What 1s ROOT?
Why do we use 1t?

Answer:
ROOT does what physicists do:

It makes plots.

Another function to be fit hist2

Nent = 10000
Mean = 6.714
RMS = 4.012

220

200
180
160
140
120
100
80
60
40y
20

——
o B -
.
[Bty
-
— e
.
.
- .

TPy ey ey ey ereyvreeyd
AR LRARAEREA RRAR ARAN LR RALARRALS
——
>

=
-
—a—

F-ANRA

——
-

Do1u?ble Gau1s4slan

sin(x)*sin(y)/(x*y)

Can you spot the pun in this plot?

Number of charged atoms in 'Nights in the Gardens of Spain’

The typical analysis task that you will
be asked to do:

Take variables 1n an
, perform some computations,
and make

So what 1s a , what 1s an
, and how do we perform the
computations?

Anatomy of a histogram

Sample histogram | Example
Nent = 10000
2 300 _....................4§........................4; ~. ... g.. Mean - .0.005034
S L : : | RMS = 0.974
o
© 250
o |
2
g 200 - M L SRR SRy 1 § . A I S
Z
150 i
40O |- -
P o [iﬁ“‘u—
0 I] 1 l 1 1 1 1 t | i 1 1 l 1 L L] i 1 1 1 1 [1
-3 -2 -1 0 1 2 3
Measurement
Properties of a histogram A ROOT command that might be used to define this histogram:
Name or Identifier TH1F myPlot("Example", "Sample histogram",100,-3,3)

Title (to be displayed on plot)
Number of bins
Lower bin limit
Upper bin limit

Sample histogram Example
with error bars Nent = 10000

b Mean =-0.005034
§ 3001 + RMS = 0.974

S] b

ol G

N

o

o

I

_+

—_— D SR

— ==

[—

150[— ++++ﬂ ,

100f— ;+?H s,
i ++l++
Byt t,
50(b '}
[Hte W’q)&
OM Oy S | CA SN N T e Ny g A g O | ey M A |
-3 -2 -1 0 1 2 3
Measurement

Don't forget the errors!

For simple histograms, the error in one bin 1s the square
root of the number of events in that bin.

There's an art to histogram design...

Too many bins Exampled
Nent = 20
g 1 Mean = 0.1251
S L RMS = 1.184
=
Q -
—
o —
o 0.8/
Q L
E L
=
= -
0.6
0.4
0.2}
i il 1 1 1 I 1 1 1] l “ 1 1 1 1 1 m 1 1 1 l 1 1 1
-3 -2 -1 0 1 3

2
Measurement

Too few bins | Example7
Nent = 1000
a & Mean =0.0015
S 450— RMS = 0.9675
3 =
5 400f—
g 350 [
£
-
< 300
250
200—
150
100
50
0 [1 1 1 l 1 L 1 1 1 1 l 1 1 1 1 1 1 1 ‘ 1 1 1 1
-3 -2 -1 0 1 2 3
Measurement

[found a claim that an optimal number of bins is ~3/N,
where N 1s the number of entries in the histogram. I have
not substantiated this on my own.

Anatomy of an n-tuple (a simple form of a ROOT Tree)

An n-tuple 1s an ordered list of numbers.

Branches -->

Row | event | ebeam pX py pz
ks 0 0| 150.14] 14.33 -4.02| 143.54
= 1 1| 149.79 0.05| -1.37] 148.60
- 2 2| 150.16 4.01 3.89| 145.69
v 3 3] 150.14 1.46 4.66| 146.71
4 4] 149.94| -10.34] 11.07| 148.33
5 5/ 150.18] 17.08] -12.14] 143.10
6 6/ 150.02 5.19 7.79] 148.59
7 7| 150.05 7.55| -7.43| 144.45
8 8 150.07 0.23] -0.02] 147.78
9 9] 149.96 1.21 7.27] 146.99
10 10{ 149.92 5.35 3.98] 140.70
11 11 149.88] -4.63] -0.08] 147.91

A ROOT Tree can be an ordered list of any collections of C++
objects.

Probably you'll only be asked to work with n-tuples this
summer, but in Part Eight of the tutorial you can see what it’s
like to work with a ROOT Tree.

Why ROOT?

It knows about and

and 4-vectors and object persistency and schema evolution
and detector geometry and Feynmann diagrams
and linear algebra and function-fitting and multi-variable analysis and...

It can handle large volumes of data

millions of physics events; files of gigabytes->terabytes in size; multi-
threaded and batch processing

Multi-platform (Windows, Mac, many UNIX flavors)
It’s free.

But...

It’s open-source, with a complicated design history.
User-interface 1ssues and documentation are often neglected.
It’s not a pre-packaged “app.” ROOT 1s not easy to install.
ROQT 1s pretty much only used 1n high-energy physics.

You have to know some C++ 1n order to use ROOT effectively,
in order to perform

What does C++ look like? Well...

#define AnalyzeHistogram cxx

#include "AnalyzeHistogram.h"
#include <TH2.h>
#include <TStyle.h>

[/ *x**xxx*x Definition section ****xx%xx
TH1* chi2Hist = 0;

void AnalyzeHistogram: :Begin(TTree * /*tree*/)

{
TString option = GetOption();

[/***%kxx%*x Tnitialization section ****xx*kx*

chi2Hist = new TH1F("chi2","Histogram of Chi2",100,0,20);
chi2Hist->GetXaxis()->SetTitle("chi2");
chi2Hist->GetYaxis()->SetTitle("number of events");

}

void AnalyzeHistogram::SlaveBegin(TTree * /*tree*/)

{
TString option = GetOption();

}

Bool t AnalyzeHistogram::Process(Long64 t entry)

{

[/ **xxx*** LoOop section ****kxxxxx*
treel->GetEntry(entry);
chi2Hist->Fill(chi2);

return KTRUE;
}

void AnalyzeHistogram::SlaveTerminate()

{}

void AnalyzeHistogram::Terminate()

{
[/ **xxx%k** Wrap-up section **xxx*xkkx
chi2Hist->Draw();

}

If you prefer Python, there’s pyroot

import ROOT

Open the file.
myfile = ROOT.TFile('experiment.root')

Retrieve the n-tuple of interest.
mychain = ROOT.gDirectory.Get('treel')
entries = mychain.GetEntriesFast ()

Create a 2D histogram
myHist = ROOT.TH2D("hist2D","chi2 vs ebeam",100,0,20,100,149,151)

myHist.GetXaxis () .SetTitle ("chi2")
myHist.GetYaxis () .SetTitle ("ebeam [GeV]")

for jentry in xrange(entries):

Copy next entry into memory and verify.
nb = mychain.GetEntry(jentry)
if nb <= 0:

continue

Fetch the variables from the entry and fill the histogram.
chi2 = mychain.chi?2

ebeam = mychain.ebeam

myHist.Fill (chi2, ebeam)

Display the scatterplot.
myHist.Draw ()

Web Links
(the only part you should bother to write down)

All the documents you've seen (and will see) during these
tutorial sessions can be found at:

http:/www.nevis.columbia.edu/~seligman/root-class/

ROOT and C++ links, including links to reference books
on C++ and statistics, can be found at:

http://www.nevis.columbia.edu/~selisman/root-class/links.html

http://www.nevis.columbia.edu/~seligman/root-class/
http://www.nevis.columbia.edu/~seligman/root-class/links.html

The Hands-on Course
Basic Data Analysis using ROOT

ROOQOT basics

Over the next two or three days, you will learn how to:
* look up ROOT command references

* plot a function

* histogram a variable

* fit a histogram

* get a variable from an n-tuple

* apply cuts

* do a quick study using TreeViewer (optional)

* create C++ or python code for an n-tuple

* use the Jupyter notebook server for quick coding
-- but not necessarily in this order!

But there’s more!

The written tutorial includes intermediate and advanced topics.
They’re there if you have the time during the tutorial sessions, or for
reference later on as you work with ROOT.

Part Five
Various intermediate topics

Part Six
Statistics jargon that physicists use (and other scientists as well)

Parts Seven and Eight: becoming a ROOT expert
* Creating an x-y plot

* Working with large numbers of histograms

* Extracting your own n-tuples

A Briet ROOT Demonstration

o Using the command line
o Using the notebook server

