
Cycle

Event

The local side asserts | m_r eq64n to request a 64-bit transaction.

The function outputs r eqn to the PCI bus arbiter to request bus ownership. At the same time, the
function asserts | m t sr[ 0] to indicate to the local side that the master is requesting the PCI bus.

The PCl bus arbiter asserts gnt n to grant the PCI bus to the function. Although Figure 22 shows that
the grant occurs immediately and the PCI bus is idle at the time gnt n is asserted, this action may not
occur immediately in a real transaction. Before the function proceeds, it waits for gnt n to be asserted
and the PCl bus to be idle. A PCl bus idle state occurs when both f r anmen andi r dyn are deasserted.

The function turns on its output drivers, getting ready to begin the address phase.

The function also asserts | m adr _ackn to indicate to the local side that it has acknowledged its
request. During the same clock cycle, the local side must provide the PCI address on
| _adi [31..0] and the PCl commandon| _cbeni[3..0].

The function continues to assert its r egn signal until the end of the address phase. The function also
asserts | m t sr[ 1] to indicate to the local side that the PCI bus has been granted.

The function begins the 64-bit memory read transaction with the address phase by asserting f r amen
and req64n.

At the same time, the local side must provide the byte enables for the transaction on
| _cbeni[7..0].The byte enables provided will be used throughout the master transaction. The

local side also asserts | m r dyn to indicate that it is ready to accept data.

The function asserts | m t sr[ 2] to indicate to the local side that the PCl bus is in its address phase.

The function asserts i r dyn to inform the target that the function is ready to receive data. On the first
data phase the function asserts i r dyn regardless of whether the | m_r dyn signal is asserted on the
local side to indicate that the local side is ready to accept data. For subsequent data phases, the
function does not assert i r dyn unless the local side is ready to accept data.

The target claims the transaction by asserting devsel n. In this case, the target performs a fast
address decode. The target also asserts ack64n to inform the function that it can transfer 64-bit data.

During this clock cycle, the function also asserts | m_t sr[ 3] to inform the local side that it is in data
transfer mode.

Altera Corporation 111

suoneaoads [N




Specifications PCI MegaCore Function User Guide

Table 28. 64-Bit Master Zero-Wait-State Burst Memory Read Transaction (Part 2 of 3)

Clock
Cycle

Event

8

The target asserts t r dyn to inform the function that it is ready to transfer data. Because the function
has already asserted i r dyn, a data phase is completed on the rising edge of
clock 9.

At the same time, | m_t sr[ 9] is asserted to indicate to the local side that the target can transfer
64-bit data.

The function asserts | m_ackn to inform the local side that the function has registered data from the
PCI side on the previous cycle and is ready to send the data to the local side master interface.
Because | m r dyn was asserted in the previous cycle and | m ackn is asserted in the current cycle,
the function asserts | m_dxf r n. The assertion of the | m_dxfrn,| _| dat _ackn,and| _hdat _ackn
signals indicate to the local side that valid data is available on the | _dat o[ 63. . 0] data lines.

Because i rdyn and t r dyn are asserted, another data phase is completed on the PCI side on the
rising edge of clock 10.

On the local side, the | m_| ast n signal is asserted. Because | m_ | astn, i rdyn, and t rdyn are
asserted during this clock cycle, this action guarantees to the local side that, at most, two more data
phases will occur on the PCI side: one during this clock cycle and another on the following clock cycle
(clock 10). The last data phase on the PCI side takes place during clock 10.

The function also asserts | m_t sr[ 8] in the same clock to inform the local side that a data phase
was completed successfully on the PCI bus during the previous clock.

10

Because | m | ast n was asserted and a data phase was completed in the previous cycle, f r amen
and r eq64n are deasserted, while i r dyn and t r dyn are asserted. This action indicates that the last
data phase is completed on the PCI side on the rising edge of clock 11.

On the local side, the function continues to assert | m_ackn, informing the local side that the function
has registered data from the PCI side on the previous cycle and is ready to send the data to the local
side master interface. Because | m r dyn was asserted in the previous cycle and | m ackn is
asserted in the current cycle, the function asserts | m_dxf r n. The assertion of the | m_dxf r n,

| _I dat _ackn, and | _hdat _ackn signals indicate to the local side that another valid data is
available on the | _dat o[ 63. . 0] data lines. The local side has now received two valid

64-bit data.

The function continues to assert | m t sr [ 8] informing the local side that a data phase was
completed successfully on the PCI bus during the previous clock.

112

Altera Corporation




PCI MegaCore Function User Guide Specifications

Table 28. 64-Bit Master Zero-Wait-State Burst Memory Read Transaction (Part 3 of 3)

Clock
Cycle

Event

11

On the PCl side, i rdyn, devsel n, ack64n, and t r dyn are deasserted, indicating that the current
transaction on the PCI side is completed. There will be no more PCI data phases.

On the local side, the function continues to assert | m_ackn, informing the local side that the function
has registered data from the PCI side on the previous cycle and is ready to send the data to the local-
side master interface. Because | m_r dyn was asserted in the previous cycle and | m_ackn is
asserted in the current cycle, the function asserts | m_dxf r n. The assertion of the | m_dxf rn,

| I dat _ackn, and| _hdat _ackn signals indicate to the local side that data on the

| _dat o[ 63.. 0] bus is valid. The local side has now received three 64-bit words of data.

Because the local side has received all the data that was registered from the PCI side, the local side
can now deassert | m_r dyn. Otherwise, if there is still some data that has not been transferred from
the PCI side to the local side, | m r dyn must continue to be asserted.

The function continues to assert | m_t sr[ 8] informing the local side that a data phase was
completed successfully on the PCI bus during the previous clock.

12

The function deasserts | m t sr[ 3], informing the local side that the data transfer mode is

completed. Therefore, | m_ackn and | m_dxf r n are also deasserted.

64-Bit Master Burst Memory Read Transaction with Local-Side Wait State

Figure 23 shows the same transaction as in Figure 22 with the local side
inserting a wait state. This figure applies to both the pci _nt 64 and

pci _mt 32 MegaCore functions, excluding the 64-bit extension signals as
noted for pci _nt 32. The local side deasserts | m r dyn in clock 9.
Consequently, on the following clock cycle (clock 10), the pci _nt 64
function suspends data transfer on the local side by deasserting the

I m_dxf r n signal and on the PCI side by deasserting the i r dyn signal.

Altera Corporation 113

suoneaoads [N



Specifications

PCI MegaCore Function User Guide

Figure 23

clk

reqn
gntn
ad[31..0]

(1) ad[63..32]

. 64-Bit Master Burst Memory Read Transaction with Local Wait State

1

/N

6

7 8 9

72 U 2 N A N A N

10

/N

11

12

13

14

Adr z DO_L D1_L

D2_L

z DO_H D1_H

D2_H

cben[3..0]

(1) cben([7..4]
par

(1) par64
framen

(1) req64n
irdyn

devseln

(1) ack64n
trdyn

stopn

(2) Im_req64n
|_adi[31..0]
|_cbeni[3..0]
(1) |_cbeni[7..4]
Im_adr_ackn
Im_lastn
Im_rdyn

(1) I_Idat_ackn

(1) I_hdat_ackn

Im_ackn

Im_dxfrn

|_dato[31..0]
(1) |_dato[63..32]

Im_tsr[9..0]

Notes:

6 BE_L

BE_H

Adr-PAR 4

DO-L-PARY D1-L-PAR

D2-L-PAR

Y4 DO-H-PAR »>{D1-H-PAR

D2-H-PAR

BE L

BE_H

D2_L

X po_L

DO_H

D1_H

D2_H

000

001

002

004 008 208

308

208

308

200

000

(1) Thissignal does not apply to pci _nt 32 for 32-bit transactions. For these transactions, the signal should be ignored.
(2) Forpci_m 32,1 mreq64n should be exchanged with | m r eq32n for 32-bit master transactions.

114

Altera Corporation



PCI MegaCore Function User Guide Specifications

64-Bit Master Burst Memory Read Transaction with PCI Wait State

Figure 24 shows the same transaction as in Figure 22 with the PCI bus
target inserting a wait state. This figure applies to both pci _nt 64 and
pci _nt 32 MegaCore functions, excluding the 64-bit extension signals as
noted for pci _nt 32. The PCI target inserts a wait state by deasserting
trdyn in clock 9. Consequently, on the following clock cycle (clock 10),
the function deasserts the | m_ackn and | m_dxf r n signal on the local
side. Data transfer is suspended on the PCl side in clock 9 and on the local
side in clock 10.

suoneaoads [N

Altera Corporation 115



Specifications

PCI MegaCore Function User Guide

Figure 24. 64-Bit Master Burst Memory Read Transaction with PCI Wait State

clk

regn

gntn

ad[31..0]

(1) ad[63..32]

1

/O

6 7 8 9 10

11 12 13

7200 /2 N /A U /A NS /A N /A N /2 N A N

14

chen[3..0]

(1) cben[7..4]
par

(1) par64
framen

(1) req64n
irdyn

devseln

(1) ack64n
trdyn

stopn

(2) Im_req64n
|_adi[31..0]
|_cbeni[3..0]
(1) I_cbeni[7..4]
Im_adr_ackn
Im_lastn
Im_rdyn

(1) I_ldat_ackn
(1) I_hdat_ackn
Im_ackn
Im_dxfrn
I_dato[31..0]
(1) 1_dato[63..32)

Im_tsr[9..0]

Notes:

Adr-PAR z DO-L-PAR

D1-L-PAR D2-L-PAR

z DO-H-PAR

D1-H-PAR D2-H-PAR

BE_H

X po_L

: X DOﬁH‘

000

004 008 208 308

208 308 200

(1) Thissignal does not apply to pci _nt 32 for 32-bit transactions. For these transactions, the signal should be ignored.
(2) Forpci_nt32,1 mreq64n should be exchanged with | m r eq32n for 32-bit master transactions.

116

Altera Corporation



PCI MegaCore Function User Guide Specifications

Altera Corporation

64-Bit Master Single-Cycle Memory Read Transaction

The pci _nt 64 function can perform 64-bit master single-cycle memory
read transactions. If your application is a system that has only 64-bit PCI
devices and the local side wants to transfer one 64-bit data, Altera
recommends that you perform a 64-bit single-cycle memory read
transaction. However, if your application is a system that has 32- and 64-
bit PCI devices and the local side wants to transfer one 64-bit data, Altera
recommends that a 32-bit burst memory read transaction is performed.

Figure 25 shows the same transaction as in Figure 22 with just one data
phase. This figure applies to both the pci _m 64 and pci _nt 32
MegaCore functions, excluding the 64-bit extension signals as noted for
pci _nt 32. Inclock 6, f ramen and r eq64n are asserted to begin the
address phase. At the same time, the local side should assert the

I m_| ast nsignal on the local side to indicate that it wants to transfer only
one 64-bit data. In a real application, in order to indicate a single-cycle 64-
bit data transfer, the | m_| ast n signal can be asserted on any clock cycle
between the assertion of | m_ r eq64n and the address phase.

117

suoneoloads | N




Specifications PCI MegaCore Function User Guide

Figure 25. 64-Bit Master Single-Cycle Memory Read Transaction

ck /NN Y Y Y Y N N

regn

gntn

ad[31..0] 0 Adr z DO_L z

(1) ad[63..32] 0 z DO_H z

cben[3..0] 0 6 BE_L z

(1) cben[7..4] ) BE_H Z

par Adr-PAR Z DO-L-PAR

(1) par64 z DO-H-PAR

framen

N
(1) req64n \

irdyn

devseln

(1) ack64n

trdyn

stopn

(2) Im_req64n \

_adi[31..0] v

|_cbeni[3..0] 6 BE_L

(1) I_cheni[7..4] : : : : : BEJ—;

Im_adr_ackn

Im_lastn

Im_rdyn

(1) I_Idat_ackn

(1) I_hdat_ackn

Im_ackn

Im_dxfrn

|_dato[31..0] DO_L

(1) I_dato[63..32) : : : : ‘ ‘ ‘ ‘ X DUiH‘

Im_tsr[9..0] 000 001 002 004 008 208 308 200 000 >

Notes:
(1) Thissignal does not apply to pci _nt 32 for 32-bit transactions. For these transactions, the signal should be ignored.
(2) Forpci_nt32,1 mreq64n should be exchanged with | m r eq32n for 32-bit master transactions.

118 Altera Corporation



PCI MegaCore Function User Guide Specifications

32-Bit Master Read Transactions

In master mode, the pci _nt 64 and pci _nt 32 functions support three
types of 32-bit read transactions:

m  Memory read transactions
m  1/0 read transactions
m  Configuration read transactions

For both the pci _nt 64 and pci _m 32 functions, 32-bit memory read
transactions are either single-cycle or burst. The 32-bit master read
transactions are similar to 64-bit master read transactions, but the upper
address ad[ 63. . 32] and the upper command/byte enables

cben[ 7. . 4] are invalid. For pci _nt 32, the waveforms for 32-bit
memory read transactions are described in Figures 22 through 25,
excluding the 64-bit extension signals as noted, and in Figures 27 and 28.

32-Bit PCI & 64-Bit Local-Side Master Burst Memory Read Transaction

Figure 26 shows the same transaction as in Figure 22, but because the PCI
target cannot transfer 64-bit transactions, this figure applies to the

pci _nt 64 function only. In this transaction, the local-side master
interface requests a 64-bit transaction by asserting | m_r eq64n. The

pci _nt 64 function asserts r eq64n on the PCI side. However, the PCI
target cannot transfer 64-bit data, and therefore does not assertack64n in
clock 7. Accordingly, the upper address ad[ 63. . 32] and the upper
command/byte enables cben[ 7. . 4] are invalid.

Valid data is only presented on the | _dat o[ 31. . 0] bus; however,
because the PCI side is 32 bits wide and the local side is 64 bits wide, the
| _I'dat_acknand!| _hdat _ackn signals toggle to indicate whether the
the address is on a QWORD boundary (i.e., ad[ 2. . 0] =B"000") or not.
Along with these signals, valid data is qualified with | m_ackn asserted.

['=~  Because the local-side master interface is 64 bits and the PCI
target is only 32 bits, these transactions always begin on 64-bit
boundaries, which results in| _I dat _ackn always asserted
first.

suoneaoads [N

Altera Corporation 119



Specifications

PCI MegaCore Function User Guide

Figure 26. 32-Bit PCI & 64-Bit Local-Side Master Burst Memory Read Transaction

clk

regn

gntn
ad[31..0]
ad[63..32)
chen[3..0]
chen[7..4]
par

par64
framen
req64n
irdyn
devseln
ack6é4n
trdyn

stopn

Im_req64n
|_adi[31..0]

_cbeni[3..0]

I_cbeni[7..4]

Im_adr_ackn
Im_lastn
Im_rdyn
|_ldat_ackn
|_hdat_ackn
Im_ackn

Im_dxfrn

I_dato[31..0]

_dato[63..32]

Im_tsr[9..0]

120

1

/O

6

7 8

/N

9

/N

10

/N

11

12

13

0 Adr z DO_L DI_L D2 L
0 6 BE_L
Adr-PAR Z DO-L-PAR X D1-L-PAR X D2-L-PAR X D3-L-PAR
N
N
N
Adr
6 BE_L
BE_H
DO_L DI_L
000 001 000

002

004 008

108

Altera Corporation



PCI MegaCore Function User Guide Specifications

32-Bit PCI & 32-Bit Local-Side Master Burst Memory Read Transaction

Figure 27 shows the same transaction as in Figure 22, but the local side
master interface requests a 32-bit transaction by asserting | m r eq32n.
This figure applies to both pci _nt 64 and pci _nt 32 MegaCore
functions, excluding the 64-bit extension signals as noted for pci _nt 32.
The pci _nt 64 function does not assert r eq64n on the PCI side.
Therefore, the upper addressad[ 63. . 32] and the upper command/byte
enables cben[ 7. . 4] are invalid.

suoneaoads [N

Altera Corporation 121



Specifications

PCI MegaCore Function User Guide

Figure 27. 32-Bit PCI & 32-Bit Local-Side Master Burst Memory Read Transaction

1 2

clk /—\_/—\_

regn

5 6 7 8 9 10 11

200 W2 A N N A N A NS U 2 U

12

13

gntn

ad[31..0]

(1) ad[63..32]

chen[3..0]

(1) cben[7..4]

par

Adr-PAR 4

DO-L-PAR X D1-L-PAR X D2-L-PAR

(1) par64

framen

(1) req64n

irdyn

devseln

(1) Eack64n

trdyn

stopn

Im_req32n \

_adi[31..0]

I_cbeni[3..0]

(1) |_cheni[7..4]

Im_adr_ackn

Im_lastn

Im_rdyn

|_ldat_ackn

|_hdat_ackn

Im_ackn

Im_dxfrn

|_dato[31..0]

X Dpo_L DI_L

D2_L

(1) I_dato[63..32]

Im_tsr[9..0] 000

Note:

001

002 004 008 108

000

(1) This signals does not apply to pci _nt 32 for 32-bit master read transactions. For these transactions, the signal

should be ignored.

122

Altera Corporation



PCI MegaCore Function User Guide Specifications

32-Bit PCI & 32-Bit Local Side Single-Cycle Memory Read Transaction

Figure 28 shows the same transaction as in Figure 27, but the local side
master interface transfers only one data phase. This figure applies to both
the pci _m 64 and pci _nt 32 MegaCore functions, excluding the 64-bit
extension signals as noted for pci _nt 32. This waveform also applies to
the following types of single-cycle transactions:

m  |/Oread
m  Configuration read

suoneaoads [N

Altera Corporation 123



Specifications PCI MegaCore Function User Guide

Figure 28. 32-Bit PCI & 32-Bit Local-Side Single-Cycle Memory Read Transaction

1 2 3 4 5 6 7 8 9 10

a /N

reqn

gntn

ad[31..0] 0 Adr z DO_L z

(1) ad[63..32]

BE_L z

chen(3..0] 0 6

(1) cben[7..4]

par Adr-PAR z DO-L-PAR

(1) par64
framen |

(1) req64n

irdyn

devseln

(1) ack64n
trdyn /

stopn

Im_req32n \

I_adi[31..0] Adr

|_cbeni[3..0] 6 BE_L

(1) |_cbeni[7..4]

Im_adr_ackn \

Im_lastn

Im_rdyn

(1) I_ldat_ackn

(1) I_hdat_ackn

Im_ackn _/—
_/_

Im_dxfrn

|_dato[31..0] X po_L

(1) I_dato[63..32]

Im_tsr[9..0] 000 ‘ ‘ 001 ‘ ‘ 002‘ 004‘ ‘ 008 ‘ 103 000

Note:
(1) This signal does not apply to pci _nt 32 for 32-bit master read transactions. For these transactions, the signals
should be ignored.

124 Altera Corporation



PCI MegaCore Function User Guide Specifications

Altera Corporation

64-Bit Master Write Transactions

In master mode, the pci _nt 64 function supports 64-bit memory write
transactions. If the 64-Bit Only Devices option is used, the pci _n64
function can perform single-cycle write transactions; however, this option
is only recommended for use in specific application environments. For all
other cases, Altera recommends performing a 32-bit memory burst write
if the local side wants to transfer a single 64-bit data.

Refer to “Parameters” on page 37 for more information on the 64-Bit Only
Devices option.

For 64-bit master write transactions, the sequence of events can be divided
into the following steps:

1= The steps are the same for 32-bit transactions using the
pci _nt 32 function, except that the | m_r eq32n signal must be
used on the local side to request a 32-bit transaction.

1. The local side asserts | m r eq64n to request a 64-bit transaction.
Consequently, the pci_mt64 function asserts r eqn to request
mastership of the bus from the PCI arbiter.

2. When the PCI bus arbiter grants mastership by asserting the gnt n
signal, the pci _nt 64 function asserts | m_adr _ackn on the local
side to acknowledge the transaction’s address and command.
During the same clock cycle when | m_adr _ackn is asserted, the
local side should provide the address on | _adi [ 31. . 0] and the
command on| _cbeni [ 3. . 0] . At the same time, the pci _nt 64
function turns on the drivers for f r anen and r eq64n signals.

3. The pci _nt 64 function begins the PCI address phase. During the
PCI address phase, the local side must provide the byte enables for
the transactionon | _cbeni [ 7. . 0] ; for burst transactions, the local
side must ensure that| _cbeni [ 7. . 0] =B"00000000". The byte
enables provided are used throughout the transaction. At the same
time, the pci _nt 64 function turns on the driver fori r dyn.

4. If the address of the transaction matches one of the base address
registers of a PCI target, the PCI target asserts devsel n to claim the
transaction. One or more data phases follow next, depending on the
type of write transaction.

The pci _nt 64 and pci _nt 32 functions treat memory write and
memory write and invalidate in the same way. Any additional
requirements for the memory write and invalidate command must be
implemented by the local-side application.

125

suoneoloads | N



Specifications

PCI MegaCore Function User Guide

126

64-Bit Master Zero Wait State Burst Memory Write Transaction

Figure 29 shows the waveform for a 64-bit master zero wait state burst
memory write transaction. This figure applies to both pci _nt 64 and
pci _nt 32 MegaCore functions, excluding the 64-bit extension signals as
noted for pci _nt 32. In this transaction, four 64-bit words are transferred
from the local side to the PCI side.

Altera Corporation



PCI MegaCore Function User Guide Specifications

Figure 29. 64-Bit Master Zero Wait State Burst Memory Write Transaction

1 2 3 4 5 6 7 8 9 10 11 12 13

ay/ Y Y O

regn

gntn

ad[31..0] 0 Adr DO_L D1_L D2_L D3 L z

(1) ad[63..32] 0 DO_H D1 _H D2_H D3_H z

cben[3..0] 0 7 BE_L 4

(1) chen[7..4] 0 BE H 4

par Adr-PAR DO-L-PAR D1-L-PAR X D2-L-PAR X D3-L-PAR

DO-H-PAR Dl—H—PAR D2-H-PAR X D3-H-PAR

(1) par64
TN

framen

FA NS

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

(2) Im_req64n \

|_adi[31..0] Adr DO_L D1 L D2_L D3_L

(1) 1_adi[63..32) DO_H D1_H D2_H D3_H

|_cbeni[3..0] 7 BE_ L

(1) I_cbeni[7..4] : : : ‘ ‘ BEﬁH‘

Im_adr_ackn

Im_lastn

Im_rdyn

(1) I_Idat_ackn

(1) I_hdat_ackn

Im_ackn

Im_dxfrn

Im_tsr[9..0] 000 001 002 004 008 208 308 000

Notes:

(1) Thissignal does notapply to pci _nt 32 for 32-bit master read transactions. For these transactions, the signal should
be ignored.

(2) Forpci_mt 32,1 m reg64n should be exchanged with | m_r eg32n for 32-bit master transactions.

Altera Corporation 127

suoneaoads [N



Specifications PCI MegaCore Function User Guide

Table 29 shows the sequence of events for a 64-bit zero wait state master
burst memory write transaction.

Table 29.

64-Bit Zero Wait State Master Burst Memory Write Transaction (Part 1 of 3)

Clock
Cycle

Event

The local side asserts | m r eq64n to request a 64-bit transaction.

The function outputs r eqn to the PCI bus arbiter to request bus ownership. At the same time, the
function asserts | m t sr[ 0] to indicate to the local side that the master is requesting control of the
PCI bus.

The PCI bus arbiter asserts gnt n to grant the PCI bus to the function. Although Figure 22 shows that
the grant occurs immediately and the PClI bus is idle at the time gnt n is asserted, this action may not
occur immediately in a real transaction. Before the function proceeds, it waits for gnt n to be asserted
and the PCl bus to be idle. A PCI bus idle state occurs when both f r amen and i r dyn are deasserted.

The function turns on its output drivers, getting ready to begin the address phase.

The function also outputs | m adr _ackn to indicate to the local side that it has acknowledged its
request. During this same clock cycle, the local side should provide the PCI address on
| _adi[31..0] andthe PCl command on| _cbeni[3..0].

The local side master interface asserts | m r dyn to indicate that it is ready to send data to the PCI
side. The function does not asserti r dyn regardless if the local side asserts | m_r dyn to indicate that
it is ready to send data, only for the first data phase on the local side. For subsequent data phases,
the MegaCore function asserts i r dyn if the local side is ready to send data.

The PCI MegaCore function continues to assert its r eqn signal until the end of the address phase.
The function also asserts | m_t sr[ 1] to indicate to the local side that the PCI bus has been granted.

The PCI MegaCore function begins the 64-bit memory write transaction with the address phase by
asserting f r amen and r eq64n.

At the same time, the local side must provide the byte enables for the transaction on
| _cbeni[7..0].

The PCI MegaCore function asserts | m_ackn to indicate to the local side that it is ready to transfer
data. Because | m r dyn was asserted in the previous cycle and | m_ackn is asserted in the current
cycle, the PCI MegaCore function asserts | m_dxf r n. The assertion of the | m_dxf rn and

| _hdat _ackn signals indicate to the local side that the PCI MegaCore function has transferred one
QWORD from | _adi [ 63..0].

The PCI MegaCore function asserts | m t sr[ 2] to indicate to the local side that the PCl bus is in its
address phase.

128

Altera Corporation




PCI MegaCore Function User Guide Specifications

Table 29. 64-Bit Zero Wait State Master Burst Memory Write Transaction (Part 2 of 3)

Clock
Cycle

Event

The target claims the transaction by asserting devsel n. In this case, the target performs a fast
address decode. The target also asserts ack64n to inform the function that it can transfer 64-bit data.
The target also asserts t r dyn to inform the function that it is ready to receive data.

During this clock cycle, the function also asserts | m_t sr[ 3] to inform the local side that it is in data
transfer mode. The function deasserts | m_ackn because its internal pipeline has valid data from the
local side data transfer during the previous clock but no data was transferred on the PCI side. To
ensure that the proper data is transferred on the PCI bus, the function asserts i r dyn during the first
data phase only after the PCI target asserts devsel n.

The function asserts i r dyn to inform the target that the function is ready to send data. Because the
i rdyn andtrdyn are asserted, the first 64-bit data is transferred to the PCI side on the rising edge
of clock 9.

The PCI MegaCaore function asserts | m t sr[ 9] to indicate to the local side that the target can
transfer 64-bit data. The function also asserts | m_ackn to inform the local side that the PCI side is
ready to accept data. Because | m r dyn was asserted in the previous cycle and | m_ackn is
asserted in the current cycle, the function asserts | m_dxf r n. The assertion of the | m_dxf rn,

| _I dat _ackn and | _hdat _ackn signals indicates to the local side that it has transferred one
QWORD from | _adi [ 63..0] .

Becausei rdyn andt r dyn are asserted, the second 64-bit data is transferred to the PCI side on the
rising edge of clock 10.

The function asserts | m_ackn to inform the local side that the PCI side is ready to accept data.
Because | m r dyn was asserted in the previous cycle and | m_ackn is asserted in the current cycle,
the function asserts | m_dxf r n. The assertion of thel m dxfrn,| _| dat _ackn,and| _hdat _ackn
signals indicates to the local side that it has transferred one QWORD from | _adi [ 63. . 0] .

The function asserts | m t sr[ 8] in the same clock cycle to inform the local side that a data phase
was completed successfully on the PCI bus during the previous clock cycle. The function also asserts
I mtsr[9] toinform the local side that the PCI target has claimed the 64-bit transaction with
ack64n.

Altera Corporation 129

suoneaoads [N




Specifications PCI MegaCore Function User Guide

Table 29. 64-Bit Zero Wait State Master Burst Memory Write Transaction (Part 3 of 3)

Clock
Cycle

Event

10

Because i rdyn and t r dyn are asserted, the third 64-bit data is transferred to the PCI side on the
rising edge of clock 11.

The function asserts | m_ackn to inform the local side that the PCI side is ready to accept data.
Because | m r dyn was asserted in the previous cycle and | m ackn is asserted in the current cycle,
the function asserts | m_dxf r n. The assertion of the | m_dxfrn,| _I dat _ackn,and| _hdat _ackn
signals indicates to the local side that it has transferred one QWORD from| _adi [ 63. . 0] . Also, the
assertion of the | m | ast n signal indicates to the local side that valid data is expected on the

| _adi [ 63..0] bus. Also, the assertion of the | m_| ast n signal indicates that clock cycle 10 is the
last data phase on the local side.

The function also asserts | m_t sr[ 8] in the same clock to inform the local side that a data phase
was completed successfully on the PCI bus during the previous clock.

11

Because | m | ast n was asserted and a data phase was completed in the previous cycle, the
function deasserts f r anen and r eq64n and asserts i r dyn to signal the last data phase. Because
t rdyn is asserted, the last data phase is completed on the PCI side on the rising edge of clock 12.

On the local side, the function deasserts | m_ackn and | m_dxf r n since the last data phase on the
local side was completed on the previous cycle.

The function continues to assert| m t sr[ 8], informing the local side that a data phase was
completed successfully on the PCI bus during the previous clock.

12

The function deasserts i r dyn and tri-states f r anmen and r eq64n. The PCI target deasserts
devsel n, ack64n, and t r dyn. These actions indicate that the transaction has ended and there will
be no additional data phases.

The function continues to assert| m_t sr[ 8], informing the local side that a data phase was
completed successfully on the PCI bus during the previous clock.

13

The function deasserts | m t sr [ 3], informing the local side that the data transfer mode is completed.

130

Altera Corporation




PCI MegaCore Function User Guide Specifications

64-Bit Master Burst Memory Write Transaction with Local Wait State

Figure 30 shows the same transaction as in Figure 29 but with the local
side inserting a wait state. This figure applies to both the pci _nt 64 and
pci _nt 32 functions, except the 64-bit extension signals as noted for

pci _mnt 32. The local side deasserts| m_r dyn in clock 9. Consequently, on
the following clock cycle (clock 10), the pci _nt 64 or pci _nt 32 function
suspends data transfer on the local side by deasserting the | m dxfrn
signal. Because there is no data transfer on the local side in clock 10, the
function suspends data transfer on the PCI side by deasserting the i r dyn
signal in clock 11.

suoneoloads | N

Altera Corporation 131



Specifications PCI MegaCore Function User Guide

Figure 30. 64-Bit Master Burst Memory Write Transaction with Local Wait State

1 2 3 4 5 6 7 8 9 10 11 12 13 14

a/ NV /Y Y\

reqn

gntn

ad[31.0] 0 Adr DO_L D1 L D2_L D3_L z

(1) ad[63..32] 0 DO_H D1 H D2_H D3_H z

cben[3..0] o 7 BEL z

(1) cben[7..4] 0 BE_H z

par Adr-PAR DO-L-PAR D1-L-PAR D2-L-PAR D3-L-PAR

(1) par64 DO-H-PAR D1-H-PAR D2-H-PAR D3-H-PAR

N

framen

N

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

(2) Im_req64n \

|_adi[31..0] Adr DO_L DI_L D2_L D3 L

(1) I_adi[63..32] DO_H D1_H D2_H D3_H

|_cbeni[3..0] 7 BE_L

(1) I_cbeni[7..4] ‘ ‘ ‘ ‘ : BE_H‘

Im_adr_ackn

Im_lastn

Im_rdyn

(1) I_ldat_ackn

(1) I_hdat_ackn

Im_ackn

Im_dxfrn

—
—

Im_tst[9..0] 000 001 002 004 008 208 308 208 308 000

Notes:

(1) Thissignal does notapplyto pci _nt 32 for 32-bit master read transactions. For these transactions, the signal should
be ignored.

(2) Forpci _m 32,1 mreq64n should be exchanged with | m_r eq32n for 32-bit master transactions.

132 Altera Corporation



PCI MegaCore Function User Guide Specifications

64-Bit Master Burst Memory Write Transaction with PCI Wait State

Figure 31 shows the same transaction as in Figure 29 but with the PCI bus
target inserting a wait state. This figure applies to both the pci _nt 64 and
pci _nt 32 MegaCore functions, excluding the 64-bit extension signals as
noted for pci _nt 32. The PCI target inserts a wait state by deasserting
trdyn in clock 9. Consequently, on the following clock cycle (clock 10),
the pci _mt 64 or pci _nt 32 function deasserts the | m_ackn and

I m_dxf r nsignals on the local side. Data transfer is suspended on the PCI
side in clock 9 and on the local side in clock 10. Also, because | m | ast n
is asserted and | m_r dyn is deasserted in clock 11, the | m_ackn and

I m_dxf r n signals remain deasserted after clock 12.

suoneoloads | N

Altera Corporation 133



Specifications

PCI MegaCore Function User Guide

Figure 31

clk

reqn

gntn

ad[31..0]

(1) ad[63..32]
chen[3..0]

(1) chen[7..4]
par

(1) par64
framen

(1) req64n
irdyn

devseln

(1) ack64n
trdyn

stopn

(2) Im_req64n
|_adi[31..0]

(1) I_adi[63..32]
|_cbeni[3..0]
(1) I_cbeni[7..4]
Im_adr_ackn
Im_lastn
Im_rdyn

(1) I_Idat_ackn
(1) I_hdat_ackn
Im_ackn
Im_dxfrn

Im_tsr[9..0]

Notes:

. 64-Bit Master Burst Memory Write Transaction with PCI Wait State

1 4 5 6 7 8 9 10 1 12 13 14
72N U 72R N2 N /A U 72 U 72 N 72 N 72 N 72 N 2 N 2 N 72 N 72 N 2 N
0 Adr DO_L DLL D2 L D3 L z
0 : :DO H D1 H DZJ—; D3_H: 4
0 7 : BE L ‘ : :Z
0 BE H :Z
Adr»PA;? PR DLirAR DZ-L-PAER DS-L-P/;R
: D:O-H-PAR [il—H—PAR DZVHVP»:AR D3-H-P/;R
N
N
TN
N\
Adr DO_L D1L D2 L D3_L
DO,H: :DliH D2_H3 D3_H >
7 BE_L ‘ ‘
BE_H
VA /
/ /
000

001 002 004 008

208 308

208

308 000

(1) Thissignal does notapplyto pci _nt 32 for 32-bit master read transactions. For these transactions, the signal should
be ignored.
(2) Forpci_m 32,1 m req64n should be exchanged with | m_r eq32n for 32-bit master transactions.

134

Altera Corporation



PCI MegaCore Function User Guide Specifications

32-Bit Master Write Transactions

In master mode, the pci _nt 64 and pci _nt 32 functions support three
types of 32-bit write transactions:

m  Memory write transactions
m  1/0 write transactions
m  Configuration write transactions

For both the pci _nt 64 and pci _nt 32 MegaCore functions, 32-bit
memory write transactions are either single-cycle or burst. The 32-bit
master write transactions are similar to 64-bit master write transactions,
except the upper address ad[ 63. . 32] and the upper command/byte
enables cben[ 7. . 4] are invalid. For pci _nt 32, the waveforms for
32-bit memory write transactions are described in Figures 29 through 31,
excluding the 64-bit extension signals as noted, and in Figures 33 and 34.

32-Bit PCI & 64-Bit Local-Side Master Burst Memory Write Transaction

Figure 32 shows the same transaction as in Figure 29, but the PCI target
cannot transfer 64-bit transactions. This figure applies to pci _mnt 64 only.
In this transaction, the local-side master interface requests a 64-bit
transaction by asserting | m r eq64n. The pci _nt 64 function asserts

r eq64n on the PCI side. However, the PCI target cannot transfer 64-bit
data, and therefore does not assert ack64n in clock 7. Because this is the
case, the upper address ad[ 63. . 32] and the upper command/byte
enables cben[ 7. . 4] are invalid.

In this case, the PCI function transfers 64 bits of data from the local side
| _adi [ 63..0] busand automatically transfers 32-bit data on the PCI
side. The function automatically inserts wait states on the local side by
deasserting the | m_ackn signal as necessary.

Also, because the PClI side is 32 bits wide and the local side is 64 bits wide,
the pci _mt 64 function assumes that the transactions are within 64-bit
boundaries. Therefore, the pci _nt 64 function registers| _adi [ 63. . 0]
on the local side and transfers the lower 32-bitdatal _adi [ 31. . 0] onthe
PCI side first, and the upper 32-bit data| _adi [ 63. . 32] afterwards.

suoneaoads [N

Altera Corporation 135



Specifications PCI MegaCore Function User Guide

Figure 32. 32-Bit PCI & 64-Bit Local-Side Master Burst Memory Write Transaction

1 2 3 4 5 6 7 8 9 10 11 12 13 14

a/ N Y Y N Y

reqn

gntn

ad[31.0] 0 Adr DO_L DO_H DI_L D1_H z

ad[63..32]

cben[3..0] 0 7 BE L z

chen([7..4]

par Adr-PAR DO-L-PAR D0-H-PARX D1-L-PAR X D1-H-PAR

par64

framen

req64n

irdyn

devseln

ack64n

trdyn

stopn
Im_req64n \

|_adi[31..0] Adr DO_L DL L

I_adi[63..32] DO_H DLH

|_cbeni[3..0] 7 BE_L

|_cbeni[7..4] BE_H

Im_adr_ackn

Im_lastn

Im_rdyn

|_Idat_ackn

|_hdat_ackn

Im_ackn

Im_dxfrn

Im_tsr[9..0] 000 001 002 004 008 108 000

136 Altera Corporation



PCI MegaCore Function User Guide Specifications

32-Bit PCI & 32-Bit Local-Side Master Burst Memory Write Transaction

Figure 33 shows the same transaction as in Figure 29, but the local side
master interface requests a 32-bit transaction by asserting | m r eq32n.
This figure applies to both pci _nt 64 and pci _nt 32, excluding the 64-
bit extension signals as noted for pci _nt 32. The pci _nt 64 function
does not assert r eq64n on the PCI side. Therefore, the upper address
ad[ 63. . 32] and the upper command/byte enables cben[ 7. . 4] are
invalid.

suoneaoads [N

Altera Corporation 137



Specifications

PCI MegaCore Function User Guide

Figure 33. 32-Bit PCI & 32-Bit Local-Side Master Burst Memory Write Transaction

clk

reqgn

gntn

ad[31..0]

(1) ad[63..32]
chen[3..0]

(1) cben([7..4]
par

(1) par64
framen

(1) req64n
irdyn

devseln

(1) ack64n
trdyn

stopn
Im_req32n
|_adi[31..0]

(1) I_adi[63..32]
|_cheni[3..0]
(1) I_cbeni[7..4]
Im_adr_ackn
Im_lastn
Im_rdyn

(1) I_Idat_ackn
(1) I_hdat_ackn
Im_ackn
Im_dxfrn

Im_tsr[9..0]

Note:

1

-

2

/N

3

/N

4

/N

5

/N

6

/N

7 8 9 10 11

/N

0 Adr DO_L D1_L D2_L z
0 7 BE_L. . Z
Adr-PAR >(D0-LPAR X DI-LPAR XD2 L PAR
A N
/ I
—
—
N/
Adr DO_L D1L D2_L
4 7 X BE_L. X
<
i/
\
\
000 001

002

004

008 108 000

(1) Thissignal does notapply to pci _nt 32 for 32-bit master read transactions. For these transactions, the signal should
be ignored.

138

Altera Corporation



PCI MegaCore Function User Guide Specifications

32-Bit PCI & 32-Bit Local-Side Single-Cycle Memory Write Transaction

Figure 34 shows the same transaction as in Figure 33, but the local side
master interface transfers only one data phase. This figure applies to both
the pci _m 64 and pci _nt 32 MegaCore functions, excluding the 64-bit
extension signals as noted for pci _nt 32. This waveform also applies to
the following types of single-cycle transactions:

= |/0 write
= Configuration write

suoneaoads [N

Altera Corporation 139



Specifications

PCI MegaCore Function User Guide

Figure 34. 32-Bit PCI & 32-Bit Local-Side Single-Cycle Memory Write Transaction

clk

regn

gntn
ad[31..0]

(1) ad[63..32]
chen[3..0]

(1) chen[7..4]
par

(1) par64
framen

(1) req64n
irdyn

devseln

(1) ack64n
trdyn

stopn

Im_req32n
|_adi[31..0]

(1) |_adi[63..32]
|_cbeni[3..0]

(1) I_cbeni[7..4]
Im_adr_ackn
Im_lastn
Im_rdyn

(1) I_Idat_ackn

(1) I_hdat_ackn

Im_ackn

Im_dxfrn

Im_tsr[9..0]

Note:

/N /N 2 W2 U A U A NS A
/

Adr-PAR > DO-L-PAR

002 004 008

108

AR VAN
N/ N—
i/ S
/S i
N
7 X BE_Li X
i/
/
/
/

(1) Thissignal does notapply to pci _nt 32 for 32-bit master read transactions. For these transactions, the signal should

be ignored.

140

Altera Corporation



PCI MegaCore Function User Guide Specifications

Altera Corporation

Abnormal Master Transaction Termination

An abnormal transaction termination is one in which the local side did not
explicitly request the termination of a transaction by asserting the

I m_| ast n signal. A master transaction can be terminated abnormally for
several reasons. This section describes the behavior of the pci _nt 64 and
pci _nt 32 functions during the following abnormal termination
conditions;

Latency timer expires

Target retry

Target disconnect without data
Target disconnect with data
Target abort

Master abort

Latency Timer Expires

The PCI specification requires that the master device end the transaction
as soon as possible after the latency timer expires and the gnt n signal is
deasserted. Thepci _nt 64 and pci _nt 32 functions adhere to this rule,
and when it ends the transaction because the latency timer expired, it
asserts| m tsr[ 4] (tsr_| at_exp) until the beginning of the next
master transaction.

1= The PCI MegaCore functions allow the option of disabling the
latency timer for embedded applications. See “Parameters” on
page 37 for more information.

Retry

The target issues a retry by asserting st opn and devsel n during the first
data phase. When the pci _mt 64 or pci _nt 32 function detects a retry
condition (see “Retry” on page 96 for details), it ends the cycle and asserts
I m_t sr[ 5] until the beginning of the next transaction. This process
informs the local-side device that it has ended the transaction because the
target issued a retry.

suoneaoads [N

= The PCI specification requires that the master retry the same
transaction with the same address at a later time. It is the
responsibility of the local-side application to ensure that this
requirement is met.

141



Specifications

PCI MegaCore Function User Guide

Host Bridge
Operation

142

Disconnect Without Data

The target device issues a disconnect without data if it is unable to transfer
additional data during the transaction. The signal pattern for this
termination is described in “Disconnect” on page 98. When the pci _nt 64
or pci _nt 32 function ends the transaction because of a disconnect
without data, itasserts| m_t sr[ 6] until the beginning of the next master
transaction.

Disconnect with Data

The target device issues a disconnect with data if it is unable to transfer
additional data in the transaction. The signal pattern for this termination
is described in “Disconnect” on page 98. When the pci _nt 64 or

pci _nt 32 function ends the transaction because of a disconnect with
data, it asserts | m_t sr[ 7] until the beginning of the next master
transaction.

Target Abort

A target device issues this type of termination when a catastrophic failure
occurs in the target. The signal pattern for a target abort is shown in
“Target Abort” on page 103. When the pci _nt 64 or pci _nt 32 function
ends the transaction because of a target abort, itassertsthet abort _rcvd
signal, which is the same as the PCI status register bit 12. Therefore, the
signal remains asserted until it is reset by the host.

Master Abort

The pci _nt 64 or pci _m 32 function terminates the transaction with a
master abort when no target claims the transaction by asserting devsel n.
Except for special cycles and configuration transactions, a master abort is
considered to be a catastrophic failure. When a cycle ends in a master
abort, the pci _nt 64 or pci _nt 32 function informs the local-side device
by asserting the mabor t _r cvd signal, which is the same as the PCI status
register bit 13. Therefore, the signal remains asserted until it is reset by the
host.

This section describes using the pci _nt 64 and pci _nt 32 MegaCore
functions as a host bridge application in a PCl system. The pci _nt 64 and
pci _nt 32 functions support the following advanced master features,
which should be enabled when using the functions in a host bridge
application:

m  Use in host bridge application
= Allow internal arbitration logic

Altera Corporation



PCI MegaCore Function User Guide Specifications

The host bridge features can be enabled through the Advanced PCI
MegaCore Features screen of the PCI wizard. See Figure 35.

Figure 35. Advanced Master Features

Megawizard Plug-In Manager - PCl Compiler version 2.2.0 [Page 6 of 8]

Advanced PCl Megacore Features

—Capabilties Poirter Master Festures

[ Enable Capahiltes List [w Usein Hast Bridye Application

Capahilties Pointer ID}(4D [w i internal Arbitrstion Looic

[ Dizable Master Latency Timer

: Mote: Dizabling the latency timer
[~ Enable CIS CardBus Pointer does nat camply with the PG SIG

. specification and is only recommended
CIS CardBus PolmerIDxDDDDDDDD for use in embedded systems.

rinterrupt Cption:

CIS CardBus Pointer

Suppott Interrupt Acknowlzdge Command
[ sue ot 2 64-Bit PCl Options |

[v Use Interrugpt Fin

Cancel | - Pres | Mext I Finizh |

Altera Corporation

Using the PCI MegaCore Function as a Host Bridge

Selecting the Use in Host Bridge Application option hardwires the
master enable bit of the command register (bit[2]) to a value of 1, which
permanently enables the master functionality of the pci _nt 64 and

pci _nt 32 MegaCore functions. Additionally, the Use in Host Bridge
Application option also allows the pci _nt 64 or pci _nt 32 master
device to generate configuration read and write transactions to the
internal configuration space. With the Use in Host Bridge Application
option, the same logic and software routines used to access the
configuration space of other PCI devices on the bus can also configure the
pci _nt 64 or pci _nt 32 configuration space.

To perform configuration transactions to internal configuration
space, the i dsel signal must be connected following the PCI
specification requirements.

143

suoneaoads [N




Specifications

PCI MegaCore Function User Guide

144

PCI Configuration Read Transaction from the pci_mt64 Local Master
Device to the Internal Configuration Space

Figure 36 shows the behavior of the pci _nt 64 master device performing
a configuration read transaction from internal configuration space. The
local master requests a 32-bit transaction by asserting the | m r eq32n
signal. When requesting a configuration read transaction, the pci _nt 64
function will automatically perform a single-cycle transaction. The local
master signals are asserted as if the pci _nt 64 master is completing a
single-cycle, 32-bit memory read transaction, similar to Figure 28 in the
Master Mode Operation section. The pci _nt 64 function’s internal
configuration space will respond to the transaction without affecting the
local side signals. Figure 36 applies to both the pci _nt 64 and pci _nt 32
MegaCore functions, excluding the 64-bit extension signals as noted for
the pci _nt 32 function.

Altera Corporation



PCI MegaCore Function User Guide Specifications

Figure 36. Configuration Read from Internal Configuration Space in Self-Configuration Mode

1 2 3 4 5 6 7 8 9 10 11 12

VRS VNS VA N VA N VA N VA N v/ NS 7/ N VA W v/ N /A W /A N VA N

idsel

reqn

gntn

ad[31..0] 0 Adr z DO_L z

(1) ad[63..32]

cben[3..0] 0 A BE_ L Z

(1) chen[7..4]

par Adr-PAR z DO-L-PAR A

(1) par64

framen \

(1) reg64n

irdyn

devseln

(1) acké4n

/ PN
trdyn
stopn

Im_req32n \

|_adi[31..0] Adr

(1) I_adi[63..32]

I_cbeni3..0] A BE_L

(1) |_cbeni[7..4]

Im_adr_ackn

Im_rdyn

(1) I_Idat_ackn

(1) I_hdat_ackn

suoneaoads [N

Im_ackn

Im_dxfrn

I_dato[31..0] DO_L

(1)I_dato[63..32]

Im_tsr[9..0] 000 001 002 004 008 108 000

It_tsr[11..0] 000 100 500 000

Note:
(1) Thissignal does notapply topci _nt 32 for 32-bit master read transactions. For these transactions, the signal should
be ignored.

Altera Corporation 145



Specifications

PCI MegaCore Function User Guide

146

PCI Configuration Write Transaction from the pci_mt64 Local Master
Device to the Internal Configuration Space

Figure 37 shows the behavior of the pci _nt 64 master performing a
configuration write transaction to internal configuration space. The local
master requests a 32-bit transaction by asserting the | m_r eq32n signal.
When requesting a configuration write transaction, the pci _nt 64
function will automatically perform a single-cycle transaction. The local
master signals are asserted as if the pci _nt 64 master is completing a
single-cycle 32-bit memory write transaction, similar to Figure 34 in the
Master Mode Operation section. The pci _nt 64 function’s internal
configuration space will respond to the transaction without affecting the
local side signals. Figure 37 applies to both the pci _nt 64 and pci _nt 32
MegaCore functions, excluding the 64-bit extension signals as noted for
pci _nt 32.

Altera Corporation



PCI MegaCore Function User Guide Specifications

Figure 37. Configuration Write to Internal Configuration Space in Self-Configuration Mode

1 2 3 4 5 6 7 8 9 10 1 12

ST V2 VA N VA N VB N VB N VB N /N N VA N 7/ W /B I VB N VA N |

idsel

reqn

gntn

ad[31..0] 0 Adr DO_L z

(1) ad[63..32]

cben[3..0] 0 B BE_L z

(1) cben[7..4]

par Adr-PAR DO-L-PAR 4

(1) par64

framen \

(1) req64n

irdyn N

devseln ) S—

(1) ack64n
trdyn Ji N
stopn

Im_req32n \

_adi[31..0] Adr DO_L

(1) I_adi[63..32]

|_cbeni[3..0] B BE_L

(1) |_cbeni[7..4]

Im_adr_ackn

Im_rdyn

(1) 1_Idat_ackn

suoneaoads [N

(1) I_hdat_ackn

Im_ackn

Im_dxfrn

Im_tsr[9..0] 000 001 002 004 008 108 000

It_tsr[11..0] 000 100 500 000

Note:
(1) This signal does not apply to pci _nt 32 for 32-bit master write transactions. For these transactions, the signal
should be ignored.

Altera Corporation 147



Specifications

PCI MegaCore Function User Guide

64-Bit
Addressing,
Dual Address
Cycle (DAC)

148

Implementing Internal Bus Arbitration Logic

Many applications that utilize the pci _nt 64 or pci _nt 32 MegaCore
functions as a host bridge will implement other central resource
functionality in the same PLD as the PCI interface. The Allow Internal
Arbitration Logic feature enables the design to include the PCI bus arbiter
in the same PLD as the PCI MegaCore function.

If the Allow Internal Arbitration Logic option is not selected, the r egn
signal output from the pci _nt 64 and pci _nt 32 functions is
implemented with a tri-state buffer, which prevents r eqn from being
connected to internal logic and subsequently to gnt n without the use of
device 1/0s. Enabling the Allow Internal Arbitration Logic option
removes the tri-state buffer from the r eqn signal output, which allows the
signal to be connected to internal PLD logic. The r egn signal will not
require the use of a device 1/0 or board traces with the Allow Internal
Arbitration Logic option enabled.

This section describes and includes waveform diagrams for 64-bit
addressing transactions using a dual address cycle (DAC). All 32-bit
addressing transactions for master and target mode operation described
in the previous sections are supported by 64-bit addressing transactions.
This includes both 32-bit and 64-bit data transfers.

I'=~  This section applies to pci _nt 64 and pci _t 64 only.

Target Mode Operation

A read or write transaction begins after a master acquires mastership of
the PCI bus and asserts f r amen to indicate the beginning of a bus
transaction. If the transaction is a 64-bit transaction, the master device
asserts the r eq64n signal at the same time it asserts the f r amen signal.
The pci _nt 64 and pci _t 64 functions assert the f r anen signal in the
first clock cycle, which is called the first address phase. During the first
address phase, the master device drives the 64-bit transaction address on
ad[ 63. . 0] , the DAC command on cben][ 3. . 0] , and the transaction
command on cben[ 7. . 4] . On the following clock cycle, during the
second address phase, the master device drives the upper 32-bit
transaction address on both ad[ 63. . 32] and ad[ 31. . 0], and the
transaction command on both cben[ 7. . 4] and cben[ 3. . 0] . During
these two address phases, the MegaCore function latches the transaction
address and command, and decodes the address. If the transaction
address matches the pci _mt 64 and pci _t 64 target, the pci _nt 64 and
pci _t 64 target asserts the devsel n signal to claim the transaction. In
64-bit transactions, pci _nt 64 and pci _t 64 also assert the ack64n
signal at the same time as the devsel n signal indicating that pci _nt 64
and pci _t 64 accept the 64-bit transaction. The pci _nt 64 and pci _t 64

Altera Corporation



PCI MegaCore Function User Guide Specifications

Altera Corporation

functions implement slow decode, i.e., the devsel n and ack64n signals
are asserted after the second address phase is presented on the PCI bus.
Also, both ofthel t _t sr[1.. 0] signals are driven high to indicate that
the BARO and BAR1 address range matches the current transaction
address.

64-Bit Address, 64-Bit Data Single-Cycle Target Read Transaction

Figure 38 shows the waveform for a 64-bit address, 64-bit data single-
cycle target read transaction. Figure 38 is exactly the same as Figure 1,
except that Figure 38 has two address phases (described in the previous
paragraph). Also, both I t _t sr[1.. 0] signals are asserted to indicate
that the BARO and BAR1 address range of pci _mt 64 and pci _t 64
matches the current transaction address. In addition, the current
transaction upper 32-bitaddressis latched on| _adr o[ 63. . 32] ,and the
lower 32-bit address is latched on | _adr o[ 31. . 0] .

['="  All 32-bit addressing transactions described in “Target Mode
Operation” on page 148 are applicable for 64-bit addressing
transactions, except for the differences described in the previous
paragraph.

149

suoneaoads [N



Specifications PCI MegaCore Function User Guide

Figure 38. 64-Bit Address, 64-Bit Data Single-Cycle Target Read Transaction

1 i i3 ia is5 i6 i7 i i9 i 10 11

clk / ; y j ; ; j
ad[31..0] ' Adr L Adr H 2 ' X ' ' X DO_L X

ad[63..32] ' 'Adr_H ' ' z ' X ' ' DO_H' X

chen([3..0] D 6 BEO_L

chen[7..4] _ 6 . BEO—'—,' - - X - T >

par . .><Adr-PAR_.L AdrPAR A z P4 } : - DO»L-P/;RX
' ' ¢ ' ' ' XDO-H-PARX

par64 Adr-PAR_H z

framen /

req64n

irdyn \

I N S
devseln

acké4n N

trdyn / TN

stopn

|_adro[31..0] >< Adr_L

I_adro[63..32]

X
I
II

Lomao.0 e e
L0 o e e e X e x D
I_adi[63..32] X DO_Hj X : : :
|_beno[3..0] : : : : : X :BE07L : X

|_beno[7.4] i X BEO_H

It_framen /

It_rdyn /

It_ackn \

It_dxfrn \

It_tsr{11..0] X 000 X 983 D83 000

150 Altera Corporation



PCI MegaCore Function User Guide Specifications

Master Mode Operation

A master operation begins when the local-side master interface asserts the
I m_r eq64n signal to request a 64-bit transaction or the | m r eq32n
signal to request a 32-bit transaction. The pci _nt 64 function outputs the
r egn signal to the PCI bus arbiter to request bus ownership. The

pci _nt 64 function also outputs the | m adr _ackn signal to the local
side to acknowledge the request. When the | m_adr _ackn signal is
asserted, the local side provides the PCl address on the | _adi [ 63. . 0]
bus, the DAC command on| _cbeni [ 3. . 0] , and the transaction
command on the |l _cbeni [ 7. . 4] . When the PCI bus arbiter grants the
bus to the pci _nt 64 function by asserting gnt n, pci _nt 64 begins the
transaction with a dual address phase. The pci _nt 64 function asserts the
f r anen signal in the first clock cycle, which is called the first address
phase. During the first address phase, the pci _nt 64 function drives the
64-bit transaction address on ad[ 63. . 0] , the dual address cycle
command on cben[ 3. . 0], and the transaction command on

cben[ 7. . 4]. On the following clock cycle, during the second address
phase, the pci _nt 64 function drives the upper 32-bit transaction address
on both ad[ 63. . 32] and ad[ 31. . 0], and the transaction command on
both cben[ 7. . 4] andcben[ 3..0].

64-Bit Address, 64-Bit Data Master Burst Memory Read Transaction

Figure 39 shows the waveform for a 64-bit address, 64-bit data master
burst memory read transaction. Figure 39 is exactly the same as Figure 22,
except that Figure 39 has two address phases (as described in the previous
paragraph).

1= All 32-bit addressing transactions described in “Master Mode
Operation” on page 151 are applicable for 64-bit addressing
transactions, except for the differences described in the previous
paragraph.

suoneaoads [N

Altera Corporation 151



Specifications PCI MegaCore Function User Guide

Figure 39. 64-Bit Address, 64-Bit Data Master Burst Memory Read Transaction

/% 720N U N N 2 N 2 N/ N/ NS 2 S N N 2 N 2 N2 W 72 N /2 U /2

regn

gntn

ad[31.0] 0 Adr_L Adr_H z DO_L DL L D2.L z

ad[63..32) 0 Adr_H z DO_H DLH D2 H z

cben[3..0] 0 D 6 BE_L z

cben[7..4] 0 6 BE_H z

par Adr-PAR_L Adr-PAR_H z DO-H-PAR D1-H-PAR D2-H-PAR

par64 Adr-PAR_H zZ DO-H-PAR D1-H-PAR D2-H-PAR

framen

req6an

irdyn N

devseln

ack4n

trdyn

stopn

Im_req64n \

I_adi[31.0] Adr_L

I_adi[63.32] Adr_H

|_cheni[3..0] D BE_L

|_cbeni[7..4] 6 BE_H

Im_adr_ackn

Im_lastn

Im_rdyn

|_Idat_ackn

|_hdat_ackn

Im_ackn

Im_dxfrn

I_dato[31..0] >< DO_L DLL D2_L

|_dato[63.32] DO_H DLH D2_H

Im_tsr(9..0] 000 001 002 004 X s X 08 200 X000

152 Altera Corporation



A I:l 41— D A Appendix A: Tips for 66-MHz

=N o PCI Designs

Pipelining the
Local-Side
Design

Designing to
the PCI
Function Local
Side

Design
Examples

Altera Corporation

The Altera® pci _nt 64, pci_nt32, pci_t64, and pci_t32
MegaCore® functions are fully compliant with the PCI Local Bus
Specification, Revision 2.2. These functions are designed to meet 66-MHz
PCI timing requirements when implemented in Altera FPGAs that are 66-
MHz PCI compliant.

The designer should design the local-side logic to operate at 66 MHz to
maintain 66-MHz internal timing for all logic that uses the 66-MHz PCI
clock. If the local-side design is pipelined, the overall design (user logic
plus the PCI MegaCore function) should compile for 66-MHz register-to-
register performance.

Altera designed the PCI MegaCore functions with four to six logic levels
for most of the register-to-register paths. Higher levels of logic would
have made it more difficult to compile the design and still achieve 66-
MHz performance on the PCI clock.

Altera designed the PCI function local-side signals to offer maximum
design flexibility. The PCI function’s local side provides input and output
signals that inform the designer’s local-side logic of the transactions
occurring on the PClI bus.

The local-side outputs from the PCI MegaCore functions are often
registered. If the signals are not registered, there will be at most one level
of logic before the designer’s local-side logic has access to the signal.

The local-side inputs to the PCI MegaCore functions do not include
registers at the periphery of the function. In a 66-MHz application, the
designer’s local side logic should register the inputs to the local side of the
PCI MegaCore function. Additionally, the local master | m_r dyn and

I m_| ast n signals and the local target| t _rdyn and | t _di scn signals
are likely to affect the design.

The pci_mt64 and pci_mt32 reference designs—which are included with
the PCI compiler—can be used as guidelines when designing to the PCI
MegaCore function local side. Refer to the PCI Compiler Data Sheet, FS
10: pci_mt64 MegaCore Function Reference Design, and FS 12: pci_mt32
MegaCore Function Reference Design for more information on the
reference designs.d

153

>
=}
§=}
@
>
o
3




Appendix A PCI MegaCore Function User Guide

154 Altera Corporation



—— D Appendix B: Using PCI
A I:l =1 A . Constraint Files

This Appendix provides detailed information about obtaining and using
PCI Constraint files. You should integrate the PCI constraint into your
project to ensure that the project achieves PCI timing requirements. PCI
constraints are provided as a Tool Command Language (Tcl) file (.tcl); if
you run the Tcl script in the Quartus Il software, it generates the project-
specific .csf and .esf files.

PCI Constraint Constraint files may include one or more of the following assignments:
File Contents PCI Signal Pin Assignments
Timing Assignments

Logic Option Assignments
Logic Location Assignments

The PCI Constraint files assume that you have not set any other project
specific assignments for your project. You must use the PCI constraints
before you make any other constraints in your project. Upon using the
Altera PCI constraint files, all other constraints are removed and you must
manually add any project specific assignments including The User
Library settings.

“ .- . Sample constraint files are provided at
<path>\pci_compiler_v2.2.0\<PCI core>\const_files. Additional
constraint files can be obtained at http://www.altera.com/pci_cf.

Generate a The Altera-provided PCI constraint files do not include assignments that

. . are specific to your project. You can use the PCI compiler wizard to
Constraint File generate a project-specific constraint file. See “Getting Started” on page 9.
for Your Project for more information on using the wizard.

I PCI constraint files are specific to your project, including device
speed, density, package, MegaCore version, and version of the
Quartus Il software.

>
=)
o
@
>
o
3

Altera Corporation 155


http://www.altera.com/pci_cf

Appendix B

PCI MegaCore Function User Guide

The constraint files contain generic text strings, which the PCI compiler
wizard replaces with your project-specific information. The following
screen shot shows the PCI compiler wizard page in which you specify the
generic constraint files the wizard should convert to project-specific
constraint files. The wizard uses the information provided in this page to
replace specific generic text strings in the Altera-provided constraint files

to generate a project-specific constraint file.

The information described in the following sections is required for the PCI
compiler wizard to customize a generic constraint file for your project as
shown in Figure 1.

Figure 1. MegaWizard Plug-In Manager Constraint File Settings

Megawizard Plug-In Manager - PCl Compiler version 2.2.0 [Page 7 of 8]

Dovynlosd Constraint File: IP Megastore I

" 33 MHz Operation

Project Name

Inpit Constraint File |

Output Constrairt File |

Broweze |

Browese

Hierarchical Mame of MegaCore I

Generste Constraint Files Mow |

&.4 .- testinst

Cancel

-7 Prew | Mext - | Finizh |

156

PCI System Speed

A setting of 66 or 33 MHz is required to ensure that the appropriate timing
constraints are annotated to the constraint file. The following table shows
the values used for the specified generic text strings depending on the PCI
system speed selected.

Table 1. PCI System Speed Descriptions (Part 1 of 2)

Text

Description

PCI System Speed

66 MHz 33 MHz

pci_gfmax

Maximum Frequency

66 MHz 33MHz

Altera Corporation



PCI MegaCore Function User Guide Appendix B

Table 1. PCI System Speed Descriptions (Part 2 of 2)
PCI System Speed
Text Description

66 MHz 33 MHz
pci_tco Clock-to-output 6.0 ns 11.0ns
pci_toff Time Off 14.0 ns 28.0ns
pci_tsu Setup Time 3.0ns 7.0 ns
pci_th Hold Time 0.0 ns 0.0 ns
pci_ptp Setup time for 5.0 ns 10.0 ns

point-to-point signals

Input Constraint File

This field should contain the path to the generic file that you obtained
from Altera.

Output Constraint File

This field should contain the path to the output project-specific constraint
file or Tcl script file.

Project Name

The wizard replaces the project name string from this field to replace the
string chi p_nane in the generic constraint file. You should enter the top-
level name for your design files. For example, if your top-level design is
called top.edf, you should set the project name to top.

>
=}
§=}
@
>
o
3

Altera Corporation 157



Appendix B

PCI MegaCore Function User Guide

How to Use PCI
Tcl Scripts in
the Quartus I
Software

158

Hierarchical Name of MegaCore

Replace the string in the Hierarchical Name of MegaCore field with the
hierarchical path to the PCI core in your project. The hierarchical path can
be determined using the Hierarchy Display in the Quartus Il software.
The hierarchical path provided must be the path where you have
instantiated the wrapper file generated by the PCI Compiler MegaWizard.
For example a path of | my_pci_top:ul indicates that you have
instantiated the output of the PCI compiler wizard my_pci_top into your
top level design with the instance ul. As another example you should
provide the following string | pci_int:u2| my_pci_top:ul if the wrapper
file generated by the PCI compiler wizard was instantiated in the file
pci_int and that was instantiated in your top-level design file. You must
provide the hierarchical path for the wrapper file because the wizard
automatically appends the remaining hierarchy for the pci_mt64
MegaCore function when customizing the generic constraint file for your
project. If you are using the wrapper file generated by the PCI compiler
wizard as your top-level design file, you should leave this field blank.

1= If you provide an incorrect hierarchical path, the .tcl file will
appear to work correctly. However, you will not have the proper
constraints set for your project and you may not need PCI timing
requirements. In that case, the Quartus Il software will generate
many warnings indicating that you have made an assignment to
a node that does not exist.

The .tcl file contains all necessary information to create a CSF and ESF.
Use the following steps to generate a project-specific CSF and ESF.

1. Generate a project-specific Tcl file using the PCI compiler wizard as
indicated above

2. Type sour ce < Tcl script filename> in the Quartus Il Tcl Console. For
example:

source c:\altr_app\pci_top.tcl
I'=~  The Tclfile deletes the current project’s CSF and ESF, and
generates a new CSF and ESF that includes the PCI MegaCore

function assignments.

After you have integrated the assignments into your project, add
additional project assignments to your CSF and ESF.

Altera Corporation



A I:l —+— b A Appendix C: 64-Bit Options for
= | . the pci_mt64 and pci_t64
MegaCore Functions

Introduction The PCI MegaCore® functions provided with the PCI Compiler version
2.2.0 include many new features that enhance functionality, improve
system performance, and use resources more efficiently. This white paper
discusses the following two PCI MegaCore function options that are
specific to 64-bit PCI systems:

= 64-Bit Only Devices
®  Add Internal Data Steering Logic for 32/64-Bit Systems

To enable these options, click the 64-Bit PCI Options button on the sixth
page of the wizard. These options are disabled by default (see Figure 1).

Figure 1. Turning On 64-Bit PCI Options with the Wizard

Megawizard Plug-ln Manager - PCl Compiler ¥ersion 2.2.0 [Page 6 of 8]

Advance PC| Megacore Features

rCapahiIities Poirter | rMasier Feature
64-Bit PCI Options L Host Bricge Application

Irterral Arbiration Logic

Provides enhanced master functionality when using the PCI_MTE4 function
in =ystems where a B4-hit tranzaction request will alvways be accepted by
a B4-hit target (targets always respond with ackB4n asserted).

The PCI_MTE4 master will:

1. Support G4-bit single-cycle write transactions

2. Azsertirdyn 1 clock-cycle after framen assettion for reads and writes

le haster Latency Timer
=abling the latency timer

t comply with the PCI 513

stion and is only recommended
in embedded systems.

[ Add Internal Data Steering Logic for 32/64-Bit Systems

Aoz internal logic to the PCI_MTE4 and PCI_TE4 local side to pravide valid £4-Bit PCl Options
data on |_dsto[31..0] and |_dato[63..32] during:

1. 32-bit master read (when the master requests a G4-bit transaction)
2. 32-bit target write:

Mote: Designing the data steering logic for individual design needs outside of

the MegaCore function may result in better Fmax performance. " Prew Mext I~ | Finizh |
O |
x>
3
64-Bit On|y The 64-Bit Only Devices option applies to the pci _nt 64 MegaCore g
function master mode operation. This option can be used if both of the =

Devices Option  following items apply to your system:

Altera Corporation 159



Appendix C

PCI MegaCore User Guide

160

®  You are using an embedded system that has only 64-bit PCI devices
All 64-bit master transactions are claimed by 64-bit targets that
respond with ack64n asserted

When you turn on the 64-Bit Only Devices option, the pci _nt 64
MegaCore function assumes that all 64-bit master transactions are claimed
by a 64-bit target with ack64n asserted. The pci _nt 64 master can then:

= Perform 64-bit single-cycle master write transactions
= Initiate 64-bit master write transactions with less initial i r dyn
latency

During 64-bit master write transactions in standard operation mode, the
pci _nt 64 function waits until the target asserts devsel n before
asserting i r dyn. This action allows the master to ensure that the correct
number of DWORDs are transferred if a 32-bit target claims the
transaction.

Standard operation prevents the pci _mt 64 function from supporting 64-
bit single-cycle master memory write transactions. When the pci _nt 64
master initiates a single-cycle 64-bit write and the target is a 32-bit device,
the upper 32-bits of data are not transferred across the PCI bus and are lost
from the local side master application. By using the 64-Bit Only Devices
option, the pci _nt 64 function can support 64-bit single-cycle master
write transactions because the target is guaranteed to be a 64-bit device.
Figure 2 shows an example of a single-cycle write transaction where the
pci_mt64 function is the master.

Altera Corporation



PCI MegaCore User Guide Appendix C

Figure 2. PCI 64-Bit Single-Cycle Master Memory Write Operation
11 12 3 L4 5 1 6 7 ' 8 19 ;10

reqn

gntn

ad[31..0] 0 X Aa X ool Tz

ad[63..32]

0 H DO_H; L Z

chben[3..0] BEL: H4

cbhen[7..0] [ : BE_H! Tz

par Adr-PAR! > DO-L-PAR

par64 DO-H-PAR

IS}
~

framen

req64n

irdyn !

devseln !

acké4n !

trdyn

stopn

|_adi[31..0]

Adr ! DO_L!

DO_H;
7 BE L: X

BE_H:

|_adi[63..32] |

|_cbeni[3..0]

|_cheni[7..4] i

<
<
1<
<
Im_reg64n F\
\

Im_lastn

Im_adr_ackn

Im_rdyn |

Im_ackn |

Im_dxfrn

Im_tsr[9..0] K__000 : 001 : : 002 : 004 008 | 308 | 000 |

>
=)
o
@
>
o
3

Altera Corporation 161



Appendix C

PCI MegaCore User Guide

Add Internal
Data Steering
Logic for 32/64-
Bit Systems
Option

162

In addition to providing support for PCI 64-bit single-cycle master
memory writes, the 64-Bit Only Devices option allows pci _nt 64 to
provide the same low initial latency on i r dyn for 64-bit master write
transactions that is provided for all other master transactions. In other
words, the pci _mnt 64 function does notdelay i r dyn assertion to wait for
the target devsel n assertion. Instead, during 64-bit master write
transactions, initial i r dyn assertion is one clock cycle after the local side
transfers the first QWORD (I m_dxf r n is asserted). This process is shown
in Figure 2.

To comply with the PCI Local Bus Specification, Revision 2.2, the

pci _nt 64 and pci _t 64 functions must support 32-bit memory
transactions. To interface to a 64-bit local side, these functions provide the
option of enabling data steering logic on | _dat o[ 63. . 32] and

| _beno[ 7. . 4] .Inthe event of 32-bit PCI operation and 64-bit local side
operation, this option drives data received from the PCI bus on both the
low data and byte enable output signals (I _dat o[ 31. . 0] and

| _beno[ 3. . 0], respectively) and the high data and byte enable output
signals (I _dat o[ 63..32] and| _beno[ 7. . 4], respectively). The local
side logic mustuse thel _| dat _acknand| _hdat _ackn signals to write
data and byte enables into the low and high DWORD storage areas,
respectively.

To enable the data steering logic, turn on the Add Internal Data Steering
Logic for 32/66-Bit Systems option.

e The data steering logic adds delay to the critical timing path for
66-MHz operation. This logic may be better integrated into the
local-side application; therefore, Altera recommends that you
leave this option disabled and instead add the functionality to
your local side logic.

If any of the following statements is true for your application, the data
steering logic should be implemented either inside the MegaCore function
or in local side logic:

= Theapplication is an add-on card that can operate in either a 64-bit or
32-bit PClI slot

= A32-bittarget may claim a 64-bit memory transaction initiated by the
pci _mt 64 function

m A 32-bit master may initiate a transaction that is claimed by the
pci _nt 64 or pci _t 64 function

Altera Corporation



PCI MegaCore User Guide

Appendix C

Figure 3 shows an example of the pci _nt 64 and pci _t 64 function
target behavior during a PCI 32-bit memory write transaction with the
data steering logic disabled. Figure 4 shows the same transaction with the
data steering logic enabled. The behavior of | _dat o[ 63. . 32] and

| _beno[ 7. . 4] differs between Figure 3 and Figure 4.

Figure 3. PCI Target 32-Bit Burst Memory Transaction with Data Steering Logic Disabled

'8 19 ;10 e (12 (13 ;14

1 ) i3 L4 05 i6

clk

ad[31..0] Adr DO_L

DLL p2L X D3l Da_L

cben[3..0] 7 BEO_L

BE1_L BE2_L BE3_L BE4_L

par Adr-PAR DO-L-PAR

D1-L-PAR X D2-L-PAR X D3-L-PAR X D4-L-PAR

framen

req6é4n

irdyn

devseln

ack64n

trdyn

stopn

|_adro[31..0]

Adr

|_cmdol3..0]

|_dato[31..0]

DO_L D1 L D2_L D3_L D4_L

|_dato[63..32]

|_beno[3..0]

BEO_L BEL L

BE2_L BE3_L BE4_L

|_beno[7..4]

|_Idat_ackn

I_hdat_ackn

It_framen

It_rdyn

It_ackn

It_dxfrn

It_tsr[11..0] 000 301

701 000

Altera Corporation

163

>
=)
o
@
>
o
3




Appendix C PCI MegaCore User Guide

Figure 4. PCI Target 32-Bit Burst Memory Transaction with Data Steering Logic Enabled

1 12 '3 4 '5 i 6 07 i ‘9 . 10 11 12 .13 .14

clk

d[31.0] : Adr ’ oL ’ ’ DLL D2 L D3 Da L

cben(3..0] 7 BEO_L BEL L BE2 L BE3 L BE4_L

par Adr-PAR DO-L-PAR D1-L-PAR X D2-L-PAR X D3-L-PAR X D4-L-PAR

framen

req64n

irdyn

devseln

acké4an

trdyn

stopn

|_adro[31..0] Adr

|_cmdo[3..0] : : ; ; i i 7

|_dato[31..0] i i ‘ ‘ ‘ ‘ DO_L DL D2 L D3 L D4_L

|_dato[63.32] ‘ ‘ ‘ ‘ ‘ ‘ bo_L DL D2L D3 L Da_L

I_beno[3..0] BEO_L BE1_L BE2 L BE3 L BE4L

I_benol[7..4] BEO_L BEL L BE2_L BE3 L BE4_L

|_ldat_ackn

I_hdat_ackn

It_framen

It_rdyn

It_ackn

It_dxfrn

It_tsr[11..0] ‘ 000 ‘ ‘ 301 ‘ ‘ ‘ 701 000

Figure 5 shows a block diagram of the data steering logic needed when
usingthe pci _nt 64 and pci _t 64 functions in 32- or 64-bit systems. This
data steering logic can be added and optimized in the local side
application logic for 66-MHz operation.

164 Altera Corporation



PCI MegaCore User Guide Appendix C

Figure 5. Logic Required for 32-bit PCI Transfers to 64-Bit Local Side
Application

pci_mt64 Core Local Side Application

r’ data_input[31..0]
|_dato[31..0] B
—>

data_input[63..32]
|_dato[63..32]

Im_tsr[9]
It_tsr[7] ’
ben_input[3..0]
|_beno[3..0]
ben_input[7..4]
|_beno[7..4]

:

>
=}
§=}
@
>
o
3

Altera Corporation 165



Appendix C PCI MegaCore User Guide

166 Altera Corporation



A I:l —+—= b A Appendix D: PCI MegaCore
=N o Function Parameters

If you do not want to use the PCI compiler wizard, you can specify Altera
PCI MegaCore function parameters directly in the hardware description
language (HDL) or graphic design files. Table 1 provides the parameter
names and descriptions.

Table 1. PCI MegaCore Function Parameters (Part 1 of 5)

Name Format Default Value Description

DEVI CE_I D Hexadecimal [H'0004" Device ID register. This parameter is a
16-bit hexadecimal value that sets the
device ID register in the configuration space.
Any value can be entered for this parameter.

CLASS_CODE Hexadecimal |[H'FF0000" Class code register. This parameter is a
24-bit hexadecimal value that sets the class
code register in the configuration space. The
value entered for this parameter must be a
valid PCI SIG-assigned class code register
value.

MAX_LATENCY (1) Hexadecimal [H'00" Maximum latency register. This parameter
is an 8-bit hexadecimal value that sets the
maximum latency register in the
configuration space. This parameter must
be set according to the guidelines in the PCI
specification.

M N_GRANT (1) Hexadecimal [H'00" Minimum grant register. This parameter is
an 8-bit hexadecimal value that sets the
minimum grant register in the PCI
configuration space. This parameter must
be set according to the guidelines in the PCI
specification.

REVI SI ON_I D Hexadecimal [H'01" Revision ID register. This parameter is an
8-bit hexadecimal value that sets the
revision ID register in the PCI configuration
space.

>
=)
o
@
>
o
3

Altera Corporation 167



Appendix D

PCI MegaCore Function User Guide

Table 1. PCI MegaCore Function Parameters (Part 2 of 5)

Name

Format

Default Value

Description

SUBSYSTEM | D

Hexadecimal

H'0000"

Subsystem ID register. This parameter is a
16-bit hexadecimal value that sets the
subsystem ID register in the PCI
configuration space. Any value can be
entered for this parameter.

SUBSYSTEM VEND_| D

Hexadecimal

H'0000"

Subsystem vendor ID register. This
parameter is a 16-bit hexadecimal value that
sets the subsystem vendor ID register in the
PCl configuration space. The value for this
parameter must be a valid PCI
SIG-assigned vendor ID number.

VEND_| D

Hexadecimal

H'1172"

Device vendor ID register. This parameter is
a 16-bit hexadecimal value that sets the
vendor ID register in the PCI configuration
space. The value for this parameter can be
the Altera vendor ID (1172 Hex) or any
other PCI SIG-assigned vendor ID number.

BARO (2)

Hexadecimal

H' FFFO0000"

Base address register zero. When
implementing a 64-bit base address register
that uses BARO and BAR1, BARO contains
the lower 32-bit address. For more
information, refer to “Base Address
Registers” on page 58.

BARL (2)

Hexadecimal

H'FFFO0000"

Base address register one. When
implementing a 64-bit base address register
that uses BARO and BAR1, BARL1 contains
the upper 32-bit address. When
implementing a 64-bit base address register
that uses BAR1 and BAR2, BARL1 contains
the lower 32-bit address. For more
information, refer to “Base Address
Registers” on page 58.

BAR2 (2)

Hexadecimal

H'FFFO0000"

Base address register two. When
implementing a 64-bit base address register
that uses BAR1 and BAR2, BAR2 contains
the upper 32-bit address. For more
information, refer to “Base Address
Registers” on page 58.

BAR3 (2)

Hexadecimal

H' FFFO0000"

Base address register three.

BAR4 (2)

Hexadecimal

H' FFFO0000"

Base address register four.

BARS (2)

Hexadecimal

H' FFFO0000"

Base address register five.

168

Altera Corporation



PCI MegaCore Function User Guide

Appendix D

Table 1. PCI MegaCore Function Parameters (Part 3 of 5)

Name

Format

Default Value

Description

EXP_ROM BAR

String

H' FFO00000"

Expansion ROM. This value controls the
number of bits in the expansion ROM BAR
that are read/write and will be decoded
during a memory transaction.

HARDW RE_BARnN

Hexadecimal

H' FFO00000"

Hardwire base address register. n
corresponds to the base address register
number and can be from 0 to 5.

HARDW RE_BARn is a 32-bit hexadecimal
value that permanently sets the value stored
in the corresponding BAR. This parameter is
ignored if the corresponding

HARDW RE_BARNn_ENA bit is not set to 1.
When the corresponding

HARDW RE_BARn_ENA bits are set to 1, the
function returns the value in

HARDW RE_BARnN during a configuration
read. To detect a base address register hit,
the function compares the incoming address
to the upper bits of the HARDW RE_BARN
parameter. The corresponding BARn
parameter is still used to define the
programmable setting of the individual BAR
such as address space type and number of
decoded bits.

HARDW RE_EXP_ROM

Hexadecimal

H' FFO00000"

Hardwire expansion ROM BAR.

HARDW RE_EXP_ROMis the default
expansion ROM base address. This
parameter is ignored when

HARDW RE_EXP_ROM ENA s set to 0.
When HARDW RE_EXP_ROM ENA is set to
1, the function returns the value in

HARDW RE_EXP_ROMduring a configuration
read. To detect base address hits for the
expansion ROM, the functions compare the
input address to the upper bits of

HARDW RE_EXP_ROM

HARDW RE_EXP_ROM ENA must be set to
enable expansion ROM support, and the
HARDW RE_EXP_ROMparameter setting
defines the number of decoded bits.

Altera Corporation

169

>
=}
§=}
@
>
o
3




Appendix D

PCI MegaCore Function User Guide

Table 1. PCI MegaCore Function Parameters (Part 4 of 5)

Name

Format

Default Value

Description

MAX_64_BAR RW BI TS

Decimal

Maximum number of read/write bits in upper
BAR when using a 64-bit BAR. This
parameter controls the number of bits
decoded in the high BAR of a 64-bit BAR.
(Values for this parameter are integers from
810 32.) For example, setting this parameter
to eight (the default value) allows the user to
reserve up to 512 GBytes. Note: Most
systems will not require that all of the upper
bits of a 64-bit BAR be decoded. This
parameter controls the size of the
comparator used to decode the high
address of the 64-bit BAR.

NUMBER_OF BARS

Decimal

Number of base address registers. Only the
logic that is required to implement the
number of BARs specified by this parameter
is used—i.e., BARs that are not used do not
take up additional logic resources. The PCI
MegaCore function sequentially instantiates
the number of BARSs specified by this
parameter starting with BARO. When
implementing a 64-bit BAR, two BARs are
used; therefore, the NUVBER _OF_BARS
parameter should be raised by two.

CAP_PTR

Hexadecimal

H' 40"

Capabilities list pointer register. This 8-bit
value sets the capabilities list pointer
register.

Cl'S_PTR

Hexadecimal

H'00000000"

CardBus CIS pointer. The Cl S_PTRsets the
value stored in the CIS pointer register. The
CIS pointer register indicates where the CIS
header is located. For more information,
refer to the PCMCIA Specification,
version 2.2. The functions ignore this
parameter if CI S_PTRis not set to 0. In
other words, if the CI S_PTR_ENA bit is set
to 1, the functions return the value in

Cl S_PTRduring a configuration read to the
CIS pointer register. The function returns
H' 00000000" during a configuration read
to CISwhen CI S PTR _ENA s set to 0.

170

Altera Corporation




PCI MegaCore Function User Guide Appendix D

Table 1. PCI MegaCore Function Parameters (Part 5 of 5)

Name Format Default Value Description

ENABLE_BI TS Hexadecimal |H'00000000" Feature enable bits. This parameter is a
32-bit hexadecimal value which controls
whether various features are enabled or
disabled. The bit definition of this parameter
is shown in Table 2.

| NTERRUPT_PI N_REG |Hexadecimal |H'O1" Interrupt pin register. This parameter
indicates the value of the interrupt pin
register in the configuration space address
location 3DH. This parameter can be set to
two possible values: H' 00" to indicate that
no interrupt support is needed, or H' 01" to
implement i nt an. When the parameter is
setto H' 00", i nt an will be stuck at V¢
andthel _i r gn local interrupt request input
pin will not be required.

PCl _66MHZ_CAPABLE | String " YES" PCI 66-MHz capable. When set to " YES",
this parameter sets bit 5 of the status
register to enable 66-MHz operation.

Notes to table:

(1) These parameters affect master functionality, therefore, they only affect the pci _nt 64 and pci _nt 32 functions.
(2) The BARO through BARS parameters control the options of the corresponding BAR instantiated in the PCl MegaCore
function. Use BARO through BARS5 for I/0 and 32-bit memory space. If you use a 64-bit BAR in pci _nt 64 or
pci _t 64, it must be implemented on either BARO and BAR1 or BARL and BAR2. Consequently, the remaining BARs

can still be used for 1/0 and 32-bit memory space.

Table 2 shows the bit definition for ENABLE_BI TS.

Table 2. Bit Definition of the ENABLE_BITS Parameter (Part 1 of 4)

Bit Bit Name Default Definition
Number Value

5.0 |HARDW RE_BARn_ENA B"000000" [Hardwire BAR enable. This bit indicates that the user wants
to use a default base address at power-up. n corresponds
to the BAR number and can be from 0 to 5.

6 HARDW RE_EXP_ROM ENA |0 Hardwire expansion ROM bar enable. This bit indicates
that the user wants to use a default expansion ROM base
address at power-up.

>
=}
§=}
@
>
o
3

Altera Corporation 171



Appendix D PCI MegaCore Function User Guide

Table 2. Bit Definition of the ENABLE_BITS Parameter (Part 2 of 4)

Bit Bit Name Default Definition
Number Value
7 EXP_ROM_ENA 0 Expansion ROM enable. This bit enables the capability for

the expansion ROM base address register. If this bit is set
to 1, the function uses the value stored in EXP_ROM BARto
set the size and number of bits decoded in the expansion
ROM BAR. Otherwise, the expansion ROM BAR is read
only and the function returns H' 0000000" when the
expansion ROM BAR is read.

8 CAP_LI ST_ENA 0 Capabilities list enable. This bit determines if the
capabilities list will be enabled in the configuration space.
When this bit is set to 1, it sets the capabilities list bit (bit 4)
of the status register and sets the capabilities register to the
value of CAP_PTR.

9 Cl S_PTR_ENA 0 CardBus CIS pointer enable. This bit enables the CardBus
CIS pointer register. When this bit is set to 0, the function
returns H' 00000000" during a configuration read to the
Cl S_PTRregister.

10 | NTERRUPT_ACK_ENA 0 Interrupt acknowledge enable. This bit enables support for
the interrupt-acknowledge command. When set to 0, the
function ignores the interrupt acknowledge command.
When set to 1, the function responds to the interrupt
acknowledge command. The function treats the interrupt
acknowledge command as a regular target memory read.
The local side must implement the necessary logic to
respond to the interrupt controller.

11 Reserved 0 Reserved.
12 | NTERNAL_ARBI TER ENA |0 This bit allows r egn and gnt n to be used in internal arbiter
(1) logic without requiring external device pins. If an APEX or

aFLEX device is used to implement the function and is also
used to implement a PCI bus arbiter, the r egn signal
should feed internal logic and gnt n should be driven by
internal logic without using actual device pins. If this bit is
set to 1, the tri-state buffer on the r egn signal is removed,
allowing an arbiter to be implemented without using device
pins for the r egn and gnt n signals.

172 Altera Corporation



PCI MegaCore Function User Guide Appendix D

Table 2. Bit Definition of the ENABLE_BITS Parameter (Part 3 of 4)

Bit Bit Name Default Definition
Number Value
13 SELF_CFG_HB_ENA (1) 0 Host bridge enable. This bit controls the self-configuration

host bridge functionality. Setting this bit to 1 causes the
pci _mt 64 and pci _mnt 32 cores to power up with the
master enable bit in the command register hardwired to 1
and allows the master interface to initiate configuration
read and write transactions to the internal configuration
space. This feature does not need to be enabled for the
pci _nt 64 or pci _nt 32 master to initiate configuration
read and write transactions to other agents on the PCI bus.
Finally, you will still need to connect | DSEL to one of the
high order bits of the AD bus as indicated in the PCI Local
Bus Specification, version 2.2 to complete configuration
transactions.

14 LOC_HDAT_MJUX_ENA 0 Add internal data steering logic for 32- and 64-bit systems.
This bit controls the data and byte enable steering logic that
was implemented in the pci _nt 64 and pci _t 64
MegaCore functions before version 2.0.0. When this bit is
setto 0, only the |l _dat o[ 31..0] and| _beno[ 3. . 0]
buses will contain valid data during a 32-bit master read
(when a 64-bit transaction was requested) or a 32-bit target
write. Setting this bit to 1 will implement the steering logic,
providing 100% backward compatible operation with
versions prior to 2.0.0. If starting a new design, Altera
recommends adding the data steering logic in the local side
application for lower logic utilization and better overall
performance.

15 DI SABLE_LAT_TMR (1) 1 Disable master latency timer. This bit controls whether the
latency timer circuitry will operate as indicated in the PCI
Local Bus Specification, version 2.2. When this bit is set
to 0, the latency timer circuitry will operate normally and will
force the pci _nt 64 or pci _nt 32 master to relinquish bus
ownership as soon as possible when the latency timer has
expired and gnt n is not asserted. If this bit is set to 1, the
latency timer circuitry is disabled. In this case, the

pci _mt 64 or pci _nt 32 master will relinquish bus
ownership normally when the local side signal | m | astn
is asserted or when the target terminates the PCI
transaction with a retry, disconnect, or abort.

>
=}
§=}
@
>
o
3

Altera Corporation 173



Appendix D

PCI MegaCore Function User Guide

Table 2. Bit Definition of the ENABLE_BITS Parameter (Part 4 of 4)

Bit
Number

Bit Name

Default
Value

Definition

16

PCl _64BI T_SYSTEM

64-bit only PCI devices. This bit allows enhanced master
capabilities when the pci _nt 64 function is used in
systems where a 64-bit master request will always be
accepted by a 64-bit target device (target device always
responds with ack64n asserted). When this bit is set to 1,
the pci _nt 64 master will:

®  Support 64-bit single-cycle master write transactions
m  Assertirdyn one clock cycle after the assertion of
f r amen for read and write transactions.

This option should only be used in embedded applications
where the designer controls the entire system
configuration. This option does not affect target
transactions and does not affect master 32-bit transactions
including transactions using the | m_ r eq32n,
configuration, and /O transactions.

31..17

Reserved

Reserved.

Note:

(1) These parameters affect master functionality and therefore only affect the pci_mt64 and pci_mt32 functions.

174

Altera Corporation



Notes:



Notes:



	About this User Guide
	How to Find Information
	How to Contact Altera
	Typographic Conventions

	About this Core
	Introduction
	General Description
	Features...
	...and More Features

	Getting Started
	PCI MegaCore Directory Structure
	Altera PCI MegaCore Function Design Flow
	Obtain the PCI MegaCore Functions
	Instantiate a PCI MegaCore Function in Your Design
	Synthesize
	Simulate
	Obtain PCI Constraint File and Analyze Timing
	License MegaCore Function
	Configure a Device

	Design Walk- Through
	Generating a Project-Specific Instance of the pci_mt64, pci_t64, pci_mt32, or pci_t32 Function
	Generating Project-Specific Constraint Files to Achieve PCI Timing Requirements
	Compilation, Functional Simulation & Timing Analysis in the Quartus II Software
	Compilation
	Timing Analysis
	Functional Simulation



	MegaCore Overview
	Compliance Summary
	PCI Bus Signals
	Parameterized Configuration Register Signals
	Local Address, Data, Command and Byte Enable Signals
	Target Local-Side Signals
	Master Local-Side Signals

	MegaWizard Plug-In
	Parameters
	Application Speed Capability
	Read-Only PCI Configuration Registers
	PCI Base Address Registers (BARs)
	Advanced Features in the pci_mt64, pci_mt32, pci_t64, and pci_t32 MegaCore Functions
	Optional Registers
	Optional Interrupt Capabilities
	Optional Master Features
	64-Bit PCI Options


	Functional Description
	Target Device Signals & Signal Assertion
	Master Device Signals & Signal Assertion


	Specifications
	PCI Bus Commands
	Configuration Registers
	Vendor ID Register
	Device ID Register
	Command Register
	Status Register
	Revision ID Register
	Class Code Register
	Cache Line Size Register
	Latency Timer Register
	Header Type Register
	Base Address Registers
	CardBus CIS Pointer Register
	Subsystem Vendor ID Register
	Subsystem ID Register
	Expansion ROM Base Address Register
	Capabilities Pointer
	Interrupt Line Register
	Interrupt Pin Register
	Minimum Grant Register
	Maximum Latency Register

	Target Mode Operation
	64-Bit Target Read Transactions
	64-Bit Single-Cycle Target Read Transaction
	64-Bit Memory Burst Read Transaction

	32-Bit Target Read Transactions
	32-Bit Memory Read Transactions
	I/O Read Transaction
	Configuration Read Transaction

	64-Bit Target Write Transactions
	64-Bit Single-Cycle Target Write Transaction
	64-Bit Target Burst Write Transaction

	32-Bit Target Write Transactions
	32-Bit Memory Write Transaction
	I/O Write Transaction
	Configuration Write Transaction

	Target Transaction Terminations
	Retry
	Disconnect
	Target Abort


	Master Mode Operation
	PCI Bus Parking
	Design Consideration

	64-Bit Master Read Transactions
	64-Bit Master Burst Memory Read Transaction with Local-Side Wait State
	64-Bit Master Burst Memory Read Transaction with PCI Wait State
	64-Bit Master Single-Cycle Memory Read Transaction

	32-Bit Master Read Transactions
	32-Bit PCI & 64-Bit Local-Side Master Burst Memory Read Transaction
	32-Bit PCI & 32-Bit Local-Side Master Burst Memory Read Transaction
	32-Bit PCI & 32-Bit Local Side Single-Cycle Memory Read Transaction

	64-Bit Master Write Transactions
	64-Bit Master Zero Wait State Burst Memory Write Transaction
	64-Bit Master Burst Memory Write Transaction with Local Wait State
	64-Bit Master Burst Memory Write Transaction with PCI Wait State

	32-Bit Master Write Transactions
	32-Bit PCI & 64-Bit Local-Side Master Burst Memory Write Transaction
	32-Bit PCI & 32-Bit Local-Side Master Burst Memory Write Transaction
	32-Bit PCI & 32-Bit Local-Side Single-Cycle Memory Write Transaction

	Abnormal Master Transaction Termination
	Latency Timer Expires
	Retry
	Disconnect Without Data
	Disconnect with Data
	Target Abort
	Master Abort


	Host Bridge Operation
	Using the PCI MegaCore Function as a Host Bridge
	PCI Configuration Read Transaction from the pci_mt64 Local Master Device to the Internal Configur...
	PCI Configuration Write Transaction from the pci_mt64 Local Master Device to the Internal Configu...

	Implementing Internal Bus Arbitration Logic

	64-Bit Addressing, Dual Address Cycle (DAC)
	Target Mode Operation
	64-Bit Address, 64-Bit Data Single-Cycle Target Read Transaction

	Master Mode Operation
	64-Bit Address, 64-Bit Data Master Burst Memory Read Transaction



	Appendix A: Tips for 66-MHz PCI Designs
	Pipelining the Local-Side Design
	Designing to the PCI Function Local Side
	Design Examples

	Appendix B: Using PCI Constraint Files
	PCI Constraint File Contents
	Generate a Constraint File for Your Project
	PCI System Speed
	Input Constraint File
	Output Constraint File
	Project Name
	Hierarchical Name of MegaCore


	How to Use PCI Tcl Scripts in the Quartus II Software

	Appendix C: 64-Bit Options for the pci_mt64 and pci_t64 MegaCore Functions
	Introduction
	64-Bit Only Devices Option
	Add Internal Data Steering Logic for 32/64- Bit Systems Option

	Appendix D: PCI MegaCore Function Parameters

