
What is ROOT?
Why do we use it?

Answer:

ROOT does what physicists do:

It makes plots.
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Nent = 10000  
Mean  =  6.714
RMS   =  4.012

Another function to be fit hist2
Nent = 10000  
Mean  =  6.714
RMS   =  4.012
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Number of charged atoms in ’The Gardens of Spain’

Can you spot the pun in this plot?



The typical analysis task that you will be 
asked to do:

Take variables in an 
n-tuple, perform some computations, and 
make histograms.

So what is a histogram, what is an 
n-tuple, and how do we perform the 
computations?



Anatomy of a histogram

Properties of a histogram

� Name or Identifier
� Title (to be displayed on plot)
� Number of bins
� Lower bin limit
� Upper bin limit
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Example
Nent = 10000  
Mean  = -0.005034
RMS   =  0.974

Sample histogram Example
Nent = 10000  
Mean  = -0.005034
RMS   =  0.974

A ROOT command that might be used to create this histogram:

TH1F hist("Example","Sample histogram",100,-3,3)
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Example
Nent = 10000  
Mean  = -0.005034
RMS   =  0.974

Sample histogram
with error bars

Don't forget the errors!

For simple histograms, the error in one bin is the square root of 
the number of events in that bin.
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Example4
Nent = 20     
Mean  = 0.1251
RMS   =  1.184

Too many bins Example4
Nent = 20     
Mean  = 0.1251
RMS   =  1.184

There's an art to histogram design...
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Nent = 1000   
Mean  = 0.0015
RMS   = 0.9675

Too few bins Example7
Nent = 1000   
Mean  = 0.0015
RMS   = 0.9675



Row event ebeam px py pz  zv chi2
0 0 150.14 14.33 -4.02 143.54 22.26 0.94
1 1 149.79 0.05 -1.37 148.60 0.61 1.02
2 2 150.16 4.01 3.89 145.69 16.57 0.89
3 3 150.14 1.46 4.66 146.71 11.47 1.02
4 4 149.94 -10.34 11.07 148.33 0.37 0.85
5 5 150.18 17.08 -12.14 143.10 22.09 0.90
6 6 150.02 5.19 7.79 148.59 2.28 1.06
7 7 150.05 7.55 -7.43 144.45 21.40 0.97
8 8 150.07 0.23 -0.02 147.78 6.96 0.93
9 9 149.96 1.21 7.27 146.99 7.17 1.02

10 10 149.92 5.35 3.98 140.70 38.81 1.08
11 11 149.88 -4.63 -0.08 147.91 4.01 0.86
12 12 150.11 -1.96 11.46 147.41 6.76 1.08
13 13 150.02 -4.97 4.29 145.06 17.79 0.92
14 14 149.86 0.26 0.10 144.69 22.26 0.93

Anatomy of an n-tuple (a simple form of a ROOT Tree)

An n-tuple is an ordered list of numbers.

A ROOT Tree can be an ordered list of any collections of C++ objects.

Probably you'll only be asked to work with n-tuples this summer.



Why ROOT?
� It knows about n-tuples and histograms.
� It can handle large volumes of data (millions of 

physics events; files of gigabytes->terabytes in size).
� Multi-platform (Windows, Mac, many UNIX flavors)
� It's free.

But...

� You have to know some C++ in order to use 
ROOT effectively, in order to perform 
computations.

� What does C++ look like? Well...



#define Analyze_cxx
#include "Analyze.h"
#include "TH2.h"
#include "TStyle.h"
#include "TCanvas.h"

void Analyze::Loop()
{
//   In a Root session, you can do:
//      Root > .L Analyze.C
//      Root > Analyze t
//      Root > t.GetEntry(12); // Fill t data members with entry number 12
//      Root > t.Show();       // Show values of entry 12
//      Root > t.Show(16);     // Read and show values of entry 16
//      Root > t.Loop();       // Loop on all entries
//

//     This is the loop skeleton
//       To read only selected branches, Insert statements like:
// METHOD1:
//    fChain->SetBranchStatus("*",0);  // disable all branches
//    fChain->SetBranchStatus("branchname",1);  // activate branchname
// METHOD2: replace line
//    fChain->GetEntry(i);  // read all branches
//by  b_branchname->GetEntry(i); //read only this branch
   if (fChain == 0) return;

   Int_t nentries = Int_t(fChain->GetEntries());

   Int_t nbytes = 0, nb = 0;
   for (Int_t jentry=0; jentry<nentries;jentry++) {
      Int_t ientry = LoadTree(jentry); //in case of a TChain, ientry is the entry
number in the current file
      nb = fChain->GetEntry(jentry);   nbytes += nb;
      // if (Cut(ientry) < 0) continue;
   }
}



Web Links 
(the only part you should bother to write down)

All the documents you've seen (and will see) during the class 
today can be found at:

http://www.nevis.columbia.edu/~seligman/root-class/

ROOT and C++ links, including links to reference books on 
C++ and statistics, can be found at:

http://www.nevis.columbia.edu/~seligman/root-class/links.html



The Hands-on Course:
Basic Data Analysis using ROOT

ROOT basics

You will learn how to:
� look up ROOT command references
� plot a function
� histogram a variable
� fit a histogram 
� create C++ code for an n-tuple
� get a variable from an n-tuple
� apply cuts

-- but not necessarily in this order!

There's lots of optional material to help turn you into a ROOT expert. Try 
to go over as much of it as you can.


