A brief, incomplete, and possibly incorrect introduction to statistics or

A guide to physicists' jargon

The terms I hope to define

- Gaussian
- chi-squared
- chi-squared per degrees of freedom
- sigma (as in "we're looking for a five-sigma effect")
- systematic error

Professor Michael Shaevitz, Director of Nevis Labs, is our expert on statistics. I'm half-remembering what he taught me, and making up the rest.

Gaussian

$$f(x) = e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

- μ is the mean of the distribution.
- σ = the standard deviation; it's related to the "full width at half maximum" (FWHM) of the curve by FWHM = $2\sqrt{2\ln 2}\sigma \approx 2.35\sigma$.
- e = Euler's constant, a transcendental number that occurs often in calculations that relate to growth and increase. It's formally defined as $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$.

caveats

• If you want to work with the normal distribution as a "probability density function" then you'll want to include a normalization so the integral $\int_{-\infty}^{\infty} \mathcal{N}(x) dx = 1$

$$N(x:\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

However, if you work with this form you can't fiddle with the amplitude of the distribution.

- There are other functional forms in physics than the Gaussian! However, I'm lazy, so that's the only one I use in the tutorial.
- It makes some sense to stick with Gaussians, since the sum of many random processes (even non-Gaussian ones) tends towards a Gaussian. (This is the Central Limit Theorem.)

chi-squared

Measurements from my experiment

What's the probability that the underlying distribution of this histogram is a Gaussian?

chi-square for a 1D histogram

$$\chi^2 = \sum_{i} \frac{\left(y_i - f(x_i; p_j)\right)^2}{e_i^2}$$

where:

- i means the i-th bin of the histogram (more generally, the i-th data point you've gathered).
- y_i means the data (or value of) the *i*-th bin of the histogram.
- e_i means the error in the *i*-th bin of the histogram (i.e., the size of the error bars).
- $f(x_i; p_j)$ means to compute the value of the function at x_i (the value on the x-axis of the center of bin i) given some assumed values of the parameters $p_0, p_1, p_2 \dots p_i$.

The process of "fitting" means to test different values of the parameters until you find those that minimize the value of χ^2 .

Fit \equiv Test different values of A, μ , and σ until you find those that minimize the value of χ^2 .

Measurements from my experiment

The underlying program that does this is Minuit. It's been a standard program for finding function minima for decades.

chi-squared per (number of) degrees of freedom

What value of chi-square do you expect from a fit?

$$\chi^2 = \sum_{i} \frac{\left(y_i - f(x_i; p_j)\right)^2}{e_i^2}$$

- For each individual bin i the data forms a little gaussian distribution of its own with a mean of y_i .
- The e_i acts as a scale of the difference between y_i and the function f(x). So if f(x) is a reasonable approximation to y_i , $(y_i-f(x))/e_i$ will be around ± 1 .
- You add up those "1"s for each of the bins, and you might anticipate that χ^2 will be roughly equal to *i*, the number of bins.

But we have to adjust that...

There are three "free parameters" in the fit: A, μ, σ .

They're going to be varied to make the chi-squared smaller. The net effect is that total number of "degrees of freedom" is:

DOF = number of data points

- number of free parameters in the function

In that fit a couple of pages ago, χ^2 / ndf = 94.56 / 97.

What does this tell us?

Upper-tail critical values of chi-square distribution with ν degrees of freedom

Look it up on the web

ν	Prob 0.90	oability less 0.95	than the 0.975	critical 0.99	value 0.999
1	2.706	3.841	5.024	6.635	10.828
2	4.605	5.991	7.378	9.210	13.816
3	6.251	7.815	9.348	11.345	16.266
4	7.779	9.488	11.143	13.277	18.467
5	9.236	11.070	12.833	15.086	20.515
6	10.645	12.592	14.449	16.812	22.458
_					

For the typical fits that we do in physics (lots of data points), it's sufficient that χ^2 / ndf is roughly 1.

Why might χ^2 / ndf be much greater than 1?

- There's something wrong in the routine that's calculating χ^2
- The model that's being assumed for the function does not have enough parameters.
- The error bars for your data are too small
- Function-minimization programs can get "stuck" in a local minimum that's not the actual true minimum

Why might χ^2 / ndf be much less than 1?

- Again, something wrong in the χ^2 calculation.
- Too many free parameters in the function you're using to fit.
- The errors on your data are too large.
- Someone has gone wrong in your data-analysis process and you're "tuning" the data to the model you want to fit.

"We're looking for a five sigma effect"

 3σ = "evidence"

 5σ = "discovery"

This how I think of it

Systematic error versus statistical error

Statistical error = random errors in the measurement.

Systematic error = a bias in the measurement, but you don't know how much that bias is.

Example of an experiment's systematic errors

ATLAS PUB Note

ATL-PHYS-PUB-2018-001

31st January 2018

Investigation of systematic uncertainties on the measurement of the top-quark mass using lepton transverse momenta

Uncertainty	Δm_{top} [GeV]
Statistics	0.94
Method calibration	0.40
Signal MC generator	0.62
Single-top Wt generator	0.28
Hadronisation and parton shower	0.55
ISR and FSR	1.39
Underlying Event	0.67
Colour Reconnection	0.23
Parton distribution function	0.42
Single-top contribution	0.10
Leptons	0.50
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.12
b-tagging	0.08
Jet energy scale	0.60
Jet energy resolution	0.32
Jet vertex fraction	0.05
Total	2.27

Typical physicist lunchroom talk

- "What's the chi-squared?" = What is the χ^2 per number of degrees of freedom from the fit to an assumed model (presumably a Gaussian)?
- "They've got a five-sigma effect!" = When you consider both the statistical and systematic errors, the measurement from the experiment refutes the null hypothesis at a large level of significance.
- "This sandwich tastes terrible!" = Let's pick a different place to go to lunch next time.