Frictional Cooling

NUFACT02

Studies at Columbia University & Nevis Labs
 Raphael Galea
 Allen Caldwell
 Stefan Schlenstedt (DESY/Zeuthen)
 Halina Abramowitz (Tel Aviv University)

Summer 2001 Students:
 Christos Georgiou
 Daniel Greenwald
 Yujin Ning
 Inna Shpiro
 Will Serber
Cooling Motivation

• μs not occur naturally so produce them from p on target – π beam – decay to μ
 • π & μ beam occupy diffuse phase space
 \[\varepsilon_{6D} = \sigma (x) \sigma (P_x) \sigma (y) \sigma (P_y) \sigma (z) \sigma (P_z) \]

• Unlike e & p beams only have limited time \(\tau_\mu = 2.2 \mu s \) to cool and form beams
• Neutrino Factory/Muon Collider Collaboration are pursuing a scheme whereby they cool μs by directing particles through a low Z absorber material in a strong focusing magnetic channel and restoring the longitudinal momentum
 • IONIZATION COOLING COOL ENERGIES \(O(200\text{MeV}) \)
• Cooling factors of \(10^6 \) are considered to be required for a Muon Collider and so far factors of 10-100 have been theoretically achieved through IONIZATION COOLING CHANNELS
Frictional Cooling

- Bring muons to a kinetic energy (T) range where dE/dx increases with T
- Constant E-field applied to muons resulting in equilibrium energy
Problems/Comments:

- large dE/dx @ low kinetic energy
 - low average density
- Apply $\vec{E} \perp \vec{B}$ to get below the dE/dx peak
- μ^+ has the problem of Muonium formation
 - $\sigma(\text{Mu})$ dominates over e-stripping σ in all gases except He
- μ^- has the problem of Atomic capture
 - σ calculated up to 80 eV not measured below $\sim 1\text{KeV}$
- Cool μ’s extracted from gas cell $T=1\mu$s so a scheme for reacceleration must be developed
Frictional Cooling: particle trajectory

- $\ln(1 - \tau) \sqrt{d \mu = 10 \text{cm} \times \sqrt{T(\text{eV})}}$
- keep d small at low T
- reaccelerate quickly

** Using continuous energy loss**

Raphael Galea, Columbia University
NUFACT02 : Imperial College London
Frictional Cooling: stop the μ

- High energy μ’s travel a long distance to stop
- High energy μ’s take a long time to stop

Start with low initial muon momenta
Cooling scheme

Phase rotation is $E(t)$ field to bring as many μ’s to 0 Kinetic energy as possible
- Put Phase rotation into the ring
Target System

- cool μ^+ & μ^- at the same time
- calculated new symmetric magnet with gap for target

Raphael Galea, Columbia University
NUFACT02: Imperial College London
π’s in red
μ’s in green

View into beam
Target & Drift
Optimize yield

- Maximize drift length for μ yield
- Some π’s lost in Magnet aperture
Phase Rotation

- First attempt simple form
- Vary t_1, t_2 & E_{max} for maximum low energy yield
Frictional Cooling Channel

Cool μ beamlets reaccelerated and recombined.

Incoming μ beam

Solenoid

Gas Cell

$E(t)$

E

B
Cell Magnetic Field

- Realistic Solenoid fields in cooling ring
Simulations Improvements

- Incorporate scattering cross sections into the cooling program
 - Born Approx. for $T > 2\text{KeV}$
 - Classical Scattering $T < 2\text{KeV}$
- Include μ^- capture cross section using calculations of Cohen (Phys. Rev. A. Vol 62 022512-1)
Scattering Cross Sections

- Scan impact parameter $\theta(b)$ to get $d\sigma/d\theta$ from which one can get $\lambda_{\text{mean free}}$
- Simulate all scatters $\theta > 0.05$ rad
Barkas Effect

• Difference in μ^+ & μ^- energy loss rates at dE/dx peak
• Due to extra processes charge exchange
• Only used for the electronic part of dE/dx
Frictional Cooling: Particle Trajectory

μ- use Hydrogen
 • Smaller Z help in σ_{capture}
 • Lower r fewer scatters
 • BUT at higher equilibrium energy

- 50cm long solenoid
- 10cm long cooling cells
- ρ_{gas} for μ^+ 0.7atm & μ^- 0.3atm
- $E_x=5\text{MV/m}$
- $B_z=5\text{T}$ realistic field configuration
Motion in Transverse Plane

\[\vec{F} = q(\vec{E} + \vec{v} \times \vec{B}) - \frac{dT}{dx} \hat{r} \]

- Assuming \(E_x = \text{constant} \)
Emittance Calculation

After drift cartesian coordinates
More natural

\[\varepsilon_{\text{long}} = \sigma(z)\sigma(P_z) \]
\[\varepsilon_{\text{trans}} = \sigma(x)\sigma(P_x)\sigma(y)\sigma(P_y) \]
\[\varepsilon_{6D} = \varepsilon_{\text{long}}\varepsilon_{\text{trans}} \]

After cooling cylindrical coordinates are more natural

\[\varepsilon'_{\text{long}} = \sigma(\beta_c t)\sigma(P_{\rho}) \]
\[\varepsilon'_{\text{trans}} = \rho_0\sigma(\phi)\sigma(P_{\phi})\sigma(z)\sigma(P_z) \]
\[\varepsilon'_{6D} = \varepsilon'_{\text{long}}\varepsilon'_{\text{trans}} \]

After drift cartesian coordinates
More natural

Beamlet uniform z distribution:

\[\rho_0 = 20\text{cm} \]
\[\sigma(z) = 10\text{cm}/\sqrt{12} * N \]
\[N = 100\text{cells} \]
Beamlet coordinates:

\[\rho, \phi, z \]

\[P_\rho = \frac{xP_x + yP_y}{\rho} \quad P_\phi = \frac{xP_y - yP_x}{\rho^2} \quad P_z \]

X 100 beamlets

Beamlet coordinates:

\[\rho, \phi, z \]

\[P_\rho = \frac{xP_x + yP_y}{\rho} \quad P_\phi = \frac{xP_y - yP_x}{\rho^2} \quad P_z \]
β_{ct} vs z for $\mu^+\text{He}$ on Cu

Mean(β_{ct}) = 1.02 cm
RMS(β_{ct}) = 8.1 cm
β_{ct} vs z for μ-H on W
$P_{\text{long}} \text{ vs } P_{\text{trans}} \text{ for } \mu^+\text{He on CU}$
P_{long} vs P_{trans} for $\mu^{-}\text{H}$ on W
RΦ vs z for μ⁺He on CU

Mean(RΦ) = −3.3 cm
RMS(RΦ) = 4.7 cm
Rφ vs z for μ-H on W
Conclusions

<table>
<thead>
<tr>
<th>Cooling factors</th>
<th>Yield (μ/p)</th>
<th>$\varepsilon_{\text{trans}}$</th>
<th>$\varepsilon_{\text{long}}$</th>
<th>ε_{6D} (1×10^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu^+\text{He on Cu}$</td>
<td>0.005</td>
<td>11239</td>
<td>2012</td>
<td>22</td>
</tr>
<tr>
<td>$\mu^-\text{He on Cu}$</td>
<td>0.002</td>
<td>403</td>
<td>156</td>
<td>0.06</td>
</tr>
<tr>
<td>$\mu^-\text{H on Cu}$</td>
<td>0.003</td>
<td>1970</td>
<td>406</td>
<td>0.8</td>
</tr>
<tr>
<td>$\mu^+\text{He on W}$</td>
<td>0.006</td>
<td>9533</td>
<td>1940</td>
<td>18</td>
</tr>
<tr>
<td>$\mu^-\text{He on W}$</td>
<td>0.003</td>
<td>401</td>
<td>149</td>
<td>0.06</td>
</tr>
<tr>
<td>$\mu^-\text{H on W}$</td>
<td>0.004</td>
<td>1718</td>
<td>347</td>
<td>0.6</td>
</tr>
</tbody>
</table>
Problems/Things to investigate…

• Extraction of μs through window in gas cell
 • Must be very thin to pass low energy μs
 • Must be gas tight and sustain pressures $O(0.1-1)$ atm
• Can we applied high electric fields in small gas cell without breakdown?
• Reacceleration & recombine beamlets for injection into storage ring
• The μ^- capture cross section depends very sensitively on kinetic energy & fall off sharply for kinetic energies greater than e^- binding energy. NO DATA – simulations use calculation
 Critical path item intend to make measurement
Work at NEVIS labs

• Want to measure the energy loss, $\mu \cdot \sigma_{\text{capture}}$, test cooling principle
• Developing Microchannel Plate & MWPC detectors
A simpler approach

- Avoid difficulties of kickers & multiple windows
- Without optimization initial attempts have 60% survival & cooling factor 10^5
- Still need to bunch the beam in time
Conclusions

• Frictional cooling shows promise with potential cooling factors of $O(10^5-10^6)$
 – Simulations contain realistic magnet field configurations and detailed particle tracking
 – Built up a lab at Nevis to test technical difficulties

• There is room for improvement
 – Phase rotation and extraction field concepts very simple
 – Need to evaluate a reacceleration scheme
Summary of Frictional Cooling

- Works below the Ionization Peak
- Possibility to capture both signs
- Cooling factors $O(10^6)$ or more?
- Still unanswered questions being worked on but work is encouraging.

Nevis Labs work on $\mu^+ \sigma_{\text{capture}}$

Schematic layout of this cooling system

- Target Magnet
- Drift
- Cooling ring (100 cells)
- Muon Re-Acceleration

produce and collect p/mu

p-time corr

max #muls

$\text{phase rotation and cooling and extraction}$