What 1s ROOT?
Why do we use 1t?

Answer:
ROOT does what physicists do:

It makes plots.

| Another function to be fit l hist2

Nent = 10000
Mean = 6.714
RMS = 4.012

220

200
180
160
140
120
100

llllllllllllllllllllllllllllllllll
-

(=2}
o
TTT
oy
==

0 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 l 1 1 1 | 1
- 2 = e - L Do1u?ble Gau1s4slan

Y)
i (y

>/
7

Can you spot the pun in this plot?

Number of charged atoms in ’Nights in the Gardens of Spain’

The typical analysis task that you will
be asked to do:

Take variables 1n an
, perform some computations,
and make

So what 1s a , what 1s an
, and how do we perform the
computations?

Anatomy of a histogram

Sample histogram Example
Nent = 10000
E 300 ._....................4%........................42 \ ;........................E.. Mean =.o.005034
& | 5 f f | RMS_= 0.974
>
o
S 250
s |
2
g 200 - R SRR S Y .-
Z
150
100 _
50
1 1 i 1 1 1 1 t 1 1 1 1 i 1 1 1 1 ’ 1 1 1 1 t 1 1
-3 -2 -1 0 1 2 3
Measurement
Properties of a histogram A ROOT command that might be used to create this histogram:
wName or Identifier TH1F myPlot("Example","Sample histogram",100,-3,3)

mLitle (to be displayed on plot)
mNumber of bins
mLower bin limit
mUpper bin limit

Sample histogram Example

with error bars Nent = 10000
g 300 + =t 57
?, 250|— +
11 M
< 200 __ + + +++
150[— ##* + + #H
| v i
100 ++ {}+++
50— +++++ +++
L *ﬂ#‘i + ++ ”
OM"{'&[I1111111111nxlxllllllﬂ?{&ﬂ""*
e = -1 0 ! e

Don't forget the errors!

For simple histograms, the error in one bin i1s the square
root of the number of events in that bin.

There's an art to histogram design...

Too many bins Exampled
Nent = 20
b 1 Mean = 0.1251
& L RMS = 1.184
>
O -
—
o -
o 0.8/
L0 L
E L
-
= =
0.6
0.4
0.2}
[P TR T R I PR T | || | . [— Il 1 | | I
-3 -2 -1 0 1 3

2
Measurement

Too few bins Example7

Nent = 1000
r) Mean =0.0015
RMS = 0.9675

+a
O
o

I

Number of events
w F Y
(4 o
o o
| |

w
=4
S

I

250[—

200—

150

100

50—

I | il 1 1 l 1 1 L I | l I | il 1 il l 1 1 L 1 l | il 1 il l 1 1 L L

0
-3 -2 -1 0 1 2 3
Measurement

Anatomy of an n-tuple (a simple form of a ROOT Tree)

Branches [¥]

Row | event | ebeam pX py pz
3 0 o[150.14] 14.33] -4.02| 143.54
= 1 1] 149.79 0.05| -1.37| 148.60
&2 2 2| 150.16 4.01 3.89] 145.69
> 3 3] 150.14 1.46 4.66| 146.71
4 4] 149.94] -10.34] 11.07| 148.33
5 5| 150.18] 17.08] -12.14] 143.10
6 6/ 150.02 5.19 7.79] 148.59
7 7| 150.05 7.55| -7.43| 144.45
8 8| 150.07 0.23] -0.02| 147.78
9 9] 149.96 1.21 7.27| 146.99
10 10| 149.92 5.35 3.98] 140.70
11 11| 149.88] -4.63] -0.08] 147.91

An n-tuple 1s an ordered list of numbers.

A ROOT Tree can be an ordered list of any collections of C++
objects.

Probably you'll only be asked to work with n-tuples this

summer, but in the advanced tutorial you can see what it’s like
to work with a ROOT Tree.

Why ROOT?

e It knows about and
(and 4-vectors and object persistency and schema evolution
and detector geometry and Feynmann diagrams
and linear algebra and function-fitting and multi-variable analysis and...)

e It can handle large volumes of data
(millions of physics events; files of gigabytes->terabytes in size).

e Multi-platform (Windows, Mac, many UNIX flavors)

o [t’s free.
But...

e It’s open-source, with a complicated design history.

e User-interface issues and documentation are often neglected.
ROQT 1s not easy to use.

e You have to know some C++ 1n order to use ROOT effectively,
in order to perform

e What does C++ look like? Well...

#define Analyze cxx
#include "Analyze.h"
#include <TH2.h>

#include <TStyle.h>
#include <TCanvas.h>

void Analyze: :Loop () |

{

//
//
//
//
//
//
//
//

//
//
//
//
//
//
//

In a Root session, you can do:
Root > .L Analyze.C

Root > Analyze t

Root > t.GetEntry(12); // Fill t data members with entry number
Root > t.Show(); // Show values of entry 12

Root > t.Show(1l6); // Read and show values of entry 16

Root > t.Loop(); // Loop on all entries

This is the loop skeleton
To read only selected branches, Insert statements like:
METHOD1 :
fChain->SetBranchStatus("*",0); // disable all branches
fChain->SetBranchStatus ("branchname", 1) ; // activate branchname
METHOD2: replace line
fChain->GetEntry(i); // read all branches

//by b branchname->GetEntry(i); //read only this branch

if (fChain == 0) return;
Long64 t nentries = fChain->GetEntries();

Long64 t nbytes = 0, nb = 0;

for (Long64 t jentry=0; jentry<nentries;jentry++) {
Long64 t ientry = LoadTree (jentry);
nb = fChain->GetEntry (jentry); nbytes += nb;
// if (Cut(ientry) < 0) continue;

12

If you prefer python, there’s pyroot

import ROOT

Open the file.
myfile = ROOT.TFile('experiment.root')

Retrieve the n-tuple of interest.
mychain = ROOT.gDirectory.Get('treel')
entries = mychain.GetEntriesFast ()

Create a 2D histogram

myHist = ROOT.TH2D("hist2D","chi2 vs ebeam",100,0,20,100,149,151)
myHist.GetXaxis () .SetTitle ("chi2")
myHist.GetYaxis () .SetTitle ("ebeam [GeV]")

for jentry in xrange(entries):
Get the next tree in the chain and verify.
ientry = mychain.LoadTree(jentry)
if ientry < 0:
break

Copy next entry into memory and verify.
nb = mychain.GetEntry(jentry)
if nb <= 0:

continue

Fetch the variables from the entry and fill the histogram.
chi2 = mychain.chi?2

ebeam = mychain.ebeam

myHist.Fill (chi2, ebeam)

Display the scatterplot.
myHist.Draw ()

Web Links
(the only part you should bother to write down)

All the documents you've seen (and will see) during the
class today can be found at:

http://www.nevis.columbia.edu/~selieman/root-class/

ROOT and C++ links, including links to reference books
on C++ and statistics, can be found at:

http://www.nevis.columbia.edu/~selieman/root-class/links.html

The Hands-on Course:
Basic Data Analysis using ROOT

ROQOT basics

Over the next two days, you will learn how to:
e look up ROOT command references

e plot a function

e histogram a variable

e fit a histogram

e create C++ or python code for an n-tuple

e get a variable from an n-tuple

e apply cuts

-- but not necessarily in this order!

The advanced tutorial (which you may get to) includes sets of additional
exercises to help turn you into a ROOT expert:

e Creating an x-y plot

e Working with large numbers of histograms

e Extracting your own n-tuples

Try to go over as much of it as you can.

A Briet ROOT Demonstration

