
What is ROOT?
Why do we use it?

Answer:

ROOT does what physicists do:

It makes plots.

Double Gaussian
0 2 4 6 8 10 12 14

0

20

40

60

80

100

120

140

160

180

200

220

hist2
Nent = 10000
Mean = 6.714
RMS = 4.012

Another function to be fit hist2
Nent = 10000
Mean = 6.714
RMS = 4.012

-10 -8 -6 -4 -2 0 2 4 6 8 10

-10-8-6-4-20246810
-0.2

0

0.2

0.4

0.6

0.8

1

sin(y)*sin(x)/(x*y)

t (secs)
10-1 1 10 102 103

d(
Fa

lla
)

io
ns

n

12

14

16

18

20

22

24

26

28

Number of charged atoms in ’The Gardens of Spain’

Can you spot the pun in this plot?

The typical analysis task that you will be
asked to do:

Take variables in an
n-tuple, perform some computations, and
make histograms.

So what is a histogram, what is an
n-tuple, and how do we perform the
computations?

Anatomy of a histogram

Properties of a histogram

� Name or Identifier
� Title (to be displayed on plot)
� Number of bins
� Lower bin limit
� Upper bin limit

Measurement
-3 -2 -1 0 1 2 3

N
um

be
r

of
 e

ve
nt

s

0

50

100

150

200

250

300

Example
Nent = 10000
Mean = -0.005034
RMS = 0.974

Sample histogram Example
Nent = 10000
Mean = -0.005034
RMS = 0.974

A ROOT command that might be used to create this histogram:

TH1F hist("Example","Sample histogram",100,-3,3)

Measurement
-3 -2 -1 0 1 2 3

N
um

be
r

of
 e

ve
nt

s

0

50

100

150

200

250

300

Example
Nent = 10000
Mean = -0.005034
RMS = 0.974

Example
Nent = 10000
Mean = -0.005034
RMS = 0.974

Sample histogram
with error bars

Don't forget the errors!

For simple histograms, the error in one bin is the square root of
the number of events in that bin.

Measurement
-3 -2 -1 0 1 2 3

N
um

be
r

of
 e

ve
nt

s

0

0.2

0.4

0.6

0.8

1

Example4
Nent = 20
Mean = 0.1251
RMS = 1.184

Too many bins Example4
Nent = 20
Mean = 0.1251
RMS = 1.184

There's an art to histogram design...

Measurement
-3 -2 -1 0 1 2 3

N
um

be
r

of
 e

ve
nt

s

0

50

100

150

200

250

300

350

400

450

Example7
Nent = 1000
Mean = 0.0015
RMS = 0.9675

Too few bins Example7
Nent = 1000
Mean = 0.0015
RMS = 0.9675

Row event ebeam px py pz zv chi2
0 0 150.14 14.33 -4.02 143.54 22.26 0.94
1 1 149.79 0.05 -1.37 148.60 0.61 1.02
2 2 150.16 4.01 3.89 145.69 16.57 0.89
3 3 150.14 1.46 4.66 146.71 11.47 1.02
4 4 149.94 -10.34 11.07 148.33 0.37 0.85
5 5 150.18 17.08 -12.14 143.10 22.09 0.90
6 6 150.02 5.19 7.79 148.59 2.28 1.06
7 7 150.05 7.55 -7.43 144.45 21.40 0.97
8 8 150.07 0.23 -0.02 147.78 6.96 0.93
9 9 149.96 1.21 7.27 146.99 7.17 1.02

10 10 149.92 5.35 3.98 140.70 38.81 1.08
11 11 149.88 -4.63 -0.08 147.91 4.01 0.86
12 12 150.11 -1.96 11.46 147.41 6.76 1.08
13 13 150.02 -4.97 4.29 145.06 17.79 0.92
14 14 149.86 0.26 0.10 144.69 22.26 0.93

Anatomy of an n-tuple (a simple form of a ROOT Tree)

An n-tuple is an ordered list of numbers.

A ROOT Tree can be an ordered list of any collections of C++ objects.

Probably you'll only be asked to work with n-tuples this summer.

Why ROOT?
� It knows about n-tuples and histograms.
� It can handle large volumes of data (millions of

physics events; files of gigabytes->terabytes in size).
� Multi-platform (Windows, Mac, many UNIX flavors)
� It's free.

But...

� You have to know some C++ in order to use
ROOT effectively, in order to perform
computations.

� What does C++ look like? Well...

#define Analyze_cxx
#include "Analyze.h"
#include "TH2.h"
#include "TStyle.h"
#include "TCanvas.h"

void Analyze::Loop()
{
// In a Root session, you can do:
// Root > .L Analyze.C
// Root > Analyze t
// Root > t.GetEntry(12); // Fill t data members with entry number 12
// Root > t.Show(); // Show values of entry 12
// Root > t.Show(16); // Read and show values of entry 16
// Root > t.Loop(); // Loop on all entries
//

// This is the loop skeleton
// To read only selected branches, Insert statements like:
// METHOD1:
// fChain->SetBranchStatus("*",0); // disable all branches
// fChain->SetBranchStatus("branchname",1); // activate branchname
// METHOD2: replace line
// fChain->GetEntry(i); // read all branches
//by b_branchname->GetEntry(i); //read only this branch
 if (fChain == 0) return;

 Int_t nentries = Int_t(fChain->GetEntries());

 Int_t nbytes = 0, nb = 0;
 for (Int_t jentry=0; jentry<nentries;jentry++) {
 Int_t ientry = LoadTree(jentry); //in case of a TChain, ientry is the entry
number in the current file
 nb = fChain->GetEntry(jentry); nbytes += nb;
 // if (Cut(ientry) < 0) continue;
 }
}

Web Links
(the only part you should bother to write down)

All the documents you've seen (and will see) during the class
today can be found at:

http://www.nevis.columbia.edu/~seligman/root-class/

ROOT and C++ links, including links to reference books on
C++ and statistics, can be found at:

http://www.nevis.columbia.edu/~seligman/root-class/links.html

The Hands-on Course:
Basic Data Analysis using ROOT

ROOT basics

You will learn how to:
� look up ROOT command references
� plot a function
� histogram a variable
� fit a histogram
� create C++ code for an n-tuple
� get a variable from an n-tuple
� apply cuts

-- but not necessarily in this order!

There's lots of optional material to help turn you into a ROOT expert. Try
to go over as much of it as you can.

