

D0 STT Meeting

System Architecture Update

Proposed changes/refinements to system architecture:

- o Use point-to-point links (i.e. Channel Link) for road bus availability of 3-channel mezzanine cards makes this practical many advantages for prototyping, modularity, expansion
- o Use standard PCI bus for mezzanine card interfaces

Advantages:

no need to re-invent the bus! easy prototyping with commercial hardware guaranteed interchangeability of components

Disadvantages:

uses more logic overhead in data transfers harder to implement (maybe not true)

o Existing commercial standards:

PC-MIP 47x99mm 32 bit 33MHz PCI

PMC 150x75 mm 64 bit 66MHz PCI

o Many commercial motherboards exist

"Intelligent" carriers - VME CPU boards w/ PMC, PC-MIP sites "non-Intelligent" carriers - VME-PCI bridge only

D0 STT Meeting

System Architecture Update

Major Issues for Motherboard/PCI-Based System

- o Data formats across links
- o LVDS-link receiver functionality how much error checking?
- o Road receiver from TFC -- how to broadcast to mezzanine cards
 This is particularly an issue for the STC
- o How much processing to do on the motherboard for the VTM (G-link) inputs?
- o Design of Level 3 buffering
- o J3 backplane issues (can FRC use a VTM?)
- o Hardware support for downloading / monitoring

Backplane connections not shown: Level 3 buffering (J3 bus) SCL Init/busy/error (J0 TBUS) VTM Inputs (CTT, SMT)

SVX-style J3 Backplane

LVDS Point-to-Point Link Receiver PC-MIP card with 32 bit 33MHz PCI

E. Hazen - 24 Sept 1999

