Home page for Brian Humensky


Where do I work?

I am a Professor of Physics at Columbia University. Some of my work involves teaching in the Physics Department. My research is conducted from Nevis Laboratories.

What do I teach?

In Spring '12 I taught G6011 Astrophysics I, accessible to Columbia people via Courseworks.

In Spring '13 I'll again be teaching G6011 Astrophysics I, along with V1202 General Physics II.

What do I research?

My primary research activity is in the area of gamma-ray astrophysics. I work on VERITAS, the Very Energetic Radiation Imaging Telescope Array System, and CTA, the Cherenkov Telescope Array (a next-generation instrument). Locally, I collaborate closely with fellow VERITAS and CTA member Reshmi Mukherjee.

My group's web page is here.

VERITAS is an array of four imaging air Cherenkov telescopes located at the Whipple Observatory on Mt. Hopkins, about one hour south of Tucson, AZ. VERITAS is dedicated to the study of gamma-ray astrophysics in the energy range from 100 GeV to 30 TeV. This part of the electromagnetic spectrum provides a unique window on the most powerful of the cosmic particle accelerators, including jets associated with supermassive black holes, shock waves in supernova remnants and the nebulae surrounding energetic pulsars, and the complex physics of X-ray binary systems. Very-high-energy gamma rays can also probe some of the most important questions in particle physics and cosmology: the search for dark matter, Lorentz invariance violation, and the strength of the magnetic field in intergalactic space.

At Columbia and Barnard, the science problems we focus on are in the areas of dark matter searches, the origins of Galactic cosmic rays, and the physics of active galactic nuclei. In many dark matter scenarios, the particles that make up the dark matter can either annihilate with each other, or decay (with a very long lifetime). In either case, one of the final products will be high-energy gamma rays. The mass of the dark matter particle is poorly constrained; above a few hundred GeV, detection of gamma rays from regions of space with unusually high concentrations of dark matter (such as dwarf spheroidal galaxies, or the central region of the Milky Way galaxy) becomes one of the most promising avenues for identifying dark matter.

For nearly 100 years we have known that the earth is bombarded by energetic charged particles, cosmic rays, without a clear understanding of their origins. Cosmic rays can range in energy up to 10^20 eV. Up to 10^15 eV or so, cosmic rays are believed to be accelerated within our galaxy, but the astrophysical accelerators have not yet been unambiguously identified. Growing evidence from VERITAS and similar ground- and space-based observatories (HESS, MAGIC, Fermi-LAT, AGILE) suggests that supernova remnants are one source of Galactic cosmic rays (as long anticipated), but it remains an open question whether they are the sole, or even the primary, source. Deep studies of known Galactic accelerators and surveys of classes of objects will allow us to address this question, as well as explore the details of the acceleration process.

Active galactic nuclei (AGN) are supermassive black holes at the centers of galaxies which are actively accreting material; energy released from the accretion disk somehow powers the formation of relativistic jets of material moving outward from the black holes, as well as acceleration of particles to very high energies. Where and how this particle acceleration occurs, and how it connects to the structure and formation of these remarkable jets, are a few of the questions being addressed by studies of AGN from the radio through the gamma-ray bands.

VERITAS upgraded its cameras during the summer of 2012, and development work for CTA is ramping up.

What have I published?

Coming soon.

 

Where do I live?

In the state of New York. Some other stuff about me:

How to reach me?

E-mail
  • Nevis : "My last name at nevis dot columbia dot edu" (preferred contact mode)
Phone
  • Campus: (212)-854-8280 (or 4-8280 from Nevis ROLM system)
  • Nevis : (914)-591-2807 (or 72-2807 from Columbia ROLM system)
  •  
Snail Mail
  • Campus: Department of Physics, Columbia University, NY, NY, 10027
  • Nevis: Nevis Laboratories, P.O. Box 137, Irvington, NY 10533
Office
  • Campus: 918 Pupin (Need a subway map?)
  • Nevis: 98 (main building)