Basic tutorial for using condor at Nevis

Login to your file server

For the purposes of illustration, I’'m going to assume that your file server is olga (a machine
name that does not exist at Nevis), and that your Nevis account name is SUSER (which is correct
if you log into your file server from a Nevis system).

> ssh $USER@olga.nevis.columbia.edu

Create a directory on your file server

Disks are divided into “partitions”, and directories are created within partitions. All the Nevis
systems have a /data partition. Let’s go there, create our test directory, and go into the new
directory:

> cd /nevis/olga/data

> mkdir SUSER

> cd $USER

Copy the files used in this tutorial
> cp ~seligman/root-class/condor-example.* $SPWD

Look at the list of files you’ve copied:
> 1s -1lh

Look at the batch cluster

This command will show you the systems on the cluster, and how much memory has been
assigned to each batch queue.
> condor_status

It’s a long list, so you may want to pipe it to the 1less command:
> condor_ status | less

These are the systems on which your condor processes can execute.

Look at the files

Although there are exceptions, typically condor jobs require at least three files: the condor
command file, a shell script executed by the command file, and a program executed by the shell
script. Take a look at these files and read the comments:

> less condor-example.cmd

> less condor-example.sh

> less condor-example.py

The command file submits the shell script to be executed on some machine in the condor pool.
The shell script sets up the environment for the program to execute. The program, when it
executes, writes an output file. That output file is copied by condor to the directory from which
you originally executed condor submit.

5/29/18 Basic Condor Tutorial Page 1 of 3

Make sure they’re executable

For a file to be executed as a program, it must be executable. I’ve already made sure that
condor-example.sh and condor-example.py are executable programs via the
following commands, but I suggest you type them in again to both be certain and to know how to
do this when you start writing your own scripts.

> chmod +x condor-example.sh

> chmod +x condor-example.py

Let’s try it

Submit your condor command file to the condor cluster:
> condor_submit condor-example.cmd

Quickly (before the program has a chance to finish), type
> condor_g
> condor_g -run

The first command shows all the jobs you submitted on this computer. The second command
shows the jobs you submitted which are currently executing, and on which computer.

Within a minute or so, the job will complete and there’ll be no result with your account ID from
condor_d. Take a look at the contents of your directory:
> 1s -1rth

The files are listed in ascending order by date. Note the new files at the bottom of the list.
Compare these files names to the ones given in condor-example.sh. Can you see how
condor-example-test-0.root got its name?

Muiltiple jobs
Edit the file condor-example.cmd and change the last line to read
queue 10

This means to submit 10 jobs. Save the file and execute the condor submit command again.
Note how the submitted jobs are “counted off” by periods. Type condor g and

condor g —run to see which computers execute the jobs. When they’re all done, look at the
contents of your directory to see all the new files.

Run ROOT and look at the contents of condor-example-test-9.root. Does it contain
the histogram you expect? Look at the mean and the histogram limits.

Aborting a job

It happens all the time: You submit 10,000 jobs, and then realize that something is wrong.
Fortunately, you can quickly abort a cluster of condor jobs.

Page 2 of 3 Basic Condor Tutorial 5/29/18

Do condor_ submit again. The message that comes out looks something like this:
> condor_submit condor-example.cmd
Submitting job(S)..eeeeee..
Logging submit event(sS)..ceeeee..
10 job(s) submitted to cluster 14.

The identifier for this particular cluster is “14” (you’ll almost certainly see a different number). If
you want to cancel all the jobs in that cluster at once, the command is:

> condor_rm 14

If you forget the cluster ID, you can always remind yourself with condor_q.

Clean up

Finished? Get rid of the files you no longer need:
> rm condor-example-test*

Or if you really want to wipe a directory that you’re never going to use again:
> cd /nevis/olga/data
> rm —rf SUSER

Optional: A couple of tricks

At this point you’re done with the basics. Here are a couple of extra tricks you can do with
python to improve this process a little bit.

If you’ve deleted your temporary directory in /data, create it again and cd to it. Copy over these
example files:
> cp ~seligman/root-class/root-python-setup.* S$PWD

Take a look at root-python-setup.cmd. It looks pretty much the same as that other
condor command file, with one big difference: instead of executing a shell script that will
execute another program, this command file will execute the python program directly.

Now look at root-python-setup.py and look at the comments. Two new things are
happening in this program:

e The python program is setting up its own environment. This requires the “stupid python
trick” I mention in the comments (causing the program to run itself again). This altering
of an external environment is something python can do but C++ cannot, at least not
without even more trickery than you see here.

e The python program is parsing its arguments; that is, it’s looking for options and
arguments instead of just assuming that the first argument has a particular meaning. This
can be done in C++ as well. When I’m writing code that requires only a couple of
parameters, I like to use “getopt” or “argparse” methods because they help tell a user
what a program is doing. Which is clearer to you?

> condor-example.py 5 myfile-5.root

> root-python-setup.py --mean=5 --outputfile=myfile.root

5/29/18 Basic Condor Tutorial Page 3 of 3

